Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities
"> Figure 1
<p>Model of smart city interactions between humans, the environment, and technology. The interfaces (in orange) between humans, the environment and technology represent the interactions between these domains, which vary across spatial and temporal scales (right side of the figure); the context (blue) is a key component at the common intersection of these interactions.</p> "> Figure 2
<p>Dimensions involved in sensing (data generation, geographic phenomena, type of sensing), and some exemplary blocks (<b>a</b>–<b>f</b>) representing the amount of sensor data assigned to each dimension [<a href="#B140-sensors-15-17013" class="html-bibr">140</a>]. (<b>a</b>) VGI and mobile network traffic: associated with <span class="html-italic">in situ</span> sensing, social phenomena, and user-generated data; (<b>b</b>) VGI in the context of environmental status updates: associated with <span class="html-italic">in situ</span> sensing, physical phenomena, and user-generated data; (<b>c</b>) Satellite imagery: associated with remote sensing, physical phenomena, and machine-generated data; (<b>d</b>) Measurements from sensors and sensor networks: associated with <span class="html-italic">in situ</span> sensing, physical phenomena, and machine-generated data; (<b>e</b>) Human settlements extracted from satellite imagery: associated with remote sensing, social phenomena, and machine-generated data; (<b>f</b>) Numerical data at entrances to, and exits from shopping malls, public transport, <span class="html-italic">etc.</span>: associated with <span class="html-italic">in situ</span> sensing, social phenomena (e.g., mobility), and machine-generated data.</p> "> Figure 3
<p>Technology-enabled contextual sensing for smart cities: context-enriched human and technical geo-sensor information for smart cities (note: interaction interfaces between the environment, humans, and technology match those in <a href="#sensors-15-17013-f001" class="html-fig">Figure 1</a>, with emphasis placed on the sensing interface between the real world and the digital world).</p> ">
Abstract
:1. Introduction
1.1. Spatiotemporal Context for Smart Cities
1.2. Interfaces and Interactions between Humans, the Environment, and Technology
1.3. Sensing Components at the Environment-Technology and Human-Technology Interfaces
2. Dimensions of Urban Geo-Sensing
Term | Related Terms | Characteristic Context Parameters, and Application Fields |
---|---|---|
Technical Sensors—in Situ Sensors | ||
Environmental sensors | Environmental monitoring, urban sensing | Meteorology and weather [24,25] Air pollution/quality monitoring [26,27,28,29,30,31] Heat island detection [28,32,33] Flood monitoring [34,35] Nuclear radiation safety [36,37,38,39] |
Mobile sensors | Wearable ambient sensors, mobile sensor web | Ubiquitous measurements, e.g., through bike-mounted sensors [40,41,42,43] Disaster management [37,44,45,46,47] Embedded mobile sensor web, application-independent [48,49,50] |
Pervasive sensing | Ubiquitous sensing, socially aware computing | Smart and aware environments and homes and ambient/active assisted living [51,52,53,54,55,56,57,58] Pervasive healthcare [59,60,61] RFID-based location and tracking [53,62,63] Socially aware computing [14,18,64,65] |
Technical Sensors—Remote Sensors | ||
Remote sensors | Remote technical sensors and remote sensing systems, from satellite-based to terrestrial | “Classic” airborne and spaceborne optical systems [66,67,68,69,70] New developments: high resolution, hyperspectral, LiDAR, UAV [67,68,69,70,71,72,73,74] Thermal [75,76,77] Atmosphere/Aerosols [78,79,80,81] |
Human Sensors | ||
People as sensors | Citizens as sensors, citizen sensing, human sensing, human sensors, humans as sensors, physiological sensors, wearable body sensors, participatory sensing, Volunteered Geographic Information (VGI) | Flood monitoring [35,82,83] Generic participatory sensing and sensing platforms (for smart cities) [84,85,86,87,88,89,90,91,92,93,94,95] Physiological parameters such as pulse, oxygen saturation, stress levels [96,97,98,99,100,101] Disaster and incident management [23,83,102] Noise mapping [103,104,105,106,107] VGI in general and in some of the above mentioned examples (including postings in social media regarding public health, air quality etc.) [108,109,110,111,112,113,114,115,116,117,118] |
Collective sensing | Mobile phone sensing, crowd sensing, social sensing, online sensing, social media | Disaster and incident management [115,119,120,121,122] Mobility patterns and transportation [22,105,123,124,125,126,127,128,129,130] Socio-physical context estimation [97,105,131,132,133] Tourism [124,134,135] Epidemiology and disease detection [136,137,138,139] |
