TR3-56 and Treg Regulatory T Cell Subsets as Potential Indicators of Graft Tolerance Control in Kidney Transplant Recipients
<p>Increased amount of the circulating CTL and of the T<sub>R3-56</sub> regulatory T cells, higher expression of the CD54 activation molecule on T cell effectors and decreased amount and growth ability of the Treg subset characterise a cohort of allograft kidney recipients showing no rejection episodes, no infections and no changes in immuno-suppression therapy in the previous six months. White and grey columns indicate data obtained in healthy controls and kidney transplanted subjects, respectively. (<b>A</b>,<b>B</b>) Indicate percentage and number of circulating T, CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes, as indicated; (<b>C</b>) Indicates CD4/CD8 ratio; (<b>D</b>) Refers CD54 expression level in CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes, as indicated; as detailed in the <a href="#sec4-ijms-25-10610" class="html-sec">Section 4</a>, CD54 expression on the T cell effectors has been expressed as ratio of the mean intensity fluorescence (MIF) value for CD4<sup>+</sup> and CD8<sup>+</sup> T cells and the control MIF value obtained after staining the same cell populations with the isotype control mAb, as described [<a href="#B24-ijms-25-10610" class="html-bibr">24</a>]. (<b>E</b>,<b>F</b>) Indicate percentage and number of the circulating T<sub>R3-56</sub> regulatory T cells, respectively; (<b>G</b>,<b>H</b>) Refer to percentage and number of the circulating Treg population; (<b>I</b>,<b>J</b>) Indicate the growth ability of the circulating T<sub>R3-56</sub> and Treg populations, as represented by their intracellular expression of the ki67 molecule; Statistical evaluation of data was performed by means of the Mann–Whitney test. Statistical significance values are indicated.</p> "> Figure 2
<p>Allograft kidney recipients show association of highest level of circulating T<sub>R3-56</sub> regulatory T cells with significant decrease in the Treg growth ability and increasing CD54 expression by the CD4<sup>+</sup> T cell population. White columns indicate healthy controls; light and dark grey columns indicate transplanted subjects showing circulating T<sub>R3-56</sub> levels <9.16% or ≥9.16% of the T cell population, respectively; the 9.16 cut-off value was obtained by increasing by three standard errors the median value observed in healthy controls (see patient and method section for details). (<b>A</b>,<b>B</b>) Indicate percentage and number of circulating T, CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes; (<b>C</b>) Shows CD4/CD8 ratio; (<b>D</b>) Refers to CD54 expression level in CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes; as detailed in <a href="#sec4-ijms-25-10610" class="html-sec">Section 4</a>, CD54 expression on the T cell effectors was expressed as a ratio of the mean intensity fluorescence (MIF) value for CD4<sup>+</sup> and CD8<sup>+</sup> T cells and the control MIF value obtained after staining the same cell populations with the isotype control mAb. (<b>E</b>,<b>F</b>) Indicate the percentage and number of the circulating Treg in the different cohorts; (<b>G</b>) Indicates the growth ability of the circulating Treg population, as represented by their intracellular expression of the ki67 molecule; Statistical evaluation of the data was performed by means of the Mann–Whitney test. Statistical significance values are indicated.</p> "> Figure 3
