Exploring the Therapeutic Potential of N-Methyl-D-Aspartate Receptor Antagonists in Neuropathic Pain Management
Abstract
:1. Introduction
2. Scope
3. Discussions
3.1. Ketamine
Ketamine | |||||
---|---|---|---|---|---|
Preclinical Studies | |||||
First Author/Reference | Animals | Animal Model | Dosage | Route/Frequency | Results |
M’Dahoma et al. (2015) [62] | Male Sprague–Dawley rats | CCI | 50 mg/kg bw | i.p. single dose | Alleviated mechanical hypersensitivity in von Frey test. |
Mak et al. (2015) [63] | Male Wistar rats | STZ-induced DN | 20 mg/kg bw | s.c. 5-day infusion | Demonstrated antinociceptive action in radiant heat plantar test and tail-flick test that lasted for 4 weeks. |
Claudino et al. (2018) [64] | Male Wistar rats | CION | 0.5–1 mg/kg bw | intranasal single dose | 0.5 mg/kg effectively reversed heat-induced hypersensitivity in the radiant heat test, while 1 mg/kg was found to alleviate mechanical hypersensitivity in the von Frey test. |
Doncheva et al. (2018) [65] | Male Wistar rats | CCI | 50 mg/kg bw | i.p. single dose | Alleviated hypersensitivity in both hot-plate test and analgesia-meter test. |
Pan et al. (2018) [66] | Male Sprague–Dawley rats | SNI | 10 mg/kg bw | i.p. single dose | Reversed mechanical hypersensitivity in the von Frey test. |
Salvat et al. (2018) [46] | Male 6J mice | CCI | 15 mg/kg bw | i.p. 10 days | Provided analgesic effects only in the initial stages after surgery in the von Frey test. |
Fang et al. (2019) [67] | Male Sprague–Dawley rats | SNI | 10 mg/kg bw | i.p. single dose | Successfully alleviated the mechanical sensitivity in the von Frey test. |
Kroin et al. (2019) [47] | Female D1 mice | SNI | 10 mg/kg Bw | i.p. single dose | Did not produce long-lasting analgesia in von Frey test. |
Humo et al. (2020) [48] | Male C75BL/6 mice | CCI | 15 mg/kg bw | i.p. single dose | Provided temporary relief from increased sensitivity to mechanical stimuli in the von Frey test, with effects lasting less than 24 h. |
Tai et al. (2021) [49] | Male Sprague–Dawley rats | SCI | 30 mg/kg bw | i.m. for 10 days, starting from day 8 after SCI | In combination with environmental enrichment, improved the alleviation of pain in both von Frey test and plantar test, supported tissue health and mobility; reduced activation of MAPK family, NF-κB, and IL-1β signaling, while the levels of excitatory amino acid transporter 2 were restored. |
Kim et al. (2022) [68] | Male Wistar rats | PSNL | 5–10 mg/kg bw | i.p. 5 weeks, with 2 weeks pause after the first 4 weeks | The higher dose resulted in a significant increase in the mechanical withdrawal threshold during the von Frey test, which lasted for over 2 weeks. |
Seo et al. (2023) [69] | Male Sprague–Dawley rats | SNI | 50 mg/kg bw | i.p. in the 15, 18, 21 day after SNI | Improved symptoms of NeP in the von Frey test and dry ice test, suppressed the presence of NMDA receptors and ATF-6 expression during ER stress. |
Han et al. (2023) [50] | Male Sprague–Dawley rats | CCI | 5–15 mg/kg bw | i.p. 14 days | Efficiently alleviated mechanical and thermal hyperalgesia in von Frey and radiant heat tests; decreased TNF-α, IL-6, IL-1β levels and p62 expression; upregulated C3II/LC3I and Beclin1 expression. |
Clinical Studies | |||||
First Author/Reference | Population | Type of NeP | Dosage | Route/Frequency | Results |
Kim et al. (2015) [51] | N = 30 | Severe NeP | Ketamine 1 mg/kg bw or Magnesium sulfate 30 mg/kg bw | i.v. for 1 h | Out of 15 patients, 10 recorded pain reduction according to VAS score. |
Rabi et al. (2016) [60] | N = 5 | SCI patients with NeP | 10% cream | topical ×3 times/day 2 weeks | After the 2-week period, all five participants experienced a reduction in their pain levels as indicated in the NPS. |
Rigo et al. (2017) [57] | N = 42 | Refractory chronic NeP | Ketamine 30 mg or Methadone 3 mg or Methadone 3 mg + Ketamine 30 mg | orally 90 days | Only the group treated with ketamine alone demonstrated a noticeable pain reduction according to VAS and also an alleviation of allodynia. |
Fallon et al. (2018) [59] | N = 214 | CIPN | 40–400 mg | orally 16 days | Showed no significant difference in pain reduction according to Sensory Component of the Short Form McGill Pain Questionnaire. |
Czarnetzki et al. (2018) [55] | N = 160 | NeP after back surgery | 0.25 mg/kg bw preoperatively, 0.25 mg/kg bw intraoperatively, 0.1 mg/kg bw from 1 h before the end of surgery and continuing until the patient’s discharge from the recovery room. | i.v. | The low-dose infusion administered during the perioperative period did not show any impact on the occurrence of neuropathic lower back pain 6 or 12 months after surgery, according to the DN4 questionnaire. |
Bosma et al. (2018) [54] | N = 30 | Refractory NeP | 0.5–2 mg/kg bw | i.v. 6 h/day 5 days | After 1 month post-treatment, about 50% of patients experienced pain reduction according to Brief Pain Inventory questionnaire. |
Weber et al. (2018) [52] | N = 1 | Bilateral neuropathic leg pain | 7 µg/kg/min | i.v. 5 days | Demonstrated fast-acting pain-relieving effects, with 70% reduction of pain, according to rating scale of burning quality, that persisted for a duration of 5 months after the initial administration. |
Moreno-Hay et al. (2018) [53] | N = 1 | Dentoalveolar NeP | 20–50 mg | i.v. 5 infusions over 4 years | The patient’s NeP symptoms were efficiently treated, and methadone was eventually stopped. |
Martin et al. (2019) [58] | N = 60 | Refractory NeP | Ketamine 0.4–0.5 mg/kg bw, FOLLOWED BY Dextromethorphan 90 mg or Memantine 20 mg | Ketamine i.v. (infusion, 2 h) Dextromethorphan orally, 12 weeks Memantine orally, 12 weeks | Dextromethorphan, not memantine, was found to prolong the pain-relieving effects of ketamine for up to 1 month, according to VAS and NPSI. |
Pickering et al. (2020) [56] | N = 20 | Refractory chronic NeP | Ketamine 0.5 mg/kg bw or Ketamine 0.5 mg/kg bw + Magnesium sulfate 3 g | One infusion every 35 days for 3 times | At 35 days after infusion, ketamine did not provide pain relief according to four-item Neuropathic Pain Questionnaire; when combined with magnesium, the analgesic effects were not further enhanced. |
Provido-Aljibe et al. (2022) [61] | N = 41 | CRNP | 75–475 mg | s.c. 5 days | Efficiently decreased the pain levels, according to NPS. |
3.2. Dextromethorphan
3.3. Memantine
3.4. Amantadine
3.5. Valproic Acid
Valproic Acid | |||||
---|---|---|---|---|---|
Preclinical Studies | |||||
First Author/Reference | Animals | Animal Model | Dosage | Route/Frequency | Results |
Chen et al. (2018) [129] | Male Sprague–Dawley rats | CCI | 300 mg/kg bw | i.p. 14 days | Significantly reduced thermal sensitivity and mechanical sensitivity in plantar analgesia-meter and von Frey test; decreased pNFκB, iNOS, COX-2, pro-apoptotic protein, TNF-α, and IL-1β levels. |
Elsherbiny et al. (2019) [130] | Male Swiss albino mice | Alloxan-induced DN | 25–50 mg/kg bw | orally 5 days | Significantly alleviated thermal and mechanical sensitivity in hot-plate and von Frey test; decreased spinal histone deacetylases, TNF-α, and IL-1β levels. |
Chu et al. (2020) [131] | Male Sprague–Dawley rats | SNI | 200 mg/kg bw or 10, 20, 50 μg, in 0.5 μl | i.p. or into ventrolateral orbital cortex | Both i.p. injection and local administration demonstrated a significant analgesic effect in a dose-dependent manner in the paw withdrawal threshold test. |
Wang et al. (2020) [133] | Male Sprague–Dawley rats | SCI | 80 mg/kg bw | i.v. 5 days | Greatly enhanced functional recovery and tissue repair; effectively suppressed reactive astrocytes post-SCI; decreased IL-1β, IL-6, and TNF-α levels. |
Wang et al. (2021) [135] | Male Sprague–Dawley rats | SCI | 80 mg/kg bw | i.v. | Facilitated the recovery of tissue and locomotor function in Basso–Beattie–Bresnahan test; decreased the number of microglia; increased neural stem cell growth, BDNF, NGF NTF-3, and Tuj-1 positive cells. |
Guo et al. (2021) [132] | Male Sprague–Dawley rats | SNL | 300 mg/kg bw | i.p. 3 days | I.p. administration effectively reduced mechanical allodynia in von Frey test; decreased TNF-α, IL-1β, and IL-6 levels, spinal cell apoptosis, NF-κB, JAK2, STAT3; increased STAT1. |
Clinical Studies | |||||
First Author/Reference | Population | Type of NeP | Dosage | Route/Frequency | Results |
Ghasemian et al. (2020) [134] | N = 80 | Radiculopathy | Na+ valproate 200 mg + Celecoxib 100 mg + Acetaminophen 500 mg | orally 10 days | A low dosage of Na+ valproate, particularly when combined with NSAIDs, showed promising effectiveness in reducing pain, according to VAS score. |
3.6. Carbamazepine
Carbamazepine | |||||
---|---|---|---|---|---|
Preclinical Studies | |||||
First Author/Reference | Animals | Animal Model | Dosage | Route/Frequency | Results |
Kohli et al. (2016) [148] | Sprague–Dawley rats | CCI | 20 mg/kg bw | i.p. 14 days | Reversed thermal and mechanical hyperalgesia in hot-plate and pinprick tests. |
AL-Mahmood et al. (2016) [149] | Female Sprague–Dawley rats | STZ- induced DN | Carbamazepine 20–40 mg/kg bw or Gabapentin 30–180 mg/kg bw or Carbamazepine 20–40 mg/kg bw + Gabapentin 30–180 mg/kg bw | orally 1 week | Carbamazepine at doses of 20 and 40 mg/kg did not result in a notable effect on hot-plate latency. Conversely, a combination of gabapentin at 90 mg/kg and carbamazepine at 20 mg/kg led to a significant increase in latency. |
Deseure et al. (2017) [152] | Male Sprague–Dawley rats | IoN-CCI | Carbamazepine 30 mg or Baclofen 1.06 mg or Morphine 5 mg or Clomipramine 4.18 mg | s.c. 1 week | All medications exhibited significant antiallodynic effects; carbamazepine demonstrated the most potent effects in directed face grooming and von Frey testing. |
Dai et al. (2018) [150] | Female Sprague–Dawley rats | CCI | Carbamazepine 100 µg/mL or Carbamazepine-loaded microparticles 10–20 mg in 150 µL saline | 14 days local sustained perineural release | The administration of carbamazepine-loaded microparticles resulted in more notable pain relief in von Frey and thermal plantar tests. |
Bektas et al. (2019) [151] | Male Sprague –Dawley rats | Capsaicin-induced hyperalgesia | 30 mg/kg bw | orally 45 min prior to capsaicin | There was a significant increase in thermal thresholds in plantar test. |
Clinical Studies | |||||
First Author/Reference | Population | Type of NeP | Dosage | Route/Frequency | Results |
Shafiq et al. (2015) [155] | N = 202 | TN | Carbamazepine 200 mg or Oxcarbazepine 200 mg | orally 8 months | Both medications alleviated pain as per VAS, with oxcarbazepine showing a more noticeable effect. |