3. Contextual Information as the Key for Smart Cities: A Geospatial Perspective
3.1. Integrating Contextual Information into Geospatial Analysis for Smart Cities
3.2. Towards a Geospatial Context-Awareness in Smart Cities
3.2.1. Information Fusion: From Location-Only to Human-Centered Approaches
3.3.2. From Geo-Sensor Information Fusion to Smart Cities: Still a Long Way to Go
4. Conclusions and Outlook
4.1. Is Technology the Driving Force behind the Development of Smart Cities?
4.2. How Can Smart Cities be Identified?
4.3. Can Contextual Sensing Lead to a Better Quality of Life?
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Frick, D.; Hoefert, H.W.; Legewie, H.; Mackensen, R.; Silbereisen, R.K. Quality of Urban Life: Social, Psychological, and Physical Conditions; Walter de Gruyter: Berlin, Germany, 1986. [Google Scholar]
- Allwinkle, S.; Cruickshank, P. Creating smart-er cities: An overview. J. Urban Technol. 2011, 18, 1–16. [Google Scholar] [CrossRef]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef]
- Hancke, G.; Silva, B.; Hancke, J.; Gerhard. The role of advanced sensing in smart cities. Sensors 2013, 13, 393–425. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.K.; Martinez, K. Environmental sensor networks: A revolution in the earth system science? Earth-Sci. Rev. 2006, 78, 177–191. [Google Scholar] [CrossRef]
- Nittel, S. A survey of geosensor networks: Advances in dynamic environmental monitoring. Sensors 2009, 9, 5664–5678. [Google Scholar] [CrossRef] [PubMed]
- Shoval, N. Sensing human society. Environ. Plan. B—Plan. Des. 2007, 34, 191–195. [Google Scholar] [CrossRef]
- Dey, A.K. Understanding and using context. Personal Ubiquitous Comput. 2001, 5, 4–7. [Google Scholar] [CrossRef]
- Brézillon, P. Context in problem solving: A survey. Knowl. Eng. Rev. 1999, 14, 47–80. [Google Scholar] [CrossRef]
- Clitheroe Jr, H.C.; Stokols, D.; Zmuidzinas, M. Conceptualizing the context of environment and behavior. J. Environ. Psychol. 1998, 18, 103–112. [Google Scholar] [CrossRef]
- Hong, J.-Y.; Suh, E.-H.; Kim, S.-J. Context-aware systems: A literature review and classification. Expert Syst. Appl. 2009, 36, 8509–8522. [Google Scholar] [CrossRef]
- Hong, J.; Suh, E.-H.; Kim, J.; Kim, S. Context-aware system for proactive personalized service based on context history. Expert Syst. Appl. 2009, 36, 7448–7457. [Google Scholar] [CrossRef]
- Bettini, C.; Brdiczka, O.; Henricksen, K.; Indulska, J.; Nicklas, D.; Ranganathan, A.; Riboni, D.A. Survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 2010, 6, 161–180. [Google Scholar] [CrossRef]
- Lukowicz, P.; Choudhury, T.; Gellersen, H. Beyond context awareness. IEEE Pervasive Comput. 2011, 10, 15–17. [Google Scholar] [CrossRef]
- Schmidt, A.; Beigl, M.; Gellersen, H.-W. There is more to context than location. Comput. Graph. 1999, 23, 893–901. [Google Scholar] [CrossRef]
- Snidaro, L.; García, J.; Llinas, J. Context-based information fusion: A survey and discussion. Inf. Fusion 2015, 25, 16–31. [Google Scholar] [CrossRef]
- Merbitz, H.; Buttstädt, M.; Michael, S.; Dott, W.; Schneider, C. Gis-based identification of spatial variables enhancing heat and poor air quality in urban areas. Appl. Geogr. 2012, 33, 94–106. [Google Scholar] [CrossRef]
- Sagl, G.; Blaschke, T.; Beinat, E.; Resch, B. Ubiquitous geo-sensing for context-aware analysis: Exploring relationships between environmental and human dynamics. Sensors 2012, 12, 9835–9857. [Google Scholar] [CrossRef] [PubMed]
- Cools, M.; Moons, E.; Creemers, L.; Wets, G. Changes in travel behavior in response to weather conditions. Transp. Res. Rec. 2010, 2157, 22–28. [Google Scholar] [CrossRef]
- Poslad, S.; Ma, A.; Wang, Z.; Mei, H. Using a smart city iot to incentivise and target shifts in mobility behaviour—Is it a piece of pie? Sensors 2015, 15, 13069–13096. [Google Scholar] [CrossRef] [PubMed]
- Sagl, G. Towards adaptive geo-monitoring: Examining environmental and social dynamics and their relationships for holistic process understanding. In Procesdings of 7th International Conference on Geographic Information Science (GIScience2012), Columbus, OH, USA, 18–21 September 2012.