<p>Increasing amount of circulating T<sub>R3-56</sub> lymphocytes and reduced growth ability of the Treg population characterise kidney transplant recipients showing unstable control of the graft. White columns indicate healthy controls; light and dark blue columns indicate transplanted subjects categorised, according to their clinical and laboratory profile, as belonging to the Stable or Unstable transplant recipient sub-groups, respectively. See Patient and Methods section for details. (<b>A</b>,<b>B</b>) Indicate percentage and number of circulating T, CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes; (<b>C</b>) Indicates CD4/CD8 ratio; (<b>D</b>) Refers to CD54 expression level in CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes; CD54 expression on the T cell effectors was expressed as a ratio of the mean intensity fluorescence (MIF) value for CD4<sup>+</sup> and CD8<sup>+</sup> T cells and the control MIF value obtained after staining the same cell populations with the isotype control mAb, as described [<a href="#B28-ijms-25-10610" class="html-bibr">28</a>]. (<b>E</b>,<b>F</b>) Show percentage and number of the circulating T<sub>R3-56</sub> lymphocytes; (<b>G</b>,<b>H</b>) Show percentage and number of circulating Treg; (<b>I</b>,<b>J</b>) Indicate the growth ability, as represented by their expression of the ki67 molecule, of the circulating T<sub>R3-56</sub> and Treg population, respectively; Statistical evaluation of data was performed by means of the Mann–Whitney test. Statistical significance values are indicated.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Higher Amount of Circulating TR3-56 Regulatory T Cells and Decreased Level of the Treg Lymphocytes Characterise Kidney Transplanted Subjects Showing No Signs of Graft Rejection
2.2. Decreased Growth Ability of the Treg Subset Characterises the Subgroup of Transplanted Subjects with a Higher Amount of the Circulating TR3-56 Regulatory T Cells
2.3. The Presence of Higher TR3-56 Levels in Kidney Transplanted Subjects Showing No Signs of Graft Rejection Associates with Early Signs of Unstable Graft Tolerance
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Cells, Immunofluorescence and Flow Cytometry Analysis
4.3. Statistical Analysis
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foresto-Neto, O.; Menezes-Silva, L.; Leite, J.A.; Andrade-Silva, M.; Câmara, N.O.S. Immunology of Kidney Disease. Annu. Rev. Immunol. 2024, 42, 207–233. [Google Scholar] [CrossRef] [PubMed]
- Sayegh, M.H.; Carpenter, C.B. Transplantation 50 years later—Progress, challenges, and promises. N. Engl. J. 2004, 351, 2761–2766. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.D.; Womer, K.L.; Sayegh, M.H. Clinical transplantation tolerance: Many rivers to cross. J. Immunol. 2007, 178, 5419–5423. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A.; Lefaucheur, C. Antibody-mediated rejection of solid-organ allografts. N. Engl. J. Med. 2018, 379, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Tanabe, T.; Tsuji, T.; Hotta, K. Mechanism and treatment for chronic antibody-mediated rejection in kidney transplant recipients. Int. J. Urol. 2023, 30, 624–633. [Google Scholar] [CrossRef]
- Nutt, S.L.; Hodgkin, P.D.; Tarlinton, D.M.; Corcoran, L.M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 2015, 15, 160–171. [Google Scholar] [CrossRef]
- Osum, K.C.; Jenkins, M.K. Toward a general model of CD4+ T cell subset specification and memory cell formation. Immunity 2023, 56, 475–484. [Google Scholar] [CrossRef]
- Medzhitov, R.; Schneider, D.S.; Soares, M.P. Disease tolerance as a defence strategy. Science 2012, 335, 936–941. [Google Scholar] [CrossRef]
- Schneider, D.S.; Ayres, J.S. Two ways to survive infection: What resistance and tolerance can teach us about treating infectious diseases. Nat. Rev. Immunol. 2008, 8, 889–895. [Google Scholar] [CrossRef]