Syed et al. (2016) [161] | N = 9 | TN | 100–600 mg | orally 11 years | The pain perception significantly decreased according to FPS and NRS. |
Puri et al. (2018) [159] | N = 45 | TN | Carbamazepine 600–800 mg or Carbamazepine 600 mg + Baclofen 10–20 mg or Carbamazepine 600 mg orally + Capsaicin 0.25% cream | Carbamazepine/baclofen orally Capsaicin local application 1 month | The combination of carbamazepine with baclofen proves to be more efficient and effective in alleviating pain in patients with TN, with the carbamazepine-capsaicin combination following closely behind in comparison to carbamazepine alone according to VAS. |
Kaur et al. (2018) [157] | N = 37 | TN | Carbamazepine 400–1200 mg or Gabapentin 600–1800 mg | orally 3 months | Both medications demonstrated effectiveness in reducing pain, with gabapentin showing greater efficiency based on the frequency of the attacks. |
Agarwal et al. (2020) [158] | N = 46 | TN | Carbamazepine 400–1200 mg or Gabapentin 600–1800 mg | orally 3 months | Both drugs alleviated pain after 3 months of treatment according to VAS, with a more pronounced effect for gabapentin. |
Tariq et al. (2021) [162] | N = 30 | TN | 100 mg | orally 28 days | The average VAS score decreased from 4.53 on day 7 to 3.27 on day 28 after treatment. |
Iqbal et al. (2023) [156] | N = 56 | TN | Carbamazepine 200 mg or Oxcarbazepine 200 mg | orally up to 7 months | Both medications demonstrated effectiveness based on the frequency of attacks, with oxcarbazepine showing a more pronounced effect. |
Khan et al. (2023) [160] | N = 50 | PHN | Carbamazepine 200 mg or Amitriptyline 25 mg | orally 8 weeks | Both drugs showed similar effectiveness, with carbamazepine reducing pain by 80% and amitriptyline by 86%, according to VAS. |
3.7. Phenytoin
Phenytoin | |||||
---|---|---|---|---|---|
Preclinical Studies | |||||
First Author/Reference | Animals | Animal Model | Dosage | Route/Frequency | Results |
Hesari et al. (2016) [173] | Male Wistar rats | CCI | 50 mg/kg bw | i.p. 14 days | Significantly reversed thermal and mechanical sensitivity in von Frey, pinprick, acetone, and hot-plate tests. |
Kocot-Kępska et al. (2023) [172] | Male Wistar rats | CCI | 10–60 mg/kg bw | i.p. single dose day 7 after CCI | Administered in single and repeated doses, reduced thermal and mechanical sensitivity in von Frey and cold-plate tests; effectively decreased the activation and/or infiltration of microglia/macrophages in both the spinal cord and dorsal root ganglia; the phenytoin–morphine combination resulted in superior pain relief compared to administering each drug separately. |
30 mg/kg bw | i.p. 16 h and 1 h before CCI | ||||
Phenytoin 30 mg/kg bw Day 8 after CCI FOLLOWED BY Morphine 10 mg/kg bw | i.p. | ||||
Clinical Studies | |||||
First Author/Reference | Population | Type of NeP | Dosage | Route/Frequency | Results |
Kopsky et al. (2017) [182] | N = 1 | 60 years old male with peripheral NeP | 5–10% cream | 2 times daily 3 months | The 5% cream quickly reduced allodynia on the NRS. With the 10% cream, the person experienced complete relief from allodynia for the entire night. |
N = 1 | 71 years old with CIAP+CINP | 5% cream | 3 times daily 2 months | After the application, the patient scored 0 on the NRS. | |
N = 1 | 54 years old with CIPN | 5–10% cream | 2–3 times daily 1 months | Both concentrations of the cream resulted in a reduction of pain levels on the NRS, with the 10% cream showing a more pronounced effect. | |
Kopsky et al. (2018) [184] | N = 70 | Different types of NeP | 5–10% cream | Up to 41 weeks | Resulted in a significant reduction in NeP, with more pronounced effects for the 10% concentration, according to the NRS. |
Kopsky et al. (2018) [185] | N = 21 | Localized NeP | 10% cream | - | After 30 min, the average decrease in pain as recorded by the NRS within the region treated was 3.3. |
Hesselink et al. (2017) [178] | N = 5 | SFN | 10% cream | - | In every instance, the time it took for the pain relief to become noticeable was less than 20 min, with four out of five cases experiencing relief within just 10 min. |
Kopsky et al. (2020) [181] | N = 12 | Symmetrical painful polyneuropathy | 10–20% cream | 6 weeks | Half of the patients exhibited positive responses to treatment on the NRS. |
Hesselink et al. (2017) [179] | N = 1 | SFN | 10% cream | several weeks | The application of 10% cream resulted in a significant (50%) reduction in pain. The pain-relieving effects of 10% cream typically begin to take effect within approximately 5 min of application, providing relief for up to 20 h in this particular instance. The pain screening tool used was the NRS. |
Hesselink et al. (2018) [183] | N = 1 | CIAP | 10% cream | - | Within 20 min of applying the cream, the pain in the right foot stayed constant, but the pain in the left foot decreased from a score of 7 to 2 on the NRS. |
Hesselink et al. (2024) [180] | N = 3 | SFN | 5% cream | - | The pain experienced by two patients was significantly reduced (by more than 50%), while one patient reported complete disappearance of the pain. The pain screening tool used was the NRS. |
Hesselink et al. (2016) [176] | N = 1 | DN | 5% cream | - | The outcome led to a significant decrease (of 50%) in neuropathic pain, according to the DN4. |
Hesselink et al. (2018) [177] | N = 1 | DN | 10–30% cream | - | Phenytoin cream, applied in a single-blind manner, decreased pain levels on the NRS within just 5 min of application. |
Schnell et al. (2020) [174] | N = 39 | TN | 10–20 mg/kg | i.v. | Nearly 90% of individuals experienced instant relief from pain in TN crisis. |
Vargas et al. (2015) [175] | N = 1 | TN | 15 mg/kg | i.v. | After the infusion, the patient reported that his pain level as 2 out of 10; he was able to communicate clearly and effortlessly. |
3.8. Riluzole
Riluzole | |||||
---|---|---|---|---|---|
Preclinical Studies | |||||
First Author/Reference | Animals | Animal Model | Dosage | Route/Frequency | Results |
Karadimas et al. (2015) [193] | Female Sprague–Dawley rats | CSM | 8 mg/kg bw | i.p. 2 weeks | Attenuated pain sensitivity in von Frey and tail flick tests. |
Jiang et al. (2016) [194] | Male Sprague–Dawley rats | CCI | 4 mg/kg bw | i.p. 5 days | Reduced thermal hyperalgesia and mechanical allodynia in plantar analgesia meter and von Frey tests; decreased the expression of P2X7R; suppressed microglial activation in the spinal cord dorsal horn. |
Ghayour et al. 2017 [204] | Male Wistar rats | SNI | 6–8 mg/kg bw and 4–6 mg/kg bw | i.p. single dose and i.p. 8 weeks | Acute and chronic treatment slowed the regeneration process and delayed the recovery of motor function. |
Yamamoto et al. (2017) [195] | Male Sprague–Dawley rats | Oxaliplatin-induced neuropathy | 12 mg/kg bw | orally 27 days | Alleviated mechanical allodynia in the von Frey test, suppressed the rise in glutamate concentration, and prevented the reduction of GLT-1 expression. |
Thompson et al. (2018) [200] | Male Sprague–Dawley rats | SNL | 2–8 mg/kg bw | i.p. 14 days | Inhibited vocalizations and depression-like behaviors in FST; did not affect withdrawal thresholds in the von Frey test; enhanced the mAHP mediated by SK channels in amygdala neurons. |
Poupon et al. (2018) [196] | 57Bl/6JRj mice | Oxaliplatin-induced neuropathy | 60 μg/mL | in drinking water 28 days | Prevented cold and mechanical hypersensitivities in various tests (tail immersion, acetone von Frey, and tail brush), dexterity impairment (beam walk and adhesive removal tests), and depression-like symptoms chemotherapy (FST test); significantly prevented the decrease of NCV. |
Yamamoto et al. (2018) [197] | Male Sprague–Dawley rats | Oxaliplatin-induced neuropathy | 12 mg/kg bw | orally 4 days | Reduced cold allodynia in acetone test via inhibition of TRPM8 overexpression in the dorsal root ganglions. |
Martins et al. (2018) [201] | Male Wistar rats | SCI | Riluzole 4 mg/kg bw or Dantrolene 10 mg/kg bw or Riluzole 4 mg/kg bw + Dantrolene 10 mg/kg bw | i.p. 15 min and 1 h before SCI | The combination synergistically enhanced neuroprotection by reducing apoptotic cell death; significantly improved motor recovery as measured by the BBB locomotor rating scale. |
Zhang et al. (2018) [198] | Male Sprague–Dawley rats | SNL | 12 mg/kg bw | i.p. single dose at 5 days post SNL surgery | Decreased mechanical sensitivity in von Frey test for at least 14 days; prompted LTD of spinal nociceptive signaling by acting on postsynaptic GluR2 receptors. |
Wu et al. (2020) [202] | Female Wistar rats | SCI | 4 mg/kg bw | i.p. 7 days | Significant increased locomotor scores (BBB score, inclined plane test); reduced spinal cavity size, increased levels of MPB and neurofilament 200; decreased levels of proinflammatory cytokines (IL-13, IL-1β, IL-6, TNF-α, TGF-β1); induced polarization of M2 microglia/macrophages. |
Taiji et al. (2021) [199] | Male Sprague–Dawley rats | SNI | 4 mg/kg bw | i.p. single dose at 7 days after surgery | Reduced mechanical allodynia in von Frey test. |
Wu et al. (2022) [208] | Female Wistar rats | SCI | 6 mg/kg bw | i.p. single dose | Decreased IL-1β mRNA, protected neurons from damage, and reduced the activation of microglia/macrophage M1 expression; increased the levels of IL-33 and its receptor ST2 in microglia/macrophages in the spinal cord. |
Xu et al. (2022) [203] | Female Wistar rats | SCI | 4 mg/kg bw | i.p. 7 days | Promotes neurological functional restoration by activating the GSK-3β/CRMP-2 signaling pathway. |
Clinical Studies | |||||
First Author/Reference | Population | Type of NeP | Dosage | Route/Frequency | Results |
Trinh et al. 2021 [207] | N = 52 | Oxaliplatin-induced neuropathy | 50 mg | orally prior to the second oxaliplatin dose, continuing to the end of treatment | According to TNS and FACT-GOG NTX scores, riluzole worsens neuropathy symptoms, neurotoxicity, and quality of life associated with oxaliplatin treatment. |
Foley et al. (2022) [205] | N = 445 | NeP associated with secondary progressive multiple sclerosis | 50 mg | orally 1/day for 4 weeks, then 2/day until week 96 | Riluzole showed no positive effect on any NeP outcome measure (NPS and Brief Pain Inventory). |
Kumarasam et al. (2022) [206] | N = 52 | Cervical spine injury | 100 mg FOLLOWED BY 50 mg | orally, 3 days FOLLOWED BY orally 13 days | Riluzole therapy did not result in a significant improvement in the severity of NeP, as measured by the NRS. |
3.9. Levorphanol
3.10. Methadone
4. Materials and Methods
5. Summary
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terminology|International Association for the Study of Pain. Available online: https://www.iasp-pain.org/resources/terminology/ (accessed on 17 May 2024).