- Sagl, G.; Resch, B. Mobile phones as ubiquitous social and environmental geo-sensors. In Encyclopedia of Mobile Phone Behavior; Zheng, Y., Ed.; IGI Global: Hershey, PA, USA, 2015; pp. 1194–1213. [Google Scholar]
- Resch, B. People as sensors and collective sensing-contextual observations complementing geo-sensor network measurements. In Progress in Location-Based Services; Krisp, J.M., Ed.; Springer: Berlin, Germany; Heidelberg, Germany, 2013; pp. 391–406. [Google Scholar]
- Devaraju, A.; Kauppinen, T. Sensors tell more than they sense: Modeling and reasoning about sensor observations for understanding weather events. Int. J. Sens. Wirel. Commun. Control 2012, 2, 14–26. [Google Scholar] [CrossRef]
- Muller, C.L.; Chapman, L.; Grimmond, C.S.B.; Young, D.T.; Cai, X. Sensors and the city: A review of urban meteorological networks. Int. J. Climatol. 2013, 33, 1585–1600. [Google Scholar] [CrossRef]
- Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.J.; McLeod, M.W.; Hodgson, T.F.; Dicks, J.; et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 2013, 70, 186–203. [Google Scholar] [CrossRef]
- Shepherd, R.; Beirne, S.; Lau, K.; Corcoran, B.; Diamond, D. Monitoring chemical plumes in an environmental sensing chamber with a wireless chemical sensor network. Sens. Actuators B Chem. 2007, 121, 142–149. [Google Scholar] [CrossRef]
- Resch, B.; Blaschke, T.; Mittlboeck, M. Live geography: Interoperable geo-sensor webs facilitating the vision of digital earth. Int. J. Adv. Netw. Serv. 2010, 3, 323–332. [Google Scholar]
- Resch, B.; Mittlboeck, M.; Girardin, F.; Britter, R.; Ratti, C. Live geography—Embedded sensing for standardised urban environmental monitoring. Int. J. Adv. Syst. Meas. 2009, 2, 15–167. [Google Scholar]
- De Nazelle, A.; Seto, E.; Donaire-Gonzalez, D.; Mendez, M.; Matamala, J.; Nieuwenhuijsen, M.J.; Jerrett, M. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ. Pollut. 2013, 176, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Brienza, S.; Galli, A.; Anastasi, G.; Bruschi, P. A low-cost sensing system for cooperative air quality monitoring in urban areas. Sensors 2015, 15, 12242–12259. [Google Scholar] [CrossRef] [PubMed]
- Honjo, T.; Yamato, H.; Mikami, T.; Grimmond, C.S.B. Network optimization for enhanced resilience of urban heat island measurements. Sustain. Cities Soc. 2015, in press. [Google Scholar] [CrossRef]
- Vardoulakis, E.; Karamanis, D.; Fotiadi, A.; Mihalakakou, G. The urban heat island effect in a small mediterranean city of high summer temperatures and cooling energy demands. Sol. Energy 2013, 94, 128–144. [Google Scholar] [CrossRef]
- Chang, N.-B.; Guo, D.-H. Urban flash flood monitoring, mapping and forecasting via a tailored sensor network system. In Proceedings of the IEEE Interantional Conference on Networking, Sensing and Control 2006 (ICNSC’06), Ft. Lauderdale, FL, USA, 23–25 April 2006; IEEE: Ft. Lauderdale, FL, USA; pp. 757–761.
- Horita, F.E.A.; Degrossi, L.C.; Mendiondo, E.M.; Ueyama, J.; Porto de Albuquerque, J. Development of a spatial decision support system for flood risk management in brazil that combines volunteered geographic information with wireless sensor networks. Comput. Geosci. 2015, 80, 84–94. [Google Scholar] [CrossRef]
- Endo, S.; Kimura, S.; Takatsuji, T.; Nanasawa, K.; Imanaka, T.; Shizuma, K. Measurement of soil contamination by radionuclides due to the fukushima dai-ichi nuclear power plant accident and associated estimated cumulative external dose estimation. J. Environ. Radioact. 2012, 111, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Sagl, G.; Resch, B.; Mittlboeck, M.; Hochwimmer, B.; Lippautz, M.; Roth, C. Standardised geo-sensor webs and web-based geo-processing for near real-time situational awareness in emergency management. Int. J. Bus. Contin. Risk Manag. 2012, 3, 339–358. [Google Scholar] [CrossRef]
- Sagl, G.; Lippautz, M.; Resch, B.; Mittlboeck, M. Near real-time geo-analyses for emergency support: A radiation safety exercise. In Proceddings of 14th AGILE International Conference on Geographic Information Science, Utrecht, The Netherlands, 18–21 April 2011.
- Kluson, J. Environmental monitoring and in situ gamma spectrometry. Radiat. Phys. Chem. 2001, 61, 209–216. [Google Scholar] [CrossRef]
- Elen, B.; Peters, J.; Poppel, M.V.; Bleux, N.; Theunis, J.; Reggente, M.; Standaert, A. The aeroflex: A bicycle for mobile air quality measurements. Sensors 2012, 13, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Kikuya, Y.; Arakawa, Y.; Nakamura, M.; Higashijima, Y.; Maruo, Y.Y.; Nakamura, M. Proposal of web framework for ubiquitous sensor network and its trial application using NO2 sensor mounted on bicycle. In Applications and the Internet (SAINT), 2012 IEEE/IPSJ 12th International Symposium, Izmir, Turkey, 16–20 July 2012; pp. 83–90.