- Senovilla, L.; Galluzzi, L.; Zitvogel, L.; Kroemer, G. Immunosurveillance as a regulator of tissue homeostasis. Trends Immunol. 2013, 34, 471–481. [Google Scholar] [CrossRef]
- Nurieva, R.I.; Liu, X.; Dong, C. Molecular mechanisms of T-cell tolerance. Immunol. Rev. 2011, 241, 133–144. [Google Scholar] [CrossRef]
- Rudensky, A.Y. Regulatory T cells and Foxp3. Immunol. Rev. 2011, 241, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Ohkura, N.; Kitagawa, Y.; Sakaguchi, S. Development and maintenance of regulatory T cells. Immunity 2013, 38, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Terrazzano, G.; Bruzzaniti, S.; Rubino, V.; Santopaolo, M.; Palatucci, A.T.; Giovazzino, A.; La Rocca, C.; de Candia, P.; Puca, A.; Perna, F.; et al. T1D progression is associated with loss of CD3+CD56+ regulatory T cells that control CD8+ T cell effector functions. Nat. Metab. 2020, 2, 142–152. [Google Scholar] [CrossRef]
- Carriero, F.; Rubino, V.; Leone, S.; Montanaro, R.; Brancaleone, V.; Ruggiero, G.; Terrazzano, G. Regulatory TR3-56 Cells in the Complex Panorama of Immune Activation and Regulation. Cells 2023, 12, 2841. [Google Scholar] [CrossRef]
- Leone, S.; Rubino, V.; Palatucci, A.T.; Giovazzino, A.; Carriero, F.; Cerciello, G.; Pane, F.; Ruggiero, G.; Terrazzano, G. Bone marrow CD3+ CD56+ regulatory T lymphocytes (TR3 -56 cells) are inversely associated with activation and expansion of bone marrow cytotoxic T cells in IPSS-R very-low/low risk MDS patients. Eur. J. Haematol. 2022, 109, 398–405. [Google Scholar] [CrossRef]
- Rubino, V.; Leone, S.; Carriero, F.; Pane, F.; Ruggiero, G.; Terrazzano, G. The potential etiopathogenetic role and diagnostic utility of CD3+ CD56+ regulatory T lymphocytes in Myelodysplastic Syndromes. Eur. J. Haematol. 2023, 110, 578–579. [Google Scholar] [CrossRef] [PubMed]
- Serio, B.; Bertolini, A.; Gorrese, M.; Ferrara, I.; Campana, A.; Morini, D.; Picone, F.; Manzo, P.; Selleri, C.; Giudice, V. Persistent decreased bone marrow CD3+ CD56+ T lymphocytes are inversely associated with mature granulocytes in myelodysplastic syndromes. Eur. J. Haematol. 2023, 110, 575–577. [Google Scholar] [CrossRef]
- Boix, F.; Jimenez-Coll, V.; Legaz, I.; Alfaro, R.; Moya-Quiles, M.R.; Peña-Moral, J.; Minguela, A.; Llorente, S.; Muro, M. Higher Expression of Activated CD8+ T Lymphocytes (CD8+CD25+, CD8+CD69+ and CD8+CD95+) Mediate Early Post-Transplant Acute Tubular Injury in Kidney Recipients. Front. Biosci. 2023, 28, 119. [Google Scholar] [CrossRef]
- Jacquemont, L.; Tilly, G.; Yap, M.; Doan-Ngoc, T.M.; Danger, R.; Guérif, P.; Delbos, F.; Martinet, B.; Giral, M.; Foucher, Y.; et al. Terminally Differentiated Effector Memory CD8+ T Cells Identify Kidney Transplant Recipients at High Risk of Graft Failure. J. Am. Soc. Nephrol. 2020, 31, 876–891. [Google Scholar] [CrossRef]
- Leonhard, J.; Schaier, M.; Kälble, F.; Eckstein, V.; Zeier, M.; Steinborn, A. Chronic Kidney Failure Provokes the Enrichment of Terminally Differentiated CD8+ T Cells, Impairing Cytotoxic Mechanisms After Kidney Transplantation. Front. Immunol. 2022, 13, 752570. [Google Scholar] [CrossRef] [PubMed]
- Ashton-Chess, J.; Dugast, E.; Colvin, R.B.; Giral, M.; Foucher, Y.; Moreau, A.; Renaudin, K.; Braud, C.; Devys, A.; Brouard, S.; et al. Regulatory, effector, and cytotoxic T cell profiles in long-term kidney transplant patients. J. Am. Soc. Nephrol. 2009, 20, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Ashton-Chess, J.; Giral, M.; Soulillou, J.P.; Brouard, S. Using biomarkers of tolerance and rejection to identify high- and low-risk patients following kidney transplantation. Transplantation 2009, 87 (Suppl. S9), S95–S99. [Google Scholar] [CrossRef]