- Mitsikostas, D.-D.; Moka, E.; Orrillo, E.; Aurilio, C.; Vadalouca, A.; Paladini, A.; Varrassi, G. Neuropathic Pain in Neurologic Disorders: A Narrative Review. Cureus 2022, 14, e22419. [Google Scholar] [CrossRef] [PubMed]
- Was, H.; Borkowska, A.; Bagues, A.; Tu, L.; Liu, J.Y.H.; Lu, Z.; Rudd, J.A.; Nurgali, K.; Abalo, R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front. Pharmacol. 2022, 13, 750507. [Google Scholar] [CrossRef] [PubMed]
- Shkodra, M.; Caraceni, A. Treatment of Neuropathic Pain Directly Due to Cancer: An Update. Cancers 2022, 14, 1992. [Google Scholar] [CrossRef]
- Smith, B.H.; Hébert, H.L.; Veluchamy, A. Neuropathic Pain in the Community: Prevalence, Impact, and Risk Factors. Pain 2020, 161, S127–S137. [Google Scholar] [CrossRef]
- Pușcașu, C.; Zanfirescu, A.; Negreș, S. Recent Progress in Gels for Neuropathic Pain. Gels 2023, 9, 417. [Google Scholar] [CrossRef] [PubMed]
- Langley, P.C.; Van Litsenburg, C.; Cappelleri, J.C.; Carroll, D. The Burden Associated with Neuropathic Pain in Western Europe. J. Med. Econ. 2013, 16, 85–95. [Google Scholar] [CrossRef]
- Freynhagen, R.; Baron, R.; Gockel, U.; Tölle, T.R. PainDETECT: A New Screening Questionnaire to Identify Neuropathic Components in Patients with Back Pain. Curr. Med. Res. Opin. 2006, 22, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.H.; Torrance, N.; Bennett, M.I.; Lee, A.J. Health and Quality of Life Associated with Chronic Pain of Predominantly Neuropathic Origin in the Community. Clin. J. Pain 2007, 23, 143–149. [Google Scholar] [CrossRef]
- Jensen, M.P.; Chodroff, M.J.; Dworkin, R.H. The Impact of Neuropathic Pain on Health-Related Quality of Life: Review and Implications. Neurology 2007, 68, 1178–1182. [Google Scholar] [CrossRef]
- Freynhagen, R.; Bennett, M.I. Diagnosis and Management of Neuropathic Pain. BMJ 2009, 339, 391–395. [Google Scholar] [CrossRef]
- van Velzen, M.; Dahan, A.; Niesters, M. Neuropathic Pain: Challenges and Opportunities. Front. Pain Res. 2020, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.B. Neuropathic Pain. PharmacoEconomics 2012, 27, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Hans, G.; Masquelier, E.; De Cock, P. The Diagnosis and Management of Neuropathic Pain in Daily Practice in Belgium: An Observational Study. BMC Public Health 2007, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Torrance, N.; Smith, B.H.; Watson, M.C.; Bennett, M.I. Medication and Treatment Use in Primary Care Patients with Chronic Pain of Predominantly Neuropathic Origin. Fam. Pract. 2007, 24, 481–485. [Google Scholar] [CrossRef]
- Blebea, N.M.; Mihai, D.P.; Andrei, C.; Stoica, D.M.; Chiriță, C.; Negreş, S. Evaluation of Therapeutic Potential of Cannabidiol-Based Products in Animal Models of Epileptic Seizures, Neuropathic Pain and Chronic Inflammation. Farmacia 2022, 70, 1185–1193. [Google Scholar] [CrossRef]
- Pușcașu, C.; Ungurianu, A.; Șeremet, O.C.; Andrei, C.; Mihai, D.P.; Negreș, S. The Influence of Sildenafil–Metformin Combination on Hyperalgesia and Biochemical Markers in Diabetic Neuropathy in Mice. Medicina 2023, 59, 1375. [Google Scholar] [CrossRef]
- Bates, D.; Carsten Schultheis, B.; Hanes, M.C.; Jolly, S.M.; Chakravarthy, K.V.; Deer, T.R.; Levy, R.M.; Hunter, C.W. A Comprehensive Algorithm for Management of Neuropathic Pain. Pain Med. 2019, 20, S2–S12. [Google Scholar] [CrossRef]
- Jang, K.; Garraway, S.M. A Review of Dorsal Root Ganglia and Primary Sensory Neuron Plasticity Mediating Inflammatory and Chronic Neuropathic Pain. Neurobiol. Pain 2024, 15, 100151. [Google Scholar] [CrossRef]
- Cohen, S.P.; Mao, J. Neuropathic Pain: Mechanisms and Their Clinical Implications. BMJ 2014, 348, f7656. [Google Scholar] [CrossRef]
- Bleakman, D.; Alt, A.; Nisenbaum, E.S. Glutamate Receptors and Pain. Semin. Cell Dev. Biol. 2006, 17, 592–604. [Google Scholar] [CrossRef]
- Bennett, G.J. Update on the Neurophysiology of Pain Transmission and Modulation. J. Pain Symptom Manag. 2000, 19, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, A.B.; Yamakura, T.; Baba, H.; Shimoji, K. The Role of N-Methyl-d-Aspartate (NMDA) Receptors in Pain: A Review. Anesth. Analg. 2003, 97, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Kang, Z.; Shi, Y.; Ji, W.; Zhou, W.; Nan, W. The Complexity of Neuropathic Pain and Central Sensitization: Exploring Mechanisms and Therapeutic Prospects. J. Integr. Neurosci. 2024, 23, 89. [Google Scholar] [CrossRef]
- Zhou, H.-Y.; Chen, S.-R.; Chen, H.; Pan, H.-L. Functional Plasticity of Group II Metabotropic Glutamate Receptors in Regulating Spinal Excitatory and Inhibitory Synaptic Input in Neuropathic Pain. J. Pharmacol. Exp. Ther. 2011, 336, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-M.; Chen, S.-R.; Pan, H.-L. Effects of Activation of Group III Metabotropic Glutamate Receptors on Spinal Synaptic Transmission in a Rat Model of Neuropathic Pain. Neuroscience 2009, 158, 875–884. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, H.M.; Chen, S.R.; Pan, H.L. Altered Synaptic Input and GABAB Receptor Function in Spinal Superficial Dorsal Horn Neurons in Rats with Diabetic Neuropathy. J. Physiol. 2007, 579, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Mantyh, P.W.; Basbaum, A.I. NMDA-Receptor Regulation of Substance P Release from Primary Afferent Nociceptors. Nature 1997, 386, 721–724. [Google Scholar] [CrossRef]
- Zhou, H.-Y.; Chen, S.-R.; Chen, H.; Pan, H.-L. Opioid-Induced Long-Term Potentiation in the Spinal Cord Is a Presynaptic Event. J. Neurosci. 2010, 30, 4460–4466. [Google Scholar] [CrossRef]
- Chen, Y.; Balasubramanyan, S.; Lai, A.Y.; Todd, K.G.; Smith, P.A. Effects of Sciatic Nerve Axotomy on Excitatory Synaptic Transmission in Rat Substantia Gelatinosa. J. Neurophysiol. 2009, 102, 3203–3215. [Google Scholar] [CrossRef]
- Yang, K.; Takeuchi, K.; Wei, F.; Dubner, R.; Ren, K. Activation of Group I MGlu Receptors Contributes to Facilitation of NMDA Receptor Membrane Current in Spinal Dorsal Horn Neurons after Hind Paw Inflammation in Rats. Eur. J. Pharmacol. 2011, 670, 509–518. [Google Scholar] [CrossRef]
- Doolen, S.; Blake, C.B.; Smith, B.N.; Taylor, B.K. Peripheral Nerve Injury Increases Glutamate-Evoked Calcium Mobilization in Adult Spinal Cord Neurons. Mol. Pain 2012, 8, 1744-8069-8-56. [Google Scholar] [CrossRef] [PubMed]
- Sung, B.; Lim, G.; Mao, J. Altered Expression and Uptake Activity of Spinal Glutamate Transporters after Nerve Injury Contribute to the Pathogenesis of Neuropathic Pain in Rats. J. Neurosci. 2003, 23, 2899–2910. [Google Scholar] [CrossRef] [PubMed]
- Zeevalk, G.D.; Nicklas, W.J. Evidence That the Loss of the Voltage-Dependent Mg 2+ Block at the N-Methyl-D-Aspartate Receptor Underlies Receptor Activation During Inhibition of Neuronal Metabolism. J. Neurochem. 1992, 59, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, G.J.; Babcock, D.J.; Lee, J.-M.; Choi, D.W. Neuronal Apoptosis after CNS Injury: The Roles of Glutamate and Calcium. J. Neurotrauma 2000, 17, 857–869. [Google Scholar] [CrossRef]
- Malmberg, A.B.; Chen, C.; Tonegawa, S.; Basbaum, A.I. Preserved Acute Pain and Reduced Neuropathic Pain in Mice Lacking PKCγ. Science 1997, 278, 279–283. [Google Scholar] [CrossRef]
- Mao, J.; Price, D.D.; Hayes, R.L.; Lu, J.; Mayer, D.J. Differential Roles of NMDA and Non-NMDA Receptor Activation in Induction and Maintenance of Thermal Hyperalgesia in Rats with Painful Peripheral Mononeuropathy. Brain Res. 1992, 598, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Childers, W.E.; Baudy, R.B. N-Methyl-d-Aspartate Antagonists and Neuropathic Pain: The Search for Relief. J. Med. Chem. 2007, 50, 2557–2562. [Google Scholar] [CrossRef]
- Karunarathna, I.; Kusumarathna, K.; Jayathilaka, P.; Kusumarathna, K.; Gunarathna, I.; Jayathilaka, P.; Senarathna, R.; Wijayawardana, K.; Priyalath, N.; Karunananda, S.; et al. Ketamine: Mechanisms, Applications, and Future Directions. Uva Clinical Lab.: Charlottesville, VA, USA, 2024. [Google Scholar]
- Harden, R.N.; Oaklander, A.L.; Burton, A.W.; Perez, R.S.G.M.; Richardson, K.; Swan, M.; Barthel, J.; Costa, B.; Graciosa, J.R.; Bruehl, S. Complex Regional Pain Syndrome: Practical Diagnostic and Treatment Guidelines, 4th Edition. Pain Med. 2013, 14, 180–229. [Google Scholar] [CrossRef]
- Pypendop, B.H.; Ilkiw, J.E. Pharmacokinetics of Ketamine and Its Metabolite, Norketamine, after Intravenous Administration of a Bolus of Ketamine to Isoflurane-Anesthetized Dogs. Am. J. Vet. Res. 2005, 66, 2034–2038. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for Neuropathic Pain in Adults: A Systematic Review and Meta-Analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Mothet, J.-P.; Parent, A.T.; Wolosker, H.; Brady, R.O.; Linden, D.J.; Ferris, C.D.; Rogawski, M.A.; Snyder, S.H. D -Serine Is an Endogenous Ligand for the Glycine Site of the N.-Methyl-D-Aspartate Receptor. Proc. Natl. Acad. Sci. USA 2000, 97, 4926–4931. [Google Scholar] [CrossRef] [PubMed]
- Eldufani, J.; Nekoui, A.; Blaise, G. Nonanesthetic Effects of Ketamine: A Review Article. Am. J. Med. 2018, 131, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Rogawski, M.A.; Wenk, G.L. The Neuropharmacological Basis for the Use of Memantine in the Treatment of Alzheimer’s Disease. CNS Drug Rev. 2003, 9, 275–308. [Google Scholar] [CrossRef] [PubMed]
- Salvat, E.; Yalcin, I.; Muller, A.; Barrot, M. A Comparison of Early and Late Treatments on Allodynia and Its Chronification in Experimental Neuropathic Pain. Mol. Pain 2018, 14, 174480691774968. [Google Scholar] [CrossRef]
- Kroin, J.S.; Das, V.; Moric, M.; Buvanendran, A. Efficacy of the Ketamine Metabolite (2R,6R)-Hydroxynorketamine in Mice Models of Pain. Reg. Anesth. Pain Med. 2019, 44, 111–117. [Google Scholar] [CrossRef]
- Humo, M.; Ayazgök, B.; Becker, L.J.; Waltisperger, E.; Rantamäki, T.; Yalcin, I. Ketamine Induces Rapid and Sustained Antidepressant-like Effects in Chronic Pain Induced Depression: Role of MAPK Signaling Pathway. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 100, 109898. [Google Scholar] [CrossRef]
- Tai, W.L.; Sun, L.; Li, H.; Gu, P.; Joosten, E.A.; Cheung, C.W. Additive Effects of Environmental Enrichment and Ketamine on Neuropathic Pain Relief by Reducing Glutamatergic Activation in Spinal Cord Injury in Rats. Front. Neurosci. 2021, 15, 635187. [Google Scholar] [CrossRef]
- Han, J.; Zhang, X.; Xia, L.; Liao, O.; Li, Q. S-Ketamine Promotes Autophagy and Alleviates Neuropathic Pain by Inhibiting PI3K/Akt/MTOR Signaling Pathway. Mol. Cell. Toxicol. 2023, 19, 81–88. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, P.B.; Oh, T.K. Is Magnesium Sulfate Effective for Pain in Chronic Postherpetic Neuralgia Patients Comparing with Ketamine Infusion Therapy? J. Clin. Anesth. 2015, 27, 296–300. [Google Scholar] [CrossRef]
- Weber, G.; Yao, J.; Binns, S.; Namkoong, S. Case Report of Subanesthetic Intravenous Ketamine Infusion for the Treatment of Neuropathic Pain and Depression with Suicidal Features in a Pediatric Patient. Case Rep. Anesthesiol. 2018, 2018, 9375910. [Google Scholar] [CrossRef]