- Van den Bossche, J.; Peters, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; De Baets, B. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef]
- Peters, J.; Van den Bossche, J.; Reggente, M.; Van Poppel, M.; De Baets, B.; Theunis, J. Cyclist exposure to ufp and bc on urban routes in antwerp, belgium. Atmos. Environ. 2014, 92, 31–43. [Google Scholar] [CrossRef]
- Thuro, K.; Singer, J.; Festl, J. A geosensor network based monitoring and early warning system for landslides. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2013; pp. 79–86. [Google Scholar]
- Lorincz, K.; Malan, D.J.; Fulford-Jones, T.R.F.; Nawoj, A.; Clavel, A.; Shnaydsser, V.; Mainland, G.; Welsh, M.; Moulton, S. Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Comput. 2004, 3, 16–23. [Google Scholar] [CrossRef]
- Chuli, H.; Nengcheng, C. Geospatial sensor web for smart disaster emergency processing. In Proceedings of the 19th International Conference on Geoinformatics 2011, Shanghai, China, 24–26 June 2011; pp. 1–5.
- Wang, F.; Yuan, H. Challenges of the sensor web for disaster management. Int. J. Digit. Earth 2010, 3, 260–279. [Google Scholar] [CrossRef]
- Resch, B.; Mittlboeck, M.; Lippautz, M. Pervasive monitoring—An intelligent sensor pod approach for standardised measurement infrastructures. Sensors 2010, 10, 11440–11467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bröring, A.; Remke, A.; Lasnia, D. Sensebox—A generic sensor platform for the web of things. In Mobile and Ubiquitous Systems: Computing, Networking, and Services; Puiatti, A., Gu, T., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2012; Volume 104, pp. 186–196. [Google Scholar]
- Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Essa, I.A. Ubiquitous sensing for smart and aware environments. IEEE Pers. Commun. 2000, 7, 47–49. [Google Scholar] [CrossRef]
- Helal, S.; Mann, W.; El-Zabadani, H.; King, J.; Kaddoura, Y.; Jansen, E. The gator tech smart house: A programmable pervasive space. IEEE Comp. 2005, 38, 50–60. [Google Scholar] [CrossRef]
- Kim, S.-C.; Jeong, Y.-S.; Park, S.-O. Rfid-based indoor location tracking to ensure the safety of the elderly in smart home environments. Pers. Ubiquit. Comput. 2013, 17, 1699–1707. [Google Scholar] [CrossRef]
- Garcia, N.M.; Rodrigues, J.J.P. Ambient Assisted Living; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Bisio, I.; Lavagetto, F.; Marchese, M.; Sciarrone, A. Smartphone-centric ambient assisted living platform for patients suffering from co-morbidities monitoring. IEEE Commun. Mag. 2015, 53, 34–41. [Google Scholar] [CrossRef]
- Forkan, A.; Khalil, I.; Tari, Z. Cocamaal: A cloud-oriented context-aware middleware in ambient assisted living. Future Gener. Comp. Sy. 2014, 35, 114–127. [Google Scholar] [CrossRef]
- Muñoz, A.; Serrano, E.; Villa, A.; Valdés, M.; Botía, J.A. An approach for representing sensor data to validate alerts in ambient assisted living. Sensors 2012, 12, 6282–6306. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, F.; Ullberg, J.; Štimec, A.; Furfari, F.; Karlsson, L.; Coradeschi, S. Sensor network infrastructure for a home care monitoring system. Sensors 2014, 14, 3833–3860. [Google Scholar] [CrossRef] [PubMed]
- Arnrich, B.; Mayora, O.; Bardram, J.; Tröster, G. Pervasive healthcare. Method. Inform. Med. 2010, 49, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Keh, H.-C.; Shih, C.-C.; Chou, K.-Y.; Cheng, Y.-C.; Ho, H.-K.; Yu, P.-Y.; Huang, N.-C. Integrating unified communications and internet of m-health things with micro wireless physiological sensors. J. Appl. Sci. Eng. 2014, 17, 319–328. [Google Scholar]
- Mukhopadhyay, S.; Postolache, O.A. Pervasive and Mobile Sensing and Computing for Healthcare; Springer: Berlin, Germany; Heidelberg, Germany, 2014. [Google Scholar]
- Ricci, A.; Grisanti, M.; De Munari, I.; Ciampolini, P. Improved pervasive sensing with rfid: An ultra-low power baseband processor for uhf tags. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2009, 17, 1719–1729. [Google Scholar] [CrossRef]
- Roussos, G.; Kostakos, V. Rfid in pervasive computing: State-of-the-art and outlook. Pervasive Mob. Comput. 2009, 5, 110–131. [Google Scholar] [CrossRef]
- Lukowicz, P.; Pentland, A.S.; Ferscha, A. From context awareness to socially aware computing. IEEE Pervasive Comput. 2011, 1, 32–41. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, X. Socially aware computing: Concepts, technologies, and practices. In Mobile Social Networking; Chin, A., Zhang, D., Eds.; Springer: New York, NY, USA, 2014; pp. 9–23. [Google Scholar]
- Miller, R.B.; Small, C. Cities from space: Potential applications of remote sensing in urban environmental research and policy. Environ. Sci. Policy 2003, 6, 129–137. [Google Scholar] [CrossRef]
- Gamba, P.; Dell’Acqua, F.; Dasarathy, B.V. Urban remote sensing using multiple data sets: Past, present, and future. Inform. Fusion 2005, 6, 319–326. [Google Scholar] [CrossRef]
- Weng, Q.; Quattrochi, D.A. Urban Remote Sensing; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Garzon, A.; Palacios, M.; Pecci, J.; Khan, Z.; Ludlow, D. Using space-based downstream services for urban management in smart cities. In Proceedings of the International Workshop on Smart City Clouds: Technologies, Systems and Applications in conjunction with 7th IEEE/ACM Utility and Cloud Computing (UCC), London, UK, 8–11 December 2014; pp. 818–823.