- Rubino, V.; Palatucci, A.T.; La Rosa, G.; Giovazzino, A.; Aruta, F.; Damiano, S.; Carriero, F.; Santillo, M.; Iodice, R.; Mondola, P.; et al. Superoxide Dismutase-1 Intracellular Content in T Lymphocytes Associates with Increased Regulatory T Cell Level in Multiple Sclerosis Subjects Undergoing Immune-Modulating Treatment. Antioxidants 2021, 10, 1940. [Google Scholar] [CrossRef]
- Slavin-Chiorini, D.C.; Catalfamo, M.; Kudo-Saito, C.; Hodge, J.W.; Schlom, J.; Sabzevari, H. Amplification of the lytic potential of effector/memory CD8+ cells by vector-based enhancement of ICAM-1 (CD54) in target cells: Implications for intratumoral vaccine therapy. Cancer Gene Ther. 2004, 11, 665–680. [Google Scholar] [CrossRef]
- Oosten, L.E.; Blokland, E.; van Halteren, A.G.; Curtsinger, J.; Mescher, M.F.; Falkenburg, J.H.; Mutis, T.; Goulmy, E. Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes. Blood 2004, 104, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Procaccini, C.; De Rosa, V.; Galgani, M.; Abanni, L.; Calì, G.; Porcellini, A.; Carbone, F.; Fontana, S.; Horvath, T.L.; La Cava, A.; et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 2010, 33, 929–941. [Google Scholar] [CrossRef]
- Carbone, F.; Colamatteo, A.; La Rocca, C.; Lepore, M.T.; Russo, C.; De Rosa, G.; Matarese, A.; Procaccini, C.; Matarese, G. Metabolic Plasticity of Regulatory T Cells in Health and Autoimmunity. J. Immunol. 2024, 212, 1859–1866. [Google Scholar] [CrossRef]
- Suhrkamp, I.; Scheffold, A.; Heine, G. T-cell subsets in allergy and tolerance induction. Eur. J. Immunol. 2023, 53, 2249983. [Google Scholar] [CrossRef]
- Park, S.H.; Veerapu, N.S.; Shin, E.C.; Biancotto, A.; McCoy, J.P.; Capone, S.; Folgori, A.; Rehermann, B. Subinfectious hepatitis C virus exposures suppress T cell responses against subsequent acute infection. Nat. Med. 2013, 19, 1638–1642. [Google Scholar] [CrossRef]
- Romano, M.; Fanelli, G.; Albany, C.J.; Giganti, G.; Lombardi, G. Past, Present, and Future of Regulatory T Cell Therapy in Transplantation and Autoimmunity. Front. Immunol. 2019, 31, 10–43. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, M.; Gregori, S.; Bacchetta, R.; Roncarolo, M.G. Tr1 cells: From discovery to their clinical application. Semin. Immunol. 2006, 18, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Weiner, H.L. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol. Rev. 2001, 182, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.; Zahorowska, B.; Suranyi, M.; Jeffrey, K.W.; Wong, J.D.; Spicer, S.T.; Verma, N.D.; Hodgkinson, S.J.; Bruce, M.; Hall, B.M. CD4+CD25+ T regulatory cells in renal transplantation. Front. Immunol. 2022, 13, 1017683. [Google Scholar] [CrossRef]
- Krajewska, M.; Kościelska-Kasprzak, K.; Kamińska, D.; Żabińska, M.; Myszka-Kozłowska, M.; Gomułkiewicz, A.; Dzięgiel, P.; Klinger, M. Kidney Transplant Outcome Is Associated with Regulatory T Cell Population and Gene Expression Early after Transplantation. J. Immunol. Res. 2019, 8, 7452019. [Google Scholar] [CrossRef]
- Sagoo, P.; Perucha, E.; Sawitzki, B.; Tomiuk, S.; Stephens, D.A.; Miqueu, P.; Chapman, S.; Craciun, L.; Sergeant, R.; Brouard, S.; et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Inv. 2010, 120, 1848–1861. [Google Scholar] [CrossRef] [PubMed]
- Brouarda, S.; Mansfield, E.; Braud, C.; Li, L.; Girala, M.; Hsiehb, S.; Baetena, D.; Zhangb, M.; Ashton-Chessa, J.; Braudeaua, C.; et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc. Natl. Acad. Sci. USA 2007, 104, 15448–15453. [Google Scholar] [CrossRef]