- Moreno-Hay, I.; Lindroth, J. Continuous Dentoalveolar Neuropathic Pain Response to Repeated Intravenous Ketamine Infusions: A Case Report. J. Oral Facial Pain Headache 2018, 32, e22–e27. [Google Scholar] [CrossRef] [PubMed]
- Bosma, R.L.; Cheng, J.C.; Rogachov, A.; Kim, J.A.; Hemington, K.S.; Osborne, N.R.; Venkat Raghavan, L.; Bhatia, A.; Davis, K.D. Brain Dynamics and Temporal Summation of Pain Predicts Neuropathic Pain Relief from Ketamine Infusion. Anesthesiology 2018, 129, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Czarnetzki, C.; Desmeules, J.; Tessitore, E.; Faundez, A.; Chabert, J.; Daali, Y.; Fournier, R.; Dupuis-Lozeron, E.; Cedraschi, C.; Richard Tramèr, M. Perioperative Intravenous Low-dose Ketamine for Neuropathic Pain after Major Lower Back Surgery: A Randomized, Placebo-controlled Study. Eur. J. Pain 2020, 24, 555–567. [Google Scholar] [CrossRef]
- Pickering, G.; Pereira, B.; Morel, V.; Corriger, A.; Giron, F.; Marcaillou, F.; Bidar-Beauvallot, A.; Chandeze, E.; Lambert, C.; Bernard, L.; et al. Ketamine and Magnesium for Refractory Neuropathic Pain. Anesthesiology 2020, 133, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Rigo, F.K.; Trevisan, G.; Godoy, M.C.; Rossato, M.F.; Dalmolin, G.D.; Silva, M.A.; Menezes, M.S.; Caumo, W.; Ferreira, J. Management of Neuropathic Chronic Pain with Methadone Combined with Ketamine: A Randomized, Double Blind, Active-Controlled Clinical Trial. Pain Physician 2017, 20, 207–215. [Google Scholar]
- Martin, E.; Sorel, M.; Morel, V.; Marcaillou, F.; Picard, P.; Delage, N.; Tiberghien, F.; Crosmary, M.-C.; Najjar, M.; Colamarino, R.; et al. Dextromethorphan and Memantine after Ketamine Analgesia: A Randomized Control Trial. Drug Des. Devel. Ther. 2019, 13, 2677–2688. [Google Scholar] [CrossRef]
- Fallon, M.T.; Wilcock, A.; Kelly, C.A.; Paul, J.; Lewsley, L.-A.; Norrie, J.; Laird, B.J.A. Oral Ketamine vs. Placebo in Patients with Cancer-Related Neuropathic Pain. JAMA Oncol. 2018, 4, 870–872. [Google Scholar] [CrossRef]
- Rabi, J.; Minori, J.; Abad, H.; Lee, R.; Gittler, M. Topical Ketamine 10% for Neuropathic Pain in Spinal Cord Injury Patients: An Open-Label Trial. Int. J. Pharm. Compd. 2016, 20, 517–520. [Google Scholar]
- Provido-Aljibe, M.T.; Yee, C.M.; Low, Z.J.C.; Hum, A. The Impact of a Standardised Ketamine Step Protocol for Cancer Neuropathic Pain. Prog. Palliat. Care 2022, 30, 4–10. [Google Scholar] [CrossRef]
- M’Dahoma, S.; Barthélemy, S.; Tromilin, C.; Jeanson, T.; Viguier, F.; Michot, B.; Pezet, S.; Hamon, M.; Bourgoin, S. Respective Pharmacological Features of Neuropathic-like Pain Evoked by Intrathecal BDNF versus Sciatic Nerve Ligation in Rats. Eur. Neuropsychopharmacol. 2015, 25, 2118–2130. [Google Scholar] [CrossRef]
- Mak, P.; Broadbear, J.H.; Kolosov, A.; Goodchild, C.S. Long-Term Antihyperalgesic and Opioid-Sparing Effects of 5-Day Ketamine and Morphine Infusion (“Burst Ketamine”) in Diabetic Neuropathic Rats. Pain Med. 2015, 16, 1781–1793. [Google Scholar] [CrossRef] [PubMed]
- Claudino, R.; Nones, C.; Araya, E.; Chichorro, J. Analgesic Effects of Intranasal Ketamine in Rat Models of Facial Pain. J. Oral Facial Pain Headache 2018, 32, 238–246. [Google Scholar] [CrossRef]
- Doncheva, N.; Vasileva, L.; Saracheva, K.; Dimitrova, D.; Getova, D. Study of Antinociceptive Effect of Ketamine in Acute and Neuropathic Pain Models in Rats. Adv. Clin. Exp. Med. 2018, 28, 573–579. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, G.-F.; Li, H.-H.; Ji, M.-H.; Zhou, Z.-Q.; Li, K.-Y.; Yang, J.-J. Ketamine Differentially Restores Diverse Alterations of Neuroligins in Brain Regions in a Rat Model of Neuropathic Pain-Induced Depression. Neuroreport 2018, 29, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhan, G.; Zhang, J.; Xu, H.; Zhu, B.; Hu, Y.; Yang, C.; Luo, A. Abnormalities in Inflammatory Cytokines Confer Susceptible to Chronic Neuropathic Pain-Related Anhedonia in a Rat Model of Spared Nerve Injury. Clin. Psychopharmacol. Neurosci. 2019, 17, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Kim, B.; Lee, J.; Chung, H.; Kwon, H.; Kim, Y.; Choi, J.; Song, J. Response after Repeated Ketamine Injections in a Rat Model of Neuropathic Pain. Physiol. Res. 2022, 71, 297–303. [Google Scholar] [CrossRef]
- Seo, E.-H.; Piao, L.; Cho, E.-H.; Hong, S.-W.; Kim, S.-H. The Effect of Ketamine on Endoplasmic Reticulum Stress in Rats with Neuropathic Pain. Int. J. Mol. Sci. 2023, 24, 5336. [Google Scholar] [CrossRef]
- Chen, M.-H.; Tsai, S.-J. Maintenance of Antidepressant Effect by Dextromethorphan in Patients with Treatment-Resistant Depression Who Respond to Ketamine Intervention. Med. Hypotheses 2024, 182, 111242. [Google Scholar] [CrossRef]
- Damaj, M.I.; Flood, P.; Ho, K.K.; May, E.L.; Martin, B.R. Effect of Dextrometorphan and Dextrorphan on Nicotine and Neuronal Nicotinic Receptors: In Vitro and in Vivo Selectivity. J. Pharmacol. Exp. Ther. 2005, 312, 780–785. [Google Scholar] [CrossRef]
- Werling, L.L.; Lauterbach, E.C.; Calef, U. Dextromethorphan as a Potential Neuroprotective Agent with Unique Mechanisms of Action. Neurologist 2007, 13, 272–293. [Google Scholar] [CrossRef]
- Annels, S.J.; Ellis, Y.; Davies, J.A. Non-Opioid Antitussives Inhibit Endogenous Glutamate Release from Rabbit Hippocampal Slices. Brain Res. 1991, 564, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Maurice, T.; Lockhart, B.P. Neuroprotective and Anti-Amnesic Potentials of Sigma (σ) Receptor Ligands. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1997, 21, 69–102. [Google Scholar] [CrossRef] [PubMed]
- Maji, S.; Mohapatra, D.; Jena, M.; Srinivasan, A.; Maiti, R. Repurposing of Dextromethorphan as an Adjunct Therapy in Patients with Major Depressive Disorder: A Randomised, Group Sequential Adaptive Design, Controlled Clinical Trial Protocol. BMJ Open 2024, 14, e080500. [Google Scholar] [CrossRef]
- Majhi, P.K.; Sayyad, S.; Gaur, M.; Kedar, G.; Rathod, S.; Sahu, R.; Pradhan, P.K.; Tripathy, S.; Ghosh, G.; Subudhi, B.B. Tinospora Cordifolia Extract Enhances Dextromethorphan Bioavailability: Implications for Alzheimer’s Disease. ACS Omega 2024, 9, 23634–23648. [Google Scholar] [CrossRef]
- Zhou, S.-F.; Zhou, Z.-W.; Yang, L.-P.; Cai, J.-P. Substrates, Inducers, Inhibitors and Structure-Activity Relationships of Human Cytochrome P450 2C9 and Implications in Drug Development. Curr. Med. Chem. 2009, 16, 3480–3675. [Google Scholar] [CrossRef]
- Journey, J.D.; Agrawal, S.; Stern, E. Dextromethorphan Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Choi, D.W. Dextrorphan and Dextromethorphan Attenuate Glutamate Neurotoxicity. Brain Res. 1987, 403, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Trube, G.; Netzer, R. Dextromethorphan: Cellular Effects Reducing Neuronal Hyperactivity. Epilepsia 1994, 35, S62–S67. [Google Scholar] [CrossRef]
- Hollander, D.; Pradas, J.; Kaplan, R.; McLeod, H.L.; Evans, W.E.; Munsat, T.L. High-dose Dextromethorphan in Amyotrophic Lateral Sclerosis: Phase I Safety and Pharmacokinetic Studies. Ann. Neurol. 1994, 36, 920–924. [Google Scholar] [CrossRef]
- Fleming, P.M. Dependence on Dextromethorphan Hydrobromide. BMJ 1986, 293, 597. [Google Scholar] [CrossRef]
- Capon, D.A.; Bochner, F.; Kerry, N.; Mikus, G.; Danz, C.; Somogyi, A.A. The Influence of CYP2D6 Polymorphism and Quinidine on the Disposition and Antitussive Effect of Dextromethorphan in Humans*. Clin. Pharmacol. Ther. 1996, 60, 295–307. [Google Scholar] [CrossRef]
- Zbârcea, C.E.; Chiriţă, C.; Ștefănescu, E.; Șeremet, O.C.; Velescu, B.Ș.; Marineci, C.D.; Mușat, O.; Giuglea, C.; Negreş, Ș. Therapeutic potential of tramadol and dextromethorphan on vincristine induced peripheral neuropathy in rats. Farmacia 2018, 66, 1037–1043. [Google Scholar] [CrossRef]
- Fahmi, A.; Aji, Y.K.; Aprianto, D.R.; Wido, A.; Asadullah, A.; Roufi, N.; Indiastuti, D.N.; Subianto, H.; Turchan, A. The Effect of Intrathecal Injection of Dextromethorphan on the Experimental Neuropathic Pain Model. Anesthesiol. Pain Med. 2021, 11, e114318. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-P.; Yeh, G.-C.; Huang, E.Y.-K.; Law, P.-Y.; Loh, H.H.; Tao, P.-L. Effects of Dextromethorphan and Oxycodone on Treatment of Neuropathic Pain in Mice. J. Biomed. Sci. 2015, 22, 81. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Hao, J.-X.; Wiesenfeld-Hallin, Z.; Xu, X.-J. Gabapentin and NMDA Receptor Antagonists Interacts Synergistically to Alleviate Allodynia in Two Rat Models of Neuropathic Pain. Scand. J. Pain 2018, 18, 687–693. [Google Scholar] [CrossRef]
- Martin, E.; Narjoz, C.; Decleves, X.; Labat, L.; Lambert, C.; Loriot, M.-A.; Ducheix, G.; Dualé, C.; Pereira, B.; Pickering, G. Dextromethorphan Analgesia in a Human Experimental Model of Hyperalgesia. Anesthesiology 2019, 131, 356–368. [Google Scholar] [CrossRef]
- Witt, A.; Macdonald, N.; Kirkpatrick, P. Memantine Hydrochloride. Nat. Rev. Drug Discov. 2004, 3, 109–110. [Google Scholar] [CrossRef]
- Makino, K.M.; Porsteinsson, A.P. Memantine: A Treatment for Alzheimer’s Disease with a New Formulation. Aging Health 2011, 7, 349–362. [Google Scholar] [CrossRef]
- Karimi Tari, P.; Parsons, C.G.; Collingridge, G.L.; Rammes, G. Memantine: Updating a Rare Success Story in pro-Cognitive Therapeutics. Neuropharmacology 2024, 244, 109737. [Google Scholar] [CrossRef]
- Kreutzwiser, D.; Tawfic, Q.A. Expanding Role of NMDA Receptor Antagonists in the Management of Pain. CNS Drugs 2019, 33, 347–374. [Google Scholar] [CrossRef]
- Nakamura, Z.M.; Deal, A.M.; Park, E.M.; Stanton, K.E.; Lopez, Y.E.; Quillen, L.J.; O’Hare Kelly, E.; Heiling, H.M.; Nyrop, K.A.; Ray, E.M.; et al. A Phase II Single-arm Trial of Memantine for Prevention of Cognitive Decline during Chemotherapy in Patients with Early Breast Cancer: Feasibility, Tolerability, Acceptability, and Preliminary Effects. Cancer Med. 2023, 12, 8172–8183. [Google Scholar] [CrossRef]
- Ballard, C.; Thomas, A.; Gerry, S.; Yu, L.-M.; Aarsland, D.; Merritt, C.; Corbett, A.; Davison, C.; Sharma, N.; Khan, Z.; et al. A Double-Blind Randomized Placebo-Controlled withdrawal Trial Comparing Memantine and Antipsychotics for the Long-Term Treatment of Function and Neuropsychiatric Symptoms in People with Alzheimer’s Disease (MAIN-AD). J. Am. Med. Dir. Assoc. 2015, 16, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Ciotu, I.C.; Lupuliasa, D.; Chiriță, C.; Zbârcea, C.E.; Negreș, S. The Antihyperalgic Effect of Memantine in a Rat Model of Paclitaxel Induced Neuropathic Pain. Farmacia 2016, 64, 809–812. [Google Scholar]
- Alomar, S.Y.; El Gheit, R.E.A.; Enan, E.T.; El-Bayoumi, K.S.; Shoaeir, M.Z.; Elkazaz, A.Y.; Al Thagfan, S.S.; Zaitone, S.A.; El-Sayed, R.M. Novel Mechanism for Memantine in Attenuating Diabetic Neuropathic Pain in Mice via Downregulating the Spinal HMGB1/TRL4/NF-KB Inflammatory Axis. Pharmaceuticals 2021, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Solmaz, V.; Cinar, B.; Uyanikgil, Y.; Cavusoglu, T.; Peker, G.; Erbas, O. The Presentation of Therapeutic Effect Of Memantine in Sepsis Induced Critical Illness Polyneuropathy. Yeni Symp. 2015, 53, 23. [Google Scholar] [CrossRef]