- Van der Linden, S.; Hostert, P. The influence of urban structures on impervious surface maps from airborne hyperspectral data. Remote Sens. Environ. 2009, 113, 2298–2305. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Weng, Q.; Resch, B. Collective sensing: Integrating geospatial technologies to understand urban systems—An overview. Remote Sens. 2011, 3, 1743–1776. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Hay, G.J.; Kyle, C.; Hemachandran, B.; Chen, G.; Rahman, M.M.; Fung, T.S.; Arvai, J.L. Geospatial technologies to improve urban energy efficiency. Remote Sens. 2011, 3, 1380–1405. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; Grimmond, C.S.B. Modelling of urban sensible heat flux at multiple spatial scales: A demonstration using airborne hyperspectral imagery of shanghai and a temperature-emissivity separation approach. Remote Sens. Environ. 2008, 112, 3493–3510. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T. Examining urban heat island relations to land use and air pollution: Multiple endmember spectral mixture analysis for thermal remote sensing. IEEE J. Sel. Top. Appl. 2013, 6, 1749–1756. [Google Scholar] [CrossRef]
- Nichol, J.E.; Wong, M.S.; Wang, J. A 3D aerosol and visibility information system for urban areas using remote sensing and gis. Atmos. Environ. 2010, 44, 2501–2506. [Google Scholar] [CrossRef]
- Alam, K.; Blaschke, T.; Madl, P.; Mukhtar, A.; Hussain, M.; Trautmann, T.; Rahman, S. Aerosol size distribution and mass concentration measurements in various cities of pakistan. J. Environ. Monit. 2011, 13, 1944–1952. [Google Scholar] [CrossRef] [PubMed]
- Alam, K.; Trautmann, T.; Blaschke, T.; Majid, H. Aerosol optical and radiative properties during summer and winter seasons over lahore and karachi. Atmos. Environ. 2012, 50, 234–245. [Google Scholar] [CrossRef]
- Majid, H.; Alam, K.; Madl, P.; Hofmann, W. Exposure assessment and associated lung deposition calculations for vehicular exhaust in four metropolitan cities of pakistan. Environ. Monit. Assess. 2013, 185, 5265–5276. [Google Scholar] [CrossRef] [PubMed]
- Schade, S.; Díaz, L.; Ostermann, F.; Spinsanti, L.; Luraschi, G.; Cox, S.; Nuñez, M.; de Longueville, B. Citizen-based sensing of crisis events: Sensor web enablement for volunteered geographic information. Appl. Geomat. 2013, 5, 3–18. [Google Scholar] [CrossRef]
- Poser, K.; Dransch, D. Volunteered geographic information for disaster management with application to rapid flood damage estimation. Geomatica 2010, 64, 89–98. [Google Scholar]
- Tamilin, A.; Carreras, I.; Ssebaggala, E.; Opira, A.; Conci, N. Context-aware mobile crowdsourcing. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 717–720.
- Koch, F.; Cardonha, C.; Gentil, J.M.; Borger, S. A platform for citizen sensing in sentient cities. In Citizen in Sensor Networks; Nin, J., Villatoro, D., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2013; pp. 57–66. [Google Scholar]
- Aoki, P.M.; Honicky, R.J.; Mainwaring, A.; Myers, C.; Paulos, E.; Subramanian, S.; Woodruff, A. Common sense: Mobile environmental sensing platforms to support community action and citizen science. In Proceedings of the Adjunct Proceedings Ubicomp 2008, Seoul, Korea, 21–24 September 2008; pp. 59–60.
- Hayes, J.; Stephenson, M. Bridging the social and physical sensing worlds: Detecting coverage gaps and improving sensor networks. In Proceedings of the First Workshop on Pervasive Urban Applications (PURBA) in Conjunction with the Ninth International Conference on Pervasive Computing, San Francisco, CA, USA, 12–15 June 2011.
- Doran, D.; Gokhale, S.; Dagnino, A. Human sensing for smart cities. In Proceedings of the 2013 IEEE/Acm International Conference on Advances in Social Networks Analysis and Mining, Ontario, ON, Canada, 25–28 August 2013; pp. 1323–1330.
- Swan, M. Emerging patient-driven health care models: An examination of health social networks, consumer personalized medicine and quantified self-tracking. Int. J. Environ. Res. Public Health 2009, 6, 492–525. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.A.; Estrin, D.; Hansen, M.; Parker, A.; Ramanathan, N.; Reddy, S.; Srivastava, M.B. Participatory sensing. In Proceedings of the Workshop on World-Sensor-Web (WSW’06): Mobile Device Centric Sensor Networks and Applications, Boulder, CO, USA, 31 October–3 November 2006.