- Dilek, N.; Poirier, N.-; Usal, C.; Martinet, B.; Blancho, G.; Vanhove, B. Control of transplant tolerance and intragraft regulatory T cell localization by myeloid-derived suppressor cells and CCL5. J. Immunol. 2012, 188, 4209–4216. [Google Scholar] [CrossRef]
- Sabbatini, M.; Ruggiero, G.; Palatucci, A.T.; Rubino, V.; Federico, S.; Giovazzino, A.; Apicella, L.; Santopaolo, M.; Matarese, G.; Galgani, M.; et al. Oscillatory mTOR inhibition and Treg increase in kidney transplantation. Clin. Exp. Immunol. 2015, 182, 230–240. [Google Scholar] [CrossRef]
- Cortese, L.; Annunziatella, M.; Palatucci, A.T.; Rubino, V.; Piantedosi, D.; Di Loria, A.; Ruggiero, G.; Ciaramella, P.; Terrazzano, G. Regulatory T cells, Cytotoxic T lymphocytes and a T(H)1 cytokine profile in dogs naturally infected by Leishmania infantum. Res. Vet. Sci. 2013, 95, 942–949. [Google Scholar] [CrossRef]
- Palatucci, A.T.; Piantedosi, D.; Rubino, V.; Giovazzino, A.; Guccione, J.; Pernice, V.; Ruggiero, G.; Cortese, L.; Terrazzano, G. Circulating regulatory T cells (Treg), leptin and induction of proinflammatory activity in obese Labrador Retriever dogs. Vet. Immunol. Immunopathol. 2018, 202, 122–129. [Google Scholar] [CrossRef] [PubMed]
N | Age Mean (Range) | Males/Females | TR3-56 /T Cells <9.16 2 | TR3-56 /T Cells >9.16 2 | |
---|---|---|---|---|---|
50 | 51.82 (35–68) | 31/19 | 21 | 29 | |
Stable Disease 1 | 25 | 53.54 (38–68) | 15/10 | 15 3 | 10 4 |
Unstable Disease 1 | 25 | 50.32 (35–67) | 16/9 | 6 | 19 |
Kidney Recipient subjects (N = 53) | |
SEX M/F (%) | 30/23 (56/44) |
AGE (Mean ± SD) | 51.83 ± 14.04 |
TRASPLANT VINTAGE (years) | 5.56 ± 4.2 |
White Blood Cell count (×109/L) Mean ± SD | 8.278 ± 2.57 |
Neutrophil count (×109/L) Mean ± SD | 5.308 ± 2.15 |
Lymphocyte count (×109/L) Mean ± SD | 2.029 ± 0.83 |
Immunosuppressive drugs | |
Tacrolimus Average dosage Mean ± SD | 31/536.59 ± 2.63 mg |
Cyclosporine Average dosage Mean ± SD | 22/53168.1 ± 52.18 mg |
Steroids Average dosage Mean ± SD | 53/534.91 ± 2.13 mg |
Healthy subjects (N = 20) | |
SEX M/F; (%) | 12/8 (60/40) |
AGE (Mean ± SD) | 45.75 ± 16.28 |
White Blood Cell count (×109/L) Mean ± SD | 7.869 ± 1.862 |
Neutrophil count (×109/L) Mean ± SD | 5.749 ± 1.378 |
Lymphocyte count (×109/L) Mean ± SD | 2.120 ± 0.527 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubino, V.; Carriero, F.; Palatucci, A.T.; Giovazzino, A.; Salemi, F.; Carrano, R.; Sabbatini, M.; Ruggiero, G.; Terrazzano, G. TR3-56 and Treg Regulatory T Cell Subsets as Potential Indicators of Graft Tolerance Control in Kidney Transplant Recipients. Int. J. Mol. Sci. 2024, 25, 10610. https://doi.org/10.3390/ijms251910610
Rubino V, Carriero F, Palatucci AT, Giovazzino A, Salemi F, Carrano R, Sabbatini M, Ruggiero G, Terrazzano G. TR3-56 and Treg Regulatory T Cell Subsets as Potential Indicators of Graft Tolerance Control in Kidney Transplant Recipients. International Journal of Molecular Sciences. 2024; 25(19):10610. https://doi.org/10.3390/ijms251910610
Chicago/Turabian StyleRubino, Valentina, Flavia Carriero, Anna Teresa Palatucci, Angela Giovazzino, Fabrizio Salemi, Rosa Carrano, Massimo Sabbatini, Giuseppina Ruggiero, and Giuseppe Terrazzano. 2024. "TR3-56 and Treg Regulatory T Cell Subsets as Potential Indicators of Graft Tolerance Control in Kidney Transplant Recipients" International Journal of Molecular Sciences 25, no. 19: 10610. https://doi.org/10.3390/ijms251910610
APA StyleRubino, V., Carriero, F., Palatucci, A. T., Giovazzino, A., Salemi, F., Carrano, R., Sabbatini, M., Ruggiero, G., & Terrazzano, G. (2024). TR3-56 and Treg Regulatory T Cell Subsets as Potential Indicators of Graft Tolerance Control in Kidney Transplant Recipients. International Journal of Molecular Sciences, 25(19), 10610. https://doi.org/10.3390/ijms251910610