- Salih, N.A.; Al-Baggou, B.K. Effect of Memantine Hydrochloride on Cisplatin-Induced Neurobehavioral Toxicity in Mice. Acta Neurol. Belg. 2020, 120, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shi, Y.; Wang, G.; Li, Y.; Cheng, L.; Wang, Y. Memantine Selectively Prevented the Induction of Dynamic Allodynia by Blocking Kir2.1 Channel and Inhibiting the Activation of Microglia in Spinal Dorsal Horn of Mice in Spared Nerve Injury Model. Mol. Pain 2019, 15, 174480691983894. [Google Scholar] [CrossRef]
- Ahmad-Sabry, M.-H.; Shareghi, G. Effects of memantine on pain in patients with complex regional pain syndrome—A retrospective study. Middle East J. Anaesthesiol. 2015, 23, 51–54. [Google Scholar]
- Morel, V.; Joly, D.; Villatte, C.; Dubray, C.; Durando, X.; Daulhac, L.; Coudert, C.; Roux, D.; Pereira, B.; Pickering, G. Memantine before Mastectomy Prevents Post-Surgery Pain: A Randomized, Blinded Clinical Trial in Surgical Patients. PLoS ONE 2016, 11, e0152741. [Google Scholar] [CrossRef]
- Shaseb, E.; Farashi, E.; Ghadim, H.H.; Asdaghi, A.; Sarbakhsh, P.; Ghaffary, S. Memantine as a Potential Therapy in Subacute Herpetic Neuralgia: A Randomized Clinical Trial. J. Pharm. Care 2023, 10, 205–210. [Google Scholar] [CrossRef]
- Jafarzadeh, E.; Beheshtirouy, S.; Aghamohammadzadeh, N.; Ghaffary, S.; Sarbakhsh, P.; Shaseb, E. Management of Diabetic Neuropathy with Memantine: A Randomized Clinical Trial. Diabetes Vasc. Dis. Res. 2023, 20, 14791641231191093. [Google Scholar] [CrossRef]
- Blanpied, T.A.; Clarke, R.J.; Johnson, J.W. Amantadine Inhibits NMDA Receptors by Accelerating Channel Closure during Channel Block. J. Neurosci. 2005, 25, 3312–3322. [Google Scholar] [CrossRef]
- Guedes, P.E.B.; Pinto, T.M.; Corrêa, J.M.X.; Niella, R.V.; dos Anjos, C.M.; de Oliveira, J.N.S.; Marques, C.S.d.C.; de Souza, S.S.; da Silva, E.B.; de Lavor, M.S.L. Efficacy of Preemptive Analgesia with Amantadine for Controlling Postoperative Pain in Cats Undergoing Ovariohysterectomy. Animals 2024, 14, 643. [Google Scholar] [CrossRef]
- Saini, N.; Singh, N.; Kaur, N.; Garg, S.; Kaur, M.; Kumar, A.; Verma, M.; Singh, K.; Sohal, H.S. Motor and Non-Motor Symptoms, Drugs, and Their Mode of Action in Parkinson’s Disease (PD): A Review. Med. Chem. Res. 2024, 33, 580–599. [Google Scholar] [CrossRef]
- Kumar, G.; Sakharam, K.A. Tackling Influenza A Virus by M2 Ion Channel Blockers: Latest Progress and Limitations. Eur. J. Med. Chem. 2024, 267, 116172. [Google Scholar] [CrossRef]
- Shuklinova, O.; Neuhoff, S.; Polak, S. How PBPK Can Help to Understand Old Drugs and Inform Their Dosing in Elderly: Amantadine Case Study. Clin. Pharmacol. Ther. 2024, 116, 225–234. [Google Scholar] [CrossRef]
- Stiver, G. The Treatment of Influenza with Antiviral Drugs. Can. Med. Assoc. J. CMAJ 2003, 168, 49–56. [Google Scholar]
- Rissardo, J.P.; Fornari Caprara, A.L. Myoclonus Secondary to Amantadine: Case Report and Literature Review. Clin. Pract. 2023, 13, 830–837. [Google Scholar] [CrossRef]
- Harandi, A.A.; Pakdaman, H.; Medghalchi, A.; Kimia, N.; Kazemian, A.; Siavoshi, F.; Barough, S.S.; Esfandani, A.; Hosseini, M.H.; Sobhanian, S.A. A Randomized Open-Label Clinical Trial on the Effect of Amantadine on Post Covid 19 Fatigue. Sci. Rep. 2024, 14, 1343. [Google Scholar] [CrossRef]
- Mata-Bermudez, A.; Ríos, C.; Burelo, M.; Pérez-González, C.; García-Martínez, B.A.; Jardon-Guadarrama, G.; Calderón-Estrella, F.; Manning-Balpuesta, N.; Diaz-Ruiz, A. Amantadine Prevented Hypersensitivity and Decreased Oxidative Stress by NMDA Receptor Antagonism after Spinal Cord Injury in Rats. Eur. J. Pain 2021, 25, 1839–1851. [Google Scholar] [CrossRef]
- Dogan, G.; Onur, K. N-Methyl-d-Aspartate Receptor Antagonists May Ameliorate Spinal Cord Injury by Inhibiting Oxidative Stress: An Experimental Study in Rats. Turk. Neurosurg. 2019, 30, 60–68. [Google Scholar] [CrossRef]
- Drummond, I.S.A.; de Oliveira, J.N.S.; Niella, R.V.; Silva, Á.J.C.; de Oliveira, I.S.; de Souza, S.S.; da Costa Marques, C.S.; Corrêa, J.M.X.; Silva, J.F.; de Lavor, M.S.L. Evaluation of the Therapeutic Potential of Amantadine in a Vincristine-Induced Peripheral Neuropathy Model in Rats. Animals 2024, 14, 1941. [Google Scholar] [CrossRef]
- Azimov, A.; Sadykov, R.; Dadajonov, S.; Azizova, O.; Ismoilov, R. Dopaminergic Medicines Are Drugs of Choice for Medicament-Resistant Facial Nerve Neuropathy. Park. Relat. Disord. 2016, 22, e139–e140. [Google Scholar] [CrossRef]
- Gean, P.-W.; Huang, C.-C.; Hung, C.-R.; Tsai, J.-J. Valproic Acid Suppresses the Synaptic Response Mediated by the NMDA Receptors in Rat Amygdalar Slices. Brain Res. Bull. 1994, 33, 333–336. [Google Scholar] [CrossRef]
- Gobbi, G.; Janiri, L. Sodium- and Magnesium-Valproate In Vivo Modulate Glutamatergic and GABAergic Synapses in the Medial Prefrontal Cortex. Psychopharmacology 2006, 185, 255–262. [Google Scholar] [CrossRef]
- Yi-Ping Lee Ko, G.; Brown-Croyts, L.M.; Teyler, T.J. The Effects of Anticonvulsant Drugs on NMDA-EPSP, AMPA-EPSP, and GABA-IPSP in the Rat Hippocampus. Brain Res. Bull. 1997, 42, 297–302. [Google Scholar] [CrossRef]
- Turski, L.; Niemann, W.; Stephens, D.N. Differential Effects of Antiepileptic Drugs and β-Carbolines on Seizures Induced by Excitatory Amino Acids. Neuroscience 1990, 39, 799–807. [Google Scholar] [CrossRef]
- Zeise, M.L.; Kasparow, S.; Zieglgänsberger, W. Valproate Suppresses N-Methyl-d-Aspartate-Evoked, Transient Depolarizations in the Rat Neocortex in Vitro. Brain Res. 1991, 544, 345–348. [Google Scholar] [CrossRef]
- Lan, M.J.; McLoughlin, G.A.; Griffin, J.L.; Tsang, T.M.; Huang, J.T.J.; Yuan, P.; Manji, H.; Holmes, E.; Bahn, S. Metabonomic Analysis Identifies Molecular Changes Associated with the Pathophysiology and Drug Treatment of Bipolar Disorder. Mol. Psychiatry 2009, 14, 269–279. [Google Scholar] [CrossRef]
- Shao, L.; Young, L.T.; Wang, J.-F. Chronic Treatment with Mood Stabilizers Lithium and Valproate Prevents Excitotoxicity by Inhibiting Oxidative Stress in Rat Cerebral Cortical Cells. Biol. Psychiatry 2005, 58, 879–884. [Google Scholar] [CrossRef]
- Basselin, M.; Chang, L.; Chen, M.; Bell, J.M.; Rapoport, S.I. Chronic Administration of Valproic Acid Reduces Brain NMDA Signaling via Arachidonic Acid in Unanesthetized Rats. Neurochem. Res. 2008, 33, 2229–2240. [Google Scholar] [CrossRef]
- Tursunov, A.N.; Vasilyev, D.S.; Nalivaeva, N.N. Molecular Mechanisms of Valproic Acid Action on Signalling Systems and Brain Functions. J. Evol. Biochem. Physiol. 2023, 59, 1740–1755. [Google Scholar] [CrossRef]
- Wisłowska-Stanek, A.; Turzyńska, D.; Sobolewska, A.; Kołosowska, K.; Szyndler, J.; Skórzewska, A.; Maciejak, P. The Effect of Valproate on the Amino Acids, Monoamines, and Kynurenic Acid Concentrations in Brain Structures Involved in Epileptogenesis in the Pentylenetetrazol-Kindled Rats. Pharmacol. Rep. 2024, 76, 348–367. [Google Scholar] [CrossRef]
- Zaccara, G.; Messori, A.; Moroni, F. Clinical Pharmacokinetics of Valproic Acid—1988. Clin. Pharmacokinet. 1988, 15, 367–389. [Google Scholar] [CrossRef]
- Forrest, L.F.; Smith, M.; Quevedo, J.; Frey, B.N. Bipolar Disorder in Women: Menstrual Cycle, Perinatal Period, and Menopause Transition. In Women’s Mental Health; Springer International Publishing: Cham, Switzerland, 2020; pp. 59–71. [Google Scholar]
- Safdar, A.; Ismail, F. A Comprehensive Review on Pharmacological Applications and Drug-Induced Toxicity of Valproic Acid. Saudi Pharm. J. 2023, 31, 265–278. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Chu, L.-W.; Cheng, K.-I.; Hsieh, S.-L.; Juan, Y.-S.; Wu, B.-N. Valproate Reduces Neuroinflammation and Neuronal Death in a Rat Chronic Constriction Injury Model. Sci. Rep. 2018, 8, 16457. [Google Scholar] [CrossRef]
- Elsherbiny, N.M.; Ahmed, E.; Kader, G.A.; Abdel-mottaleb, Y.; ElSayed, M.H.; Youssef, A.M.; Zaitone, S.A. Inhibitory Effect of Valproate Sodium on Pain Behavior in Diabetic Mice Involves Suppression of Spinal Histone Deacetylase 1 and Inflammatory Mediators. Int. Immunopharmacol. 2019, 70, 16–27. [Google Scholar] [CrossRef]
- Chu, Z.; Liu, P.; Li, X.; Liu, Y.; Liu, F.; Lei, G.; Yang, L.; Deng, L.; Dang, Y. Microinjection of Valproic Acid into the Ventrolateral Orbital Cortex Exerts an Antinociceptive Effect in a Rat of Neuropathic Pain. Psychopharmacology 2020, 237, 2509–2516. [Google Scholar] [CrossRef]
- Guo, A.; Li, J.; Luo, L.; Chen, C.; Lu, Q.; Ke, J.; Feng, X. Valproic Acid Mitigates Spinal Nerve Ligation-Induced Neuropathic Pain in Rats by Modulating Microglial Function and Inhibiting Neuroinflammatory Response. Int. Immunopharmacol. 2021, 92, 107332. [Google Scholar] [CrossRef]
- Wang, D.; Wang, K.; Liu, Z.; Wang, Z.; Wu, H. Valproic Acid-Labeled Chitosan Nanoparticles Promote Recovery of Neuronal Injury after Spinal Cord Injury. Aging 2020, 12, 8953–8967. [Google Scholar] [CrossRef]
- Ghasemian, M.; Owlia, M.B.; Mosaddegh, M.H.; Nakhaie nejad, M.; Sohrevardi, S.M. Evaluation of Sodium Valproate Low Dose Efficacy in Radicular Pain Management and It’s Relation with Pharmacokinetics Parameters. BioMedicine 2020, 10, 33–39. [Google Scholar] [CrossRef]
- Wang, D.; Wang, K.; Liu, Z.; Wang, Z.; Wu, H. Valproic Acid Labeled Chitosan Nanoparticles Promote the Proliferation and Differentiation of Neural Stem Cells after Spinal Cord Injury. Neurotox. Res. 2021, 39, 456–466. [Google Scholar] [CrossRef]
- Sofia, R.D.; Gordon, R.; Gels, M.; Diamantis, W. Comparative Effects of Felbamate and Other Compounds on N-Methyl-D-Aspartic Acid-Induced Convulsions and Lethality in Mice. Pharmacol. Res. 1994, 29, 139–144. [Google Scholar] [CrossRef]
- Ambrósio, A.F.; Silva, A.P.; Malva, J.O.; Soares-da-Silva, P.; Carvalho, A.P.; Carvalho, C.M. Carbamazepine Inhibits L-Type Ca2+ Channels in Cultured Rat Hippocampal Neurons Stimulated with Glutamate Receptor Agonists. Neuropharmacology 1999, 38, 1349–1359. [Google Scholar] [CrossRef]
- Farber, N.B.; Jiang, X.-P.; Heinkel, C.; Nemmers, B. Antiepileptic Drugs and Agents That Inhibit Voltage-Gated Sodium Channels Prevent NMDA Antagonist Neurotoxicity. Mol. Psychiatry 2002, 7, 726–733. [Google Scholar] [CrossRef]
- Lampe, H.; Bigalke, H. Carbamazepine Blocks NMDA-Activated Currents in Cultured Spinal Cord Neurons. NeuroReport 1990, 1, 26–28. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Zhang, R.-Y.; Wang, Y.; Liang, W.; Li, T.-G. Management of Acute Carbamazepine Poisoning: A Narrative Review. World J. Psychiatry 2023, 13, 816–830. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Chen, R.-S.; Lu, L.; Chen, R.-C. Carbamazepine Inhibition of Neuronal Na + Currents: Quantitative Distinction from Phenytoin and Possible Therapeutic Implications. Mol. Pharmacol. 1997, 51, 1077–1083. [Google Scholar] [CrossRef]
- Maan, J.S.; Duong, T.v.H.; Saadabadi, A. Carbamazepine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK482455 (accessed on 15 July 2024).