- Abdelzaher, T.; Anokwa, Y.; Boda, P.; Burke, J.; Estrin, D.; Guibas, L.; Kansal, A.; Madden, S.; Reich, J. Mobiscopes for human spaces. IEEE Pervasive Comput. 2007, 6, 20–29. [Google Scholar] [CrossRef]
- Roitman, H.; Mamou, J.; Mehta, S.; Satt, A.; Subramaniam, L.V. Harnessing the crowds for smart city sensing. In Proceedings of the 1st International Workshop on Multimodal Crowd Sensing, Maui, Hawaii, HI, USA, 29 October–2 November 2012; ACM: Maui, Hawaii, HI, USA, 2012; pp. 17–18. [Google Scholar]
- Liao, C.-C.; Hou, T.-F.; Lin, T.-Y.; Cheng, Y.-J.; Erbad, A.; Hsu, C.-H.; Venkatasubramania, N. Sais: Smartphone augmented infrastructure sensing for public safety and sustainability in smart cities. In Proceedings of the 1st International Workshop on Emerging Multimedia Applications and Services for Smart Cities, Orlando, FL, USA, 3–7 November 2014; ACM: Orlando, Florida, FL, USA, 2014; pp. 3–8. [Google Scholar]
- Mitton, N.; Papavassiliou, S.; Puliafito, A.; Trivedi, K. Combining cloud and sensors in a smart city environment. EURASIP J. Wirel. Comm. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Evchina, Y.; Puttonen, J.; Dvoryanchikova, A.; Lastra, J.L.M. Context-aware knowledge-based middleware for selective information delivery in data-intensive monitoring systems. Eng. Appl. Artif. Intell. 2015, 43, 111–126. [Google Scholar] [CrossRef]
- Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Syst. 2010, 40, 1–12. [Google Scholar] [CrossRef]
- Resch, B.; Summa, A.; Sagl, G.; Zeile, P.; Exner, J.-P. Urban emotions—Geo-semantic emotion extraction from technical sensors, human sensors and crowdsourced data. In Progress in Location-Based Services 2014; Gartner, G., Huang, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 199–212. [Google Scholar]
- Resch, B.; Sudmanns, M.; Sagl, G.; Summa, A.; Zeile, P.; Exner, J. Crowdsourcing physiological conditions and subjective emotions by coupling technical and human mobile sensors. GI_Forum 2015, 1, 514–524. [Google Scholar] [CrossRef]
- Jovanov, E.; O’Donnell Lords, A.; Raskovic, D.; Cox, P.G.; Adhami, R.; Andrasik, F. Stress monitoring using a distributed wireless intelligent sensor system. IEEE Eng. Med. Biol. Mag. 2003, 22, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, M.; Lai, M.; Bender, D.; Picard, R.W.; Tognetti, S. Empatica e3—A wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In Proceedings of the 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), Athens, Greece, 3–5 November 2014; IEEE: Athens, Greece, 2014; pp. 39–42. [Google Scholar]
- Swan, M. Sensor mania! The internet of things, wearable computing, objective metrics, and the quantified self 2.0. J. Sens. Actuator Netw. 2012, 1, 217–253. [Google Scholar] [CrossRef]
- Laituri, M.; Kodrich, K. On line disaster response community: People as sensors of high magnitude disasters using internet gis. Sensors 2008, 8, 3037–3055. [Google Scholar] [CrossRef]
- Maisonneuve, N.; Stevens, M.; Niessen, M.E.; Steels, L. Noisetube: Measuring and mapping noise pollution with mobile phones. In Information Technologies in Environmental Engineering; Athanasiadis, I.N., Mitkas, P.A., Rizzoli, A.E., Marx Gómez, J., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2009; pp. 215–228. [Google Scholar]
- Garcia Martí, I.; Rodríguez, L.E.; Benedito, M.; Trilles, S.; Beltrán, A.; Díaz, L.; Huerta, J. Mobile application for noise pollution monitoring through gamification techniques. In Entertainment Computing-ICEC 2012; Garcia Martí, I., Rodríguez, L.E., Benedito, M., Trilles, S., Beltrán, A., Díaz, L., Huerta, J., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2012; pp. 562–571. [Google Scholar]
- Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. A survey of mobile phone sensing. IEEE Commun. Mag. 2010, 48, 140–150. [Google Scholar] [CrossRef]
- D’Hondt, E.; Stevens, M.; Jacobs, A. Participatory noise mapping works! An evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mob. Comput. 2013, 9, 681–694. [Google Scholar] [CrossRef]
- Hu, M.; Che, W.; Zhang, Q.; Luo, Q.; Lin, H. A multi-stage method for connecting participatory sensing and noise simulations. Sensors 2015, 15, 2265–2282. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as voluntary sensors: Spatial data infrastructure in the world of web 2.0. IJSDIR 2007, 2, 24–32. [Google Scholar]
- Goodchild, M.F.; Li, L. Assuring the quality of volunteered geographic information. Spat. Stat. 2012, 1, 110–120. [Google Scholar] [CrossRef]
- De Longueville, B.; Annoni, A.; Schade, S.; Ostlaender, N.; Whitmore, C. Digital earth’s nervous system for crisis events: Real-time sensor web enablement of volunteered geographic information. Int. J. Digit. Earth 2010, 3, 242–259. [Google Scholar] [CrossRef]