- Ayano, G. Bipolar Disorders and Carbamazepine: Pharmacokinetics, Pharmacodynamics, Therapeutic Effects and Indications of Carbamazepine: Review of Articles. J. Neuropsychopharmacol. Ment. Health 2016, 1, 2. [Google Scholar] [CrossRef]
- Chen, Y.; Ke, M.; Fang, W.; Jiang, Y.; Lin, R.; Wu, W.; Huang, P.; Lin, C. Physiologically Based Pharmacokinetic Modeling to Predict Maternal Pharmacokinetics and Fetal Carbamazepine Exposure during Pregnancy. Eur. J. Pharm. Sci. 2024, 194, 106707. [Google Scholar] [CrossRef]
- Fuhr, L.M.; Marok, F.Z.; Hanke, N.; Selzer, D.; Lehr, T. Pharmacokinetics of the CYP3A4 and CYP2B6 Inducer Carbamazepine and Its Drug–Drug Interaction Potential: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics 2021, 13, 270. [Google Scholar] [CrossRef]
- Guo, M.; Shen, W.; Zhou, M.; Song, Y.; Liu, J.; Xiong, W.; Gao, Y. Safety and Efficacy of Carbamazepine in the Treatment of Trigeminal Neuralgia: A Metanalysis in Biomedicine. Math. Biosci. Eng. 2024, 21, 5335–5359. [Google Scholar] [CrossRef]
- Delcker, A.; Wilhelm, H.; Timmann, D.; Diener, H. Side Effects from Increased Doses of Carbamazepine on Neuropsychological and Posturographic Parameters of Humans. Eur. Neuropsychopharmacol. 1997, 7, 213–218. [Google Scholar] [CrossRef]
- Kohli, S.; Sharma, T.; Kalra, J.; Dhasmana, D. A Comparative Study of the Anti-Nociceptive Potential of Duloxetine and Carbamazepine in an Animal Model of Neuropathic Pain. Int. J. Basic Clin. Pharmacol. 2016, 5, 1–5. [Google Scholar] [CrossRef]
- AL-Mahmood, S.M.A.; Abdullah, S.T.B.C.; Ahmad, N.N.F.N.; Bin Mohamed, A.H.; Razak, T.A. Analgesic Synergism of Gabapentin and Carbamazepine in Rat Model of Diabetic Neuropathic Pain. Trop. J. Pharm. Res. 2016, 15, 1191. [Google Scholar] [CrossRef]
- Dai, H.; Tilley, D.M.; Mercedes, G.; Doherty, C.; Gulati, A.; Mehta, N.; Khalil, A.; Holzhaus, K.; Reynolds, F.M. Opiate-Free Pain Therapy Using Carbamazepine-Loaded Microparticles Provides Up to 2 Weeks of Pain Relief in a Neuropathic Pain Model. Pain Pract. 2018, 18, 1024–1035. [Google Scholar] [CrossRef]
- Bektas, N.; Tekes, F.A.; Eken, H.; Arslan, R. The Antihyperalgesic Effects of Gabapentinoids, Carbamazepine and Its Keto Analogue, Oxcarbazepine, in Capsaicin-Induced Thermal Hyperalgesia. World J. Pharm. Sci. 2019, 7, 1–6. [Google Scholar]
- Deseure, K.; Hans, G. Differential Drug Effects on Spontaneous and Evoked Pain Behavior in a Model of Trigeminal Neuropathic Pain. J. Pain Res. 2017, 10, 279–286. [Google Scholar] [CrossRef]
- Graham, J.G.; Zilkha, K.J. Treatment of Trigeminal Neuralgia with Carbamazepine: A Follow-up Study. BMJ 1966, 1, 210–211. [Google Scholar] [CrossRef]
- Cruccu, G.; Truini, A. A Review of Neuropathic Pain: From Guidelines to Clinical Practice. Pain Ther. 2017, 6, 35–42. [Google Scholar] [CrossRef]
- Shafiq, H.; Badar, M.A.; Qayyum, Z.; Saeed, M. Effectiveness of carbamazepine versus oxcarbazepine in the management of trigeminal neuralgia. J. Khyber Coll. Dent. 2015, 6, 32–35. [Google Scholar] [CrossRef]
- Iqbal, S.; Rashid, W.; Ul Ain, Q.; Atiq, T.; Noor, R.; Irfan, F. Efficacy of Carbamazepine and Oxcarbazepine for Treating Trigeminal Neuralgia. BMC J. Med. Sci. 2022, 3, 55–59. [Google Scholar]
- Kaur, B.; Dhir, P. Evaluation of the Efficacy of Carbamazepine and Gabapentin in the Management of Trigeminal Neuralgia: A Clinical Study. J. Indian Acad. Oral Med. Radiol. 2018, 30, 253. [Google Scholar] [CrossRef]
- Agarwal, R.; Kumari, S. Comparison of Carbamazepine and Gabapentin in Management of Trigeminal Neuralgia-A Clinical Study. J. Adv. Med. Dent. Sci. Res. 2020, 8, 38–41. [Google Scholar] [CrossRef]
- Puri, N.; Rathore, A.; Dharmdeep, G.; Vairagare, S.; Prasad, B.; Priyadarshini, R.; Singh, H. A Clinical Study on Comparative Evaluation of the Effectiveness of Carbamazepine and Combination of Carbamazepine with Baclofen or Capsaicin in the Management of Trigeminal Neuralgia. Niger. J. Surg. 2018, 24, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Mehran, K.; Naimat, U.; Irfan, U.; Dawood, K.; Hurriya, K. Comparison of Amitriptyline and Carbamazepine Effectiveness in the Treatment of Postherpetic Neuralgia. J. Pak. Assoc. Dermatol. 2023, 33, 190–195. [Google Scholar]
- Syed, S.O.; Mazlam, N.A.; Kallarakkal, T.G. Evaluation of Carbamazepine Pharmacotherapy In Patients With Trigeminal Neuralgia. Ann. Dent. 2016, 23, 19–26. [Google Scholar] [CrossRef]
- Tariq, R.; Janjua, O.S.; Mehmood, S.; Khalid, M.U.; Zafar, K.J.; Hameed, S. Comparison of effectiveness of carbamazepine versus topiramate for the management of trigeminal neuralgia. Pak. Armed Forces Med. J. PAFMJ 2021, 71, 1360–1363. [Google Scholar] [CrossRef]
- Wamil, A.W.; McLean, M.J. Phenytoin Blocks N-Methyl-D-Aspartate Responses of Mouse Central Neurons. J. Pharmacol. Exp. Ther. 1993, 267, 218–227. [Google Scholar]
- Brown, L.M.; Lee, Y.-P.; Teyler, T.J. Antiepileptics Inhibit Cortical N-Methyl-D-Aspartate-Evoked [3H]Norepinephrine Efflux. Eur. J. Pharmacol. 1994, 254, 307–309. [Google Scholar] [CrossRef]
- Sethy, V.H.; Sage, G.P. Modulation of Release of Acetylcholine from the Striatum by a Proposed Excitatory Amino Acid Antagonist U-54494A: Comparison with Known Antagonists, Diazepam and Phenytoin. Neuropharmacology 1992, 31, 111–114. [Google Scholar] [CrossRef]
- Lee, G.Y.-P.; Brown, L.M.; Teyler, T.J. The Effects of Anticonvulsant Drugs on Long-Term Potentiation (LTP) in the Rat Hippocampus. Brain Res. Bull. 1996, 39, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.S.; Shen, B. Long-Term Potentiation in Hippocampal CA1: Effects of Afterdischarges, NMDA Antagonists, and Anticonvulsants. Exp. Neurol. 1993, 119, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Luke, M. Therapeutic Drug Monitoring of Classical and Newer Anticonvulsants. In Therapeutic Drug Monitoring; Elsevier: Amsterdam, The Netherlands, 2024; pp. 133–161. [Google Scholar]
- Mardhiani, R.; Harahap, Y.; Wiratman, W. Association between CYP2C9 and CYP2C19 Polymorphism, Metabolism, and Neurotoxicity after Administration of Phenytoin: A Systematic Review. Keluwih J. Kesehat. Dan Kedokt. 2023, 5, 33–34. [Google Scholar] [CrossRef]
- Jones, G.L.; Wimbish, G.H.; McIntosh, W.E. Phenytoin: Basic and Clinical Pharmacology. Med. Res. Rev. 1983, 3, 383–434. [Google Scholar] [CrossRef]
- Ujefa, S.; Lakshmi, E.S.; Supriya, G.; Bellapu, D.; Padmalatha, K. Phenytoin toxicity and it’s management—A systematic review. World J. Pharm. Res. 2023, 12, 70–79. [Google Scholar] [CrossRef]
- Kocot-Kępska, M.; Pawlik, K.; Ciapała, K.; Makuch, W.; Zajączkowska, R.; Dobrogowski, J.; Przeklasa-Muszyńska, A.; Mika, J. Phenytoin Decreases Pain-like Behaviors and Improves Opioid Analgesia in a Rat Model of Neuropathic Pain. Brain Sci. 2023, 13, 858. [Google Scholar] [CrossRef]
- Hesari, F.; Fereidoni, M.; Moghimi, A.; Abdolmaleki, A.; Ghayour, M.B. Phenytoin Intraperitoneal Administration Effects on Neuropathic Pain Induced by Chronic Constriction Injury in Male Rats. In Proceedings of the 5th Basic and Clinical Neuroscience Congress 2016, Tehran, Iran, 7–9 December 2016. [Google Scholar]
- Schnell, S.; Marrodan, M.; Acosta, J.N.; Bonamico, L.; Goicochea, M.T. Trigeminal Neuralgia Crisis—Intravenous Phenytoin as Acute Rescue Treatment. Headache J. Head Face Pain 2020, 60, 2247–2253. [Google Scholar] [CrossRef]
- Vargas, A.; Thomas, K. Intravenous Fosphenytoin for Acute Exacerbation of Trigeminal Neuralgia: Case Report and Literature Review. Ther. Adv. Neurol. Disord. 2015, 8, 187–188. [Google Scholar] [CrossRef]
- Hesselink, J.M.K. Topical Phenytoin in Painful Diabetic Neuropathy: Rationale to Select a Non-Selective Sodium Channel Blocker. Clin. Res. Neurol. 2016, 3, 1–5. [Google Scholar] [CrossRef]
- Keppel Hesselink, J.M.; Kopsky, D.J. The Individualized N-of-1 Trial: Dose-Response in a Single-Blind Cross-Over Response Test of Phenytoin 10% and 30% Cream in Neuropathic Pain. EC Anaesth. 2018, 4, 245–249. [Google Scholar]
- Hesselink, K.; Kopsky, J.M. Topical Phenytoin Cream in Small Fiber Neuropathic Pain: Fast Onset of Perceptible Pain Relief. J. Pain Relief 2017, 1, 15–019. [Google Scholar]
- Keppel Hesselink, J.M.; Kopsky, D.J. Topical Phenytoin Cream Reduces Burning Pain Due to Small Fiber Neuropathy in Sarcoidosis Case Report. J. Anesth. Pain Med. 2017, 2, 1–3. [Google Scholar]
- Keppel Hesselink, J.M.; Kopsky, D.J. Burning Pain in Small Fibre Neuropathy Treated with Topical Phenytoin: Rationale and Case Presentations. J. Clin. Anesth. Pain Med. 2017, 4, 2. [Google Scholar]
- Kopsky, D.J.; Vrancken, A.F.; Keppel Hesselink, J.M.; van Eijk, R.P.; Notermans, N.C. Usefulness of a Double-Blind Placebo-Controlled Response Test to Demonstrate Rapid Onset Analgesia with Phenytoin 10% Cream in Polyneuropathy. J. Pain Res. 2020, 13, 877–882. [Google Scholar] [CrossRef]
- Kopsky, D.; Keppel Hesselink, J. Topical Phenytoin for the Treatment of Neuropathic Pain. J. Pain Res. 2017, 10, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Keppel Hesselink, J.; Kopsky, D. Neuropathic Pain Due to Chronic Idiopathic Axonal Neuropathy: Fast Pain Reduction after Topical Phenytoin Cream Application. Open J. Pain Med. 2018, 2, 007–008. [Google Scholar] [CrossRef]
- Kopsky, D.; Keppel Hesselink, J. Phenytoin Cream for the Treatment for Neuropathic Pain: Case Series. Pharmaceuticals 2018, 11, 53. [Google Scholar] [CrossRef]
- Kopsky, D.; Keppel Hesselink, J. Single-Blind Placebo-Controlled Response Test with Phenytoin 10% Cream in Neuropathic Pain Patients. Pharmaceuticals 2018, 11, 122. [Google Scholar] [CrossRef]
- Debono, M.-W.; Le Guern, J.; Canton, T.; Doble, A.; Pradier, L. Inhibition by Riluzole of Electrophysiological Responses Mediated by Rat Kainate and NMDA Receptors Expressed in Xenopus Oocytes. Eur. J. Pharmacol. 1993, 235, 283–289. [Google Scholar] [CrossRef]
- Moon, E.S.; Karadimas, S.K.; Yu, W.-R.; Austin, J.W.; Fehlings, M.G. Riluzole Attenuates Neuropathic Pain and Enhances Functional Recovery in a Rodent Model of Cervical Spondylotic Myelopathy. Neurobiol. Dis. 2014, 62, 394–406. [Google Scholar] [CrossRef]
- Cheah, B.C.; Vucic, S.; Krishnan, A.; Kiernan, M.C. Riluzole, Neuroprotection and Amyotrophic Lateral Sclerosis. Curr. Med. Chem. 2010, 17, 1942–1959. [Google Scholar] [CrossRef]
- Gurney, M.E.; Cutting, F.B.; Zhai, P.; Doble, A.; Taylor, C.P.; Andrus, P.K.; Hall, E.D. Benefit of Vitamin E, Riluzole, and Gababapentin in a Transgenic Model of Familial Amyotrophic Lateral Sclerosis. Ann. Neurol. 1996, 39, 147–157. [Google Scholar] [CrossRef]
- Doble, A. The Pharmacology and Mechanism of Action of Riluzole. Neurology 1996, 47, S233–S241. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Mahmoudian, M.; Hasan, E.K.; Alshahrani, S.H.; Romero-Parra, R.M.; Malviya, J.; Hjazi, A.; Najm, M.A.A.; Almulla, A.F.; Zamanian, M.Y.; et al. Neuroprotective Effects of Riluzole in Alzheimer’s Disease: A Comprehensive Review. Fundam. Clin. Pharmacol. 2024, 38, 225–237. [Google Scholar] [CrossRef]
- Kawano, C.; Isozaki, Y.; Nakagawa, A.; Hirayama, T.; Nishiyama, K.; Kuroyama, M. Liver Injury Risk Factors in Amyotrophic Lateral Sclerosis Patients Treated with Riluzole. YAKUGAKU ZASSHI 2020, 140, 923–928. [Google Scholar] [CrossRef]
- Karadimas, S.K.; Laliberte, A.M.; Tetreault, L.; Chung, Y.S.; Arnold, P.; Foltz, W.D.; Fehlings, M.G. Riluzole Blocks Perioperative Ischemia-Reperfusion Injury and Enhances Postdecompression Outcomes in Cervical Spondylotic Myelopathy. Sci. Transl. Med. 2015, 7, 316ra194. [Google Scholar] [CrossRef]
- Jiang, K.; Zhuang, Y.; Yan, M.; Chen, H.; Ge, A.Q.; Sun, L.; Miao, B. Effects of Riluzole on P2 × 7R Expression in the Spinal Cord in Rat Model of Neuropathic Pain. Neurosci. Lett. 2016, 618, 127–133. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ushio, S.; Egashira, N.; Kawashiri, T.; Mitsuyasu, S.; Higuchi, H.; Ozawa, N.; Masuguchi, K.; Ono, Y.; Masuda, S. Excessive Spinal Glutamate Transmission Is Involved in Oxaliplatin-Induced Mechanical Allodynia: A Possibility for Riluzole as a Prophylactic Drug. Sci. Rep. 2017, 7, 9661. [Google Scholar] [CrossRef]
- Poupon, L.; Lamoine, S.; Pereira, V.; Barriere, D.A.; Lolignier, S.; Giraudet, F.; Aissouni, Y.; Meleine, M.; Prival, L.; Richard, D.; et al. Targeting the TREK-1 Potassium Channel via Riluzole to Eliminate the Neuropathic and Depressive-like Effects of Oxaliplatin. Neuropharmacology 2018, 140, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Egashira, N.; Tsuda, M.; Masuda, S. Riluzole Prevents Oxaliplatin-Induced Cold Allodynia via Inhibition of Overexpression of Transient Receptor Potential Melastatin 8 in Rats. J. Pharmacol. Sci. 2018, 138, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, Y.; Wang, Q.; Du, S.; He, X.; Gu, N.; Lu, Y. Riluzole Induces LTD of Spinal Nociceptive Signaling via Postsynaptic GluR2 Receptors. J. Pain Res. 2018, 11, 2577–2586. [Google Scholar] [CrossRef]
- Taiji, R.; Yamanaka, M.; Taniguchi, W.; Nishio, N.; Tsutsui, S.; Nakatsuka, T.; Yamada, H. Anti-Allodynic and Promotive Effect on Inhibitory Synaptic Transmission of Riluzole in Rat Spinal Dorsal Horn. Biochem. Biophys. Rep. 2021, 28, 101130. [Google Scholar] [CrossRef]
- Thompson, J.M.; Yakhnitsa, V.; Ji, G.; Neugebauer, V. Small Conductance Calcium Activated Potassium (SK) Channel Dependent and Independent Effects of Riluzole on Neuropathic Pain-Related Amygdala Activity and Behaviors in Rats. Neuropharmacology 2018, 138, 219–231. [Google Scholar] [CrossRef]
- Martins, B.D.C.; Torres, B.B.J.; de Oliveira, K.M.; Lavor, M.S.; Osório, C.M.; Fukushima, F.B.; Rosado, I.R.; de Melo, E.G. Association of Riluzole and Dantrolene Improves Significant Recovery after Acute Spinal Cord Injury in Rats. Spine J. 2018, 18, 532–539. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Zhang, Y.; Zhang, W.; Zhang, W.; Liu, Y.; Xu, S.; Guan, Y.; Chen, X. Riluzole Improves Functional Recovery after Acute Spinal Cord Injury in Rats and May Be Associated with Changes in Spinal Microglia/Macrophages Polarization. Neurosci. Lett. 2020, 723, 134829. [Google Scholar] [CrossRef]
- Xu, S.; Wu, Q.; Zhang, W.; Liu, T.; Zhang, Y.; Zhang, W.; Zhang, Y.; Chen, X. Riluzole Promotes Neurite Growth in Rats after Spinal Cord Injury through the GSK-3β/CRMP-2 Pathway. Biol. Pharm. Bull. 2022, 45, 569–575. [Google Scholar] [CrossRef]
- Ghayour, M.B.; Abdolmaleki, A.; Behnam-Rassouli, M. The Effect of Riluzole on Functional Recovery of Locomotion in the Rat Sciatic Nerve Crush Model. Eur. J. Trauma Emerg. Surg. 2017, 43, 691–699. [Google Scholar] [CrossRef]
- Foley, P.; Parker, R.A.; de Angelis, F.; Connick, P.; Chandran, S.; Young, C.; Weir, C.J.; Chataway, J. Efficacy of Fluoxetine, Riluzole and Amiloride in Treating Neuropathic Pain Associated with Secondary Progressive Multiple Sclerosis. Pre-Specified Analysis of the MS-SMART Double-Blind Randomised Placebo-Controlled Trial. Mult. Scler. Relat. Disord. 2022, 63, 103925. [Google Scholar] [CrossRef]
- Kumarasamy, D.; Viswanathan, V.K.; Shetty, A.P.; Pratheep, G.K.; Kanna, R.M.; Rajasekaran, S. The Role of Riluzole in Acute Traumatic Cervical Spinal Cord Injury with Incomplete Neurological Deficit: A Prospective, Randomised Controlled Study. Indian J. Orthop. 2022, 56, 2160–2168. [Google Scholar] [CrossRef]
- Trinh, T.; Park, S.B.; Murray, J.; Pickering, H.; Lin, C.S.-Y.; Martin, A.; Friedlander, M.; Kiernan, M.C.; Goldstein, D.; Krishnan, A.V. Neu-Horizons: Neuroprotection and Therapeutic Use of Riluzole for the Prevention of Oxaliplatin-Induced Neuropathy—A Randomised Controlled Trial. Support. Care Cancer 2021, 29, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, W.; Yuan, S.; Zhang, Y.; Zhang, W.; Zhang, Y.; Chen, X.; Zang, L. A Single Administration of Riluzole Applied Acutely after Spinal Cord Injury Attenuates Pro-Inflammatory Activity and Improves Long-Term Functional Recovery in Rats. J. Mol. Neurosci. 2022, 72, 730–740. [Google Scholar] [CrossRef]
- Haider, A.; Reddy, A. Levorphanol versus Methadone Use: Safety Considerations. Ann. Cardiothorac. Surg. 2020, 9, 579–585. [Google Scholar] [CrossRef]
- Choi, D.W.; Peters, S.; Viseskul, V. Printedin USA. Dextrorphan and Levorphanol Selectively Block N-Methyl-D.-Aspartate Receptor-Mediated Neurotoxicity on Cortical Neurons. J. Pharmacol. Exp. Ther. 1987, 242, 713–720. [Google Scholar]
- Church, J.; Lodge, D.; Berry, S.C. Differential Effects of Dextrorphan and Levorphanol on the Excitation of Rat Spinal Neurons by Amino Acids. Eur. J. Pharmacol. 1985, 111, 185–190. [Google Scholar] [CrossRef]
- Pham, T.C.; Fudin, J.; Raffa, R.B. Is Levorphanol a Better Option than Methadone? Pain Med. 2015, 16, 1673–1679. [Google Scholar] [CrossRef]
- Rowbotham, M.C.; Twilling, L.; Davies, P.S.; Reisner, L.; Taylor, K.; Mohr, D. Oral Opioid Therapy for Chronic Peripheral and Central Neuropathic Pain. N. Engl. J. Med. 2003, 348, 1223–1232. [Google Scholar] [CrossRef]
- Codd, E.E.; Shank, R.P.; Schupsky, J.J.; Raffa, R.B. Serotonin and Norepinephrine Uptake Inhibiting Activity of Centrally Acting Analgesics: Structural Determinants and Role in Antinociception. J. Pharmacol. Exp. Ther. 1995, 274, 1263–1270. [Google Scholar]
- Gudin, J.; Fudin, J.; Nalamachu, S. Levorphanol Use: Past, Present and Future. Postgrad. Med. 2016, 128, 46–53. [Google Scholar] [CrossRef]
- Reddy, A.; Haider, A.; Arthur, J.; Hui, D.; Dalal, S.; Dev, R.; Tanco, K.; Amaram-Davila, J.; Hernandez, F.; Chavez, P.; et al. Levorphanol as a Second Line Opioid in Cancer Patients Presenting to an Outpatient Supportive Care Center: An Open-Label Study. J. Pain Symptom Manag. 2023, 65, e683–e690. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.; Ng, A.; Mallipeddi, T.; Bruera, E. Levorphanol for Treatment of Intractable Neuropathic Pain in Cancer Patients. J. Palliat. Med. 2018, 21, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Eap, C.B.; Buclin, T.; Baumann, P. Interindividual Variability of the Clinical Pharmacokinetics of Methadone. Clin. Pharmacokinet. 2002, 41, 1153–1193. [Google Scholar] [CrossRef]
- Volpe, D.A.; Xu, Y.; Sahajwalla, C.G.; Younis, I.R.; Patel, V. Methadone Metabolism and Drug-Drug Interactions: In Vitro and In Vivo Literature Review. J. Pharm. Sci. 2018, 107, 2983–2991. [Google Scholar] [CrossRef]
- Boisvert-Plante, V.; Poulin-Harnois, C.; Ingelmo, P.; Einhorn, L.M. What We Know and What We Don’t Know about the Perioperative Use of Methadone in Children and Adolescents. Pediatr. Anesth. 2023, 33, 185–192. [Google Scholar] [CrossRef]
- Haumann, J.; Geurts, J.W.; van Kuijk, S.M.J.; Kremer, B.; Joosten, E.A.; van den Beuken-van Everdingen, M.H.J. Methadone Is Superior to Fentanyl in Treating Neuropathic Pain in Patients with Head-and-Neck Cancer. Eur. J. Cancer 2016, 65, 121–129. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Sakamoto, N.; Ohsawa, M.; Onizuka, M.; Ishida, K.; Murata, Y.; Iio, A.; Sugano, K.; Maeno, K.; Takeyama, H.; et al. A Retrospective Study on the Effectiveness of Switching to Oral Methadone for Relieving Severe Cancer-Related Neuropathic Pain and Limiting Adjuvant Analgesic Use in Japan. J. Palliat. Med. 2016, 19, 1051–1059. [Google Scholar] [CrossRef]
- Madden, K.; Bruera, E. Very-Low-Dose Methadone To Treat Refractory Neuropathic Pain in Children with Cancer. J. Palliat. Med. 2017, 20, 1280–1283. [Google Scholar] [CrossRef]
- Curry, Z.A.; Dang, M.C.; Sima, A.P.; Abdullaziz, S.; Del Fabbro, E.G. Combination Therapy with Methadone and Duloxetine for Cancer-Related Pain: A Retrospective Study. Ann. Palliat. Med. 2021, 10, 2505–2511. [Google Scholar] [CrossRef]
- Matsuda, Y.; Okayama, S. Oral Methadone for Patients with Neuropathic Pain Due to Neoplastic Brachial Plexopathy. J. Palliat. Care 2022, 37, 77–82. [Google Scholar] [CrossRef]
- Fawoubo, A.; Perceau-Chambard, É.; Ruer, M.; Filbet, M.; Tricou, C.; Economos, G. Methadone and Neuropathic Cancer Pain Subcomponents: A Prospective Cohort Pilot Study. BMJ Support. Palliat. Care 2023, 13, e273–e277. [Google Scholar] [CrossRef]
- Adumala, A.; Palat, G.; Vajjala, A.; Brun, E.; Segerlantz, M. Oral Methadone versus Morphine IR for Patients with Cervical Cancer and Neuropathic Pain: A Prospective Randomised Controlled Trial. Indian J. Palliat. Care 2023, 29, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Bach, T.V.; Pan, J.; Kirstein, A.; Grief, C.J.; Grossman, D. Use of Methadone as an Adjuvant Medication to Low-Dose Opioids for Neuropathic Pain in the Frail Elderly: A Case Series. J. Palliat. Med. 2016, 19, 1351–1355. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, V.F.; Lundberg, V.; Jespersen, T.W.; Hasle, H. Extreme Doses of Intravenous Methadone for Severe Pain in Two Children with Cancer. Pediatr. Blood Cancer 2015, 62, 1087–1090. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; Moulin, D.; Perez, J. Methadone vs. Morphine SR for Treatment of Neuropathic Pain: A Randomized Controlled Trial and the Challenges in Recruitment. Can. J. Pain 2019, 3, 180–189. [Google Scholar] [CrossRef] [PubMed]
Drug | Molecular Formula |
---|---|
Amantadine | C10H17N |
Carbamazepine | C15H12N2O |
Dextromethorphan | C18H25NO |
Ketamine | C13H16ClNO |
Levorphanol | C17H23NO |
Memantine | C12H21N |
Methadone | C21H27NO |
Phenytoin | C15H12N2O2 |
Riluzole | C8H10FN3OS |
Valproic acid | C8H16O2 |
Dextromethorphan | |||||
---|---|---|---|---|---|
Preclinical Studies | |||||
First Author/Reference | Animals | Animal Model | Dosage | Route/Frequency | Results |