- Coleman, D.J.; Georgiadou, Y.; Labonte, J. Volunteered geographic information: The nature and motivation of produsers. Int. J. Spatial Data Infrastr. Res. 2009, 4, 332–358. [Google Scholar]
- Goodchild, M.F.; Glennon, A. Crowdsourcing geographic information for disaster response: A research frontier. Int. J. Digit. Earth 2010, 3, 231–241. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Guo, H.; Annoni, A.; Bian, L.; de Bie, K.; Campbell, F.; Craglia, M.; Ehlers, M.; van Genderen, J.; Jackson, D.; et al. Next-generation digital earth. Proc. Natl. Acad. Sci. USA 2012, 109, 11088–11094. [Google Scholar] [CrossRef] [PubMed]
- Craglia, M.; Ostermann, F.; Spinsanti, L. Digital earth from vision to practice: Making sense of citizen-generated content. Int. J. Digit. Earth 2012, 5, 398–416. [Google Scholar] [CrossRef]
- Campbell, A.T.; Eisenman, S.B.; Lane, N.D.; Miluzzo, E.; Peterson, R.A.; Hong, L.; Xiao, Z.; Musolesi, M.; Fodor, K.; Gahng-Seop, A. The rise of people-centric sensing. IEEE Internet Comput. 2008, 12, 12–21. [Google Scholar] [CrossRef]
- Riga, M.; Karatzas, K. Investigating the relationship between social media content and real-time observations for urban air quality and public health. In Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS14), Thessaloniki, Greece, 2–4 June 2014; ACM: Thessaloniki, Greece, 2014; pp. 1–7. [Google Scholar]
- Ciuccarelli, P.; Lupi, G.; Simeone, L. We live in informational landscapes. In Visualizing the Data City; Springer International Publishing: Cham, Switzerland, 2014; pp. 5–15. [Google Scholar]
- Zheng, X.; Hui, Z.; Yunhuai, L.; Lin, M. Crowd sensing of urban emergency events based on social media big data. In Proceedings of the Trust, Security and Privacy in Computing and Communications (TrustCom), 2014 IEEE 13th International Conference on, Beijing, China, 24–26 September 2014; pp. 605–610.
- Kamel Boulos, M.; Resch, B.; Crowley, D.; Breslin, J.; Sohn, G.; Burtner, R.; Pike, W.; Jezierski, E.; Chuang, K.-Y.S. Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: Trends, ogc standards and application examples. Int. J. Health Geogr. 2011, 10. [Google Scholar] [CrossRef]
- Steenbruggen, J.; Borzacchiello, M.T.; Nijkamp, P.; Scholten, H. Real-Time Data from Mobile Phone Networks for Urban Incidence and Traffic Management—A Review of Applications and Opportunities. Research Gate. Available online: http://www.researchgate.net/publication/242588960_Real-time_Data_From_Mobile_Phone_Networks_For_Urban_Incidence_and_Traffic_Management_-_A_Review_of_Applications_and_Opportunities (accesed on 9 July 2015).
- Steenbruggen, J.; Borzacchiello, M.T.; Nijkamp, P.; Scholten, H. Data from telecommunication networks for incident management: An exploratory review on transport safety and security. Transp. Policy 2013, 28, 86–102. [Google Scholar] [CrossRef]
- Miluzzo, E.; Lane, N.D.; Fodor, K.; Peterson, R.; Lu, H.; Musolesi, M.; Eisenman, S.B.; Zheng, X.; et al. Sensing meets mobile social networks: The design, implementation and evaluation of the cenceme application. In Proceedings of the 6th ACM Conference On Embedded Network Sensor Systems, Raleigh, NC, USA, 4–7 November 2008; ACM: Raleigh, NC; USA, 2008; pp. 337–350. [Google Scholar]
- Sagl, G.; Resch, B.; Hawelka, B.; Beinat, E. From social sensor data to collective human behaviour patterns: Analysing and visualising spatio-temporal dynamics in urban environments. In Gi-forum 2012: Geovisualization, Society and Learning; Jekel, T., Car, A., Strobl, J., Griesebner, G., Eds.; Wichmann Verlag: Berlin, Germany, 2012; pp. 54–63. [Google Scholar]
- Sagl, G.; Loidl, M.; Beinat, E. A visual analytics approach for extracting spatio-temporal urban mobility information from mobile network traffic. ISPRS Int. J. Geo-Inf. 2012, 1, 256–271. [Google Scholar] [CrossRef]
- Hawelka, B.; Sitko, I.; Beinat, E.; Sobolevsky, S.; Kazakopoulos, P.; Ratti, C. Geo-located twitter as proxy for global mobility patterns. Cartogr. Geogr. Inf. Sci. 2014, 41, 260–271. [Google Scholar] [CrossRef]
- Li, L.; Goodchild, M.F.; Xu, B. Spatial, temporal, and socioeconomic patterns in the use of twitter and flickr. CaGIS 2013, 40, 61–77. [Google Scholar] [CrossRef]
- Louail, T.; Lenormand, M.; Cantú, O.G.; Picornell, M.; Herranz, R.; Frias-Martinez, E.; Ramasco, J.J.; Barthelemy, M. From mobile phone data to the spatial structure of cities. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiger, E.; Ellersiek, T.; Resch, B.; Zipf, A. Uncovering latent mobility patterns from twitter during mass events. GI_Forum 2015, 1, 525–534. [Google Scholar] [CrossRef]
- Ianuale, N.; Schiavon, D.; Capobianco, E. Smart cities and urban networks: Are smart networks what we need? Manage. Anal. 2015. [Google Scholar] [CrossRef]
- Elwood, S.; Goodchild, M.F.; Sui, D.Z. Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Ann. Assoc. Am. Geogr. 2012, 102, 571–590. [Google Scholar] [CrossRef]
- Steiger, E.; Westerholt, R.; Resch, B.; Zipf, A. Twitter as an indicator for whereabouts of people? Correlating twitter with uk census data. Comput. Environ. Urban Syst. 2015, in press. [Google Scholar]
- Matassa, A.; Vernero, F. Using the critical design approach for rethinking citizens’ emotional bond with urban spaces. In Proceedings of the First International Conference on IoT in Urban Space, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Rome, Italy, 27–28 October 2014; ACM: Rome, Italy, 2014; pp. 111–113. [Google Scholar]
- Girardin, F.; Calabrese, F.; Fiore, F.D.; Ratti, C.; Blat, J. Digital footprinting: Uncovering tourists with user-generated content. IEEE Pervasive Comput. 2008, 7, 36–43. [Google Scholar] [CrossRef]
- Shoval, N.; Isaacson, M. Tracking tourists in the digital age. Ann. Tour. Res. 2007, 34, 141–159. [Google Scholar] [CrossRef]
- Brownstein, J.S.; Freifeld, C.C.; Madoff, L.C. Digital disease detection—Harnessing the web for public health surveillance. N. Engl. J. Med. 2009, 360, 2153–2157. [Google Scholar] [CrossRef] [PubMed]
- Stoové, M.A.; Pedrana, A.E. Making the most of a brave new world: Opportunities and considerations for using twitter as a public health monitoring tool. Prev. Med. 2014, 63, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Young, S.D.; Rivers, C.; Lewis, B. Methods of using real-time social media technologies for detection and remote monitoring of hiv outcomes. Prev. Med. 2014, 63, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Velardi, P.; Stilo, G.; Tozzi, A.E.; Gesualdo, F. Twitter mining for fine-grained syndromic surveillance. Artif. Intel. Med. 2014, 61, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Sagl, G.; Blaschke, T. Integrated urban sensing in the twenty-first century. In Global Urban Monitoring and Assessment through Earth Observation; CRC Press: Boca Raton, FL, 2014; pp. 269–286. [Google Scholar]
- Andreou, E. Thermal comfort in outdoor spaces and urban canyon microclimate. Renew. Energ. 2013, 55, 182–188. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Human thermal perception of coastal mediterranean outdoor urban environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar] [CrossRef]
- Tacoli, C. Crisis or adaptation? Migration and climate change in a context of high mobility. Environ. Urban. 2009, 21, 513–525. [Google Scholar] [CrossRef]
- Nitschke, M.; Hansen, A.; Bi, P.; Pisaniello, D.; Newbury, J.; Kitson, A.; Tucker, G.; Avery, J.; Dal Grande, E. Risk factors, health effects and behaviour in older people during extreme heat: A survey in south australia. Int. J. Environ. Res. Public Health 2013, 10, 6721–6733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, P.; Gilliland, J. The effect of season and weather on physical activity: A systematic review. Public Health 2007, 121, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, D.; Sen, J. Internet of things: Applications and challenges in technology and standardization. Wireless Pers. Commun. 2011, 58, 49–69. [Google Scholar] [CrossRef]
- Fairgrieve, S.; Falke, S. Sensor web standards and the internet of things. In Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications, Washington, DC, USA, 23–25 May 2011; ACM: Washington, DC; USA, 2011; pp. 1–1. [Google Scholar]
- Mayordomo, I.; Spies, P.; Meier, F.; Otto, S.; Lempert, S.; Bernhard, J.; Pflaum, A. Emerging technologies and challenges for the internet of things. In Proceedings of the IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), 2011, Seoul, Korea, 7–10 August 2011; IEEE: Seoul, Korea, 2011; pp. 1–4. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagl, G.; Resch, B.; Blaschke, T. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities. Sensors 2015, 15, 17013-17035. https://doi.org/10.3390/s150717013
Sagl G, Resch B, Blaschke T. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities. Sensors. 2015; 15(7):17013-17035. https://doi.org/10.3390/s150717013
Chicago/Turabian StyleSagl, Günther, Bernd Resch, and Thomas Blaschke. 2015. "Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities" Sensors 15, no. 7: 17013-17035. https://doi.org/10.3390/s150717013
APA StyleSagl, G., Resch, B., & Blaschke, T. (2015). Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities. Sensors, 15(7), 17013-17035. https://doi.org/10.3390/s150717013