Yang et al. (2015) [86] | Male C57BL/6J mice | SNL | Dextromethorphan 10, 20 mg/kg bw, or Oxycodone 1, 3, 5 mg/kg bw, or Dextromethorphan 10 mg/kg bw + Oxycodone 1, 3 mg/kg bw, | Dextromethorphan i.p. 14 days Oxycodone s.c. 14 days | Dextromethorphan alone did not demonstrate any notable long-term impacts. Administered in combination with oxycodone, dextromethorphan enhanced its antiallodynic effect in von Frey test. |
Shi et al. (2018) [87] | Male and female Sprague–Dawley rats | Photochemically-induced ischemic SCI and SNI | Dextromethorphan 5–20 mg/kg bw or Gabapentin 7.5–30 mg/kg bw or Dextromethorphan 5–10 mg/kg bw + Gabapentin 7.5–30 mg/kg bw | i.p. | Dextromethorphan alone did not produce any pain relief in von Frey test and ethyl chloride cold test. In comparison, the dextromethorphan–gabapentin combination resulted in complete relief of allodynia, even in lower doses. |
Zbârcea et al. (2018) [84] | Male Wistar rats | Vincristine-induced NeP | 20 mg/kg bw | orally 7 days | Reversed tactile allodynia in Dynamic Plantar Aesthesiometer test. |
Fahmi et al. (2021) [85] | Male mice | PSNL | 10 nmol | intrathecally from day 8 to 14 after PSNL | Alleviated thermal hyperalgesia in stainless-steel heating plate test. |
Clinical Studies | |||||
First Author/Reference | Population | Type of NeP | Dosage | Route/Frequency | Results |
Martin et al. (2019) [88] | N = 20 | Freeze-injury-induced hyperalgesia model in healthy volunteers | 30 mg | orally initially, at 5 h, 10 h, 14 h and once on day 1 after inducing the pain model | Demonstrated antihyperalgesic effects in humans, reversing sensitization in both peripheral and central neurons. |
Memantine | |||||
---|---|---|---|---|---|
Preclinical Studies | |||||
First Author/Reference | Animals | Animal Model | Dosage | Route/Frequency | Results |
Solmaz et al. (2015) [97] | Male Sprague–Dawley rats | CIP | 15–30 mg/kg bw | i.p. single administration | Significantly reduced TNF-α and MDA levels and CMAP distal latency. |
Ciotu et al. (2016) [95] | Male Wistar rats | Paclitaxel-induced NeP | 10–30 mg/kg bw | orally 24 days | The sensitivity thresholds returned to normal levels in Dynamic Plantar Aesthesiometer test. |
Chen et al. (2019) [99] | Male C57BL/6J mice | SNI | 10–30 nmol | intrathecally before SNI | Preadministration of the higher dose successfully blocked the development of allodynia in von Frey and paint brush test; 10 nmol of memantine exhibited a notable impact on reducing the excessive activation of microglia in the spinal dorsal horn caused by SNI. |
Salih et al. (2020) [98] | Male BALB/c mice | Cisplatin-induced NeP | 5–10 mg/kg bw | orally 30 days | The higher dose showed greater efficacy in protecting against neuropathy, demonstrating full neurobehavioral protection according to open field activity, negative geotaxis, hole-board, and swimming tests. |
Alomar et al. (2021) [96] | Male Swiss albino mice | Alloxan-induced DN | 10 mg/kg bw | orally 5 weeks | Reduced pain symptoms in hot-plate and von Frey tests by inhibiting excessive activation of NMDAR1 receptors, lowering glutamate levels, and decreasing the release of TNF-α and IL-1β in the spinal cord. |
Clinical Studies | |||||
First Author/Reference | Population | Type of NeP | Dosage | Route/Frequency | Results |
Ahmad-Sabry et al. (2015) [100] | N = 56 | CRPS | 5–10 mg increased every 4–7 days to a max. of 40–60 g | orally | A total of 13 individuals experienced full recovery, reporting a pain score of 0 on the VAS and the absence of allodynia for a minimum of 9 months; 18 patients displayed significant progress in reducing their VAS scores and managing allodynia symptoms. |
Morel et al. (2016) [101] | N = 40 | Mastectomy-associated NeP and CIPN | 5–20 mg | orally 4 weeks, starting 2 weeks before mastectomy | At 3 months, patients exhibited a notable decrease in post-mastectomy pain intensity, as shown by the NRS. Moreover, in the group that received memantine, the symptoms of CIPN were greatly reduced. |
Shaseb et al. (2023) [102] | N = 16 | PHN | Memantine 5–10 mg + Gabapentin 300 mg | orally 8 weeks | The combination resulted in a decrease in the intensity of PHN symptoms, according to the DN4 questionnaire. |
Jafarzadeh et al. (2023) [103] | N = 143 | DN | Memantine 5 mg 1 week Followed by Memantine 10 mg + Gabapentin 300 mg or Gabapentin 300 mg 8 weeks | orally | The average DN4 questionnaire score in the memantine group was significantly lower, and the number of patients with DN in this group notably decreased by the end of the study. |
Amantadine | |||||
---|---|---|---|---|---|
Preclinical Studies | |||||
First Author/Reference | Animals | Animal Model | Dosage | Route/Frequency | Results |
Dogan et al. (2019) [113] | Male Sprague–Dawley rats | SCI | 45 mg/kg bw | i.p. 7 days | Decreased MDA, MPO, and TNF-α levels; neuron and glial cell showed negative Bax expression, while vascular endothelium showed positive VEGF expression after treatment. |
Mata-Bermudez et al. (2021) [112] | Female Wistar rats | SCI | 6.25–50 mg/kg bw | i.p. 15 days | Effectively alleviated pain-related behavior in von Frey test; decreased LP and increased GSH levels in the damaged tissue. |
Drummond et al. (2024) [114] | Male Wistar rats | CIPN | 2, 5, 12, 25, and 50 mg/kg bw | orally 14 days | Higher doses efficiently reduced mechanical hyperalgesia in digital analgesia-meter test in a dose-dependent manner; decreased IL-6, TNF-α, MIP-1α, Perk, Bax, Casp 3, Casp 9, and CX3CR1 expression; increased Bcl-xl, CAT, SOD, and IL-10 expression. |
Clinical Studies | |||||
First Author/Reference | Population | Type of NeP | Dosage | Route/Frequency | Results |
Azimov et al. (2016) [115] | N = 64 | Patients with neuropathy of the facial nerve | Amantadine 200 mg or Levodopa 125 mg or Amantadine 200 mg + Levodopa 125 mg | orally | There was a substantial increase in the enhancement of neurostatus dynamics when treated with the combination than with monotherapy, according to the scale of House–Brackmann. |
Levorphanol | |||||
---|---|---|---|---|---|
Clinical Studies | |||||
First Author/Reference | Population | Type of NeP | Dosage | Route/Frequency | Results |
Reddy et al. (2018) [217] | N = 1 | Phantom limb pain | Levorphanol 2 mg + Hydromorphone 4 mg every | Levorphanol every 8 h Hydromorphone every 4 h as necessary for breakthrough pain several months | One week later, pain had nearly disappeared, with a pain intensity rating of 0–1 out of 10 on the ESAS pain scale. |
N = 1 | Brown–Sequard syndrome | Levorphanol 1 mg + Hydrocodone 10 mg and Acetaminophen 325 mg | Levorphanol every 8 h Hydrocodone and Acetaminophen taken as needed several months | After 1 month, pain significantly improved, scoring 2 out of 10 on the ESAS pain scale. |
Methadone | |||||
---|---|---|---|---|---|
Clinical Studies | |||||
First Author/Reference | Population | Type of NeP | Dosage | Route/Frequency | Results |
Rasmussen et al. (2015) [229] | N = 1 | Vincristine-induced neuropathy | 32.7 mg/kg bw | i.v. 182 days | Decreased pain by as much as 4 points on the NRS scale. |
N = 1 | 24 mg/kg bw | i.v. 180 days | Decreased pain by as much as 5 points on the NRS scale. | ||
Haumann et al. (2016) [221] | N = 52 | CRNP | Methadone 2 mg or Fentanyl 12 µg/h | Methadone orally Fentanyl patch 5 weeks | The decrease in NRS scores was notably superior when methadone was utilized in comparison to fentanyl. |
Sugiyama et al. (2016) [222] | N = 28 | Severe CRNP | 7.5–150 mg | orally 14 days | In this study involving patients who switched from other strong opioids like oxycodone and fentanyl to methadone, 22 patients experienced a significant reduction in their mean FPS score. |
Bach et al. (2016) [228] | N = 1 | A 94-year-old patient with intractable back pain secondary to spinal stenosis and disc protrusion | 0.5 mg | orally every 12 h | The co-administration of methadone relieved chronic nonmalignant NeP and reduced the dosage of hydromorphone in elderly patients. |
An 88-year-old patient with phantom limb pain in right leg and NeP in the left | 1–2 mg | orally every 12 h | |||
A 94-year-old patient with end-stage renal disease and a C5 injury experiencing burning pain that extends from the neck down to both arms | 0.5–2.5 mg | orally | |||
Madden et al. (2017) [223] | N = 2 | Refractory CRNP in children | Methadone 0.03–0.04 mg/kg bw + Gabapentin 45 mg/kg | orally 1 year | Refractory NeP syndrome effectively managed by adding very low dose of methadone to their existing gabapentin treatment regimen. |
Lynch et al. (2019) [230] | N = 9 | Moderate to severe chronic NeP | 5–60 mg | orally 11 weeks | All individuals demonstrated a decrease in average pain intensity based on the NPRS. |
Curry et al. (2021) [224] | N = 43 | CRNP | Methadone 33.75 mg (dose range) or Duloxetine 60 mg (dose range) FOLLOWED BY Methadone 15–30 mg + Duloxetine 40–60 mg | orally 2–8 weeks | After patients transitioned from monotherapy to combination therapy, there was a reduction in both the total ESAS scores and subscores. Additionally, 28% of patients on combination therapy reported a minimum two-point decrease in pain scores. |
Matsuda et al. (2022) [225] | N = 3 | NeP due to NBP | 15–60 mg | orally 5–57 days | Pain scores decreased according to NRS in all three cases. |
Fawoubo et al. (2023) [226] | N = 48 | CRNP | 21–60 mg | orally 28 days | By day 28, the pain intensity was notably reduced, with 53% of patients reporting a lower VAS score. Additionally, the NPSI score decreased in 50% of patients. |
Adumala et al. (2023) [227] | N = 74 | CRNP | Methadone 2.5–20 mg or Morphine 30–360 mg | orally 12 weeks | All participants exhibited a decrease in the average values for NRS and DN4, with a superior analgesic effect for methadone compared to morphine. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pușcașu, C.; Chiriță, C.; Negreș, S.; Blebea, N.M. Exploring the Therapeutic Potential of N-Methyl-D-Aspartate Receptor Antagonists in Neuropathic Pain Management. Int. J. Mol. Sci. 2024, 25, 11111. https://doi.org/10.3390/ijms252011111
Pușcașu C, Chiriță C, Negreș S, Blebea NM. Exploring the Therapeutic Potential of N-Methyl-D-Aspartate Receptor Antagonists in Neuropathic Pain Management. International Journal of Molecular Sciences. 2024; 25(20):11111. https://doi.org/10.3390/ijms252011111
Chicago/Turabian StylePușcașu, Ciprian, Cornel Chiriță, Simona Negreș, and Nicoleta Mirela Blebea. 2024. "Exploring the Therapeutic Potential of N-Methyl-D-Aspartate Receptor Antagonists in Neuropathic Pain Management" International Journal of Molecular Sciences 25, no. 20: 11111. https://doi.org/10.3390/ijms252011111
APA StylePușcașu, C., Chiriță, C., Negreș, S., & Blebea, N. M. (2024). Exploring the Therapeutic Potential of N-Methyl-D-Aspartate Receptor Antagonists in Neuropathic Pain Management. International Journal of Molecular Sciences, 25(20), 11111. https://doi.org/10.3390/ijms252011111