Synthesis and Antimicrobial Activity of (E)-1-Aryl-2-(1H-tetrazol-5-yl)acrylonitrile Derivatives via [3+2] Cycloaddition Reaction Using Reusable Heterogeneous Nanocatalyst under Microwave Irradiation
"> Figure 1
<p>FT-IR characterization of Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>@cellulose, and Fe<sub>2</sub>O<sub>3</sub>@cellulose@Mn nanocomposites.</p> "> Figure 2
<p>SEM images of (<b>a</b>–<b>c</b>) cellulose, (<b>d</b>–<b>f</b>) Fe<sub>2</sub>O<sub>3</sub>, and (<b>g</b>–<b>i</b>) Fe<sub>2</sub>O<sub>3</sub>@cellulose@Mn.</p> "> Figure 3
<p>EDS characterization of (<b>a</b>) Fe<sub>2</sub>O<sub>3</sub> and (<b>b</b>) Fe<sub>2</sub>O<sub>3</sub>@cellulose@Mn.</p> "> Figure 4
<p>XRD characterization of Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub>@cellulose@Mn nanocomposites.</p> "> Figure 5
<p>VSM characterization of Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub>@cellulose@Mn nanocomposites.</p> "> Scheme 1
<p>Proposed mechanism for the synthesis of (<span class="html-italic">E</span>)-1-aryl-2-(1H-tetrazol-5-yl)acrylonitrile derivatives <b>4a</b>–<b>m</b> using Fe<sub>2</sub>O<sub>3</sub>@cellulose@Mn nanocatalyst.</p> "> Scheme 2
<p>Graphical illustration of the synthesis of Fe<sub>2</sub>O<sub>3</sub>@cellulose@Mn nanocatalyst.</p> "> Scheme 3
<p>Synthesis of (<span class="html-italic">E</span>)-1-aryl-2-(1H-tetrazol-5-yl)acrylonitrile derivatives <b>4a</b>–<b>m</b> using Fe<sub>2</sub>O<sub>3</sub>@cellulose@Mn under MW irradiations.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Fe2O3@Cellulose@Mn Nanoparticle
2.1.1. FT-IR Characterization
2.1.2. SEM Characterization
2.1.3. XRD Characterization
2.1.4. VSM Characterization
2.2. One-Pot Synthesis of (Z)-3-Phenyl-2-(1H-tetrazol-5-yl)acrylonitrile (4a) Using Fe2O3@cellulose@Mn Nanocatalyst
2.3. Characterization of (Z)-3-Phenyl-2-(1H-tetrazol-5-yl)acrylonitrile 4a Using Fe2O3@cellulose@Mn Nanocomposite
2.4. Plausible Mechanism
2.5. Antimicrobial Activity
2.6. Comparison of the Catalytical Activity of Fe2O3@cellulose@Mn Nanocatalyst with Other Heterogeneous Catalysts in the Synthesis of Tetrazole Derivatives
3. Materials and Methods
3.1. Materials and Instruments
3.2. Synthesis of Fe2O3 MNPs
3.3. Synthesis of Fe2O3@Cellulose
3.4. Synthesis of Fe2O3@Cellulose@Mn
3.5. Synthesis of (E)-1-Aryl-2-(1H-tetrazol-5-yl)acrylonitrile Derivatives (4a–m)
3.6. Antimicrobial Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, C.X.; Bian, M.; Gong, G.H. Tetrazolium compounds: Synthesis and applications in medicine. Molecules 2015, 20, 5528–5553. [Google Scholar] [CrossRef] [PubMed]
- Meghani, N.M.; Amin, H.H.; Lee, B.J. Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discov. Today 2017, 22, 1604–1619. [Google Scholar] [CrossRef] [PubMed]
- Cantillo, D.; Gutmann, B.; Kappe, C.O. Mechanistic Insights on Azide—Nitrile Cycloadditions: On the Dialkyltin Oxide—Trimethylsilyl Azide Route and a New. J. Am. Chem. Soc. 2011, 133, 4465–4475. [Google Scholar] [CrossRef]
- Shelkar, R.; Singh, A.; Nagarkar, J. Amberlyst-15 catalyzed synthesis of 5-substituted 1-H-tetrazole via [3+2] cycloaddition of nitriles and sodium azide. Tetrahedron Lett. 2013, 54, 106–109. [Google Scholar] [CrossRef]
- Prathyusha, J.; Deepti, C.A. Synthesis, Characterization and Evaluation of Anticancer Activity of New Pyrazole-5-carboxamide Derivatives. Asian J. Chem. 2023, 35, 2007–2014. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S. FeCl3-SiO2 as a reusable heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles via [2+3] cycloaddition of nitriles and sodium azide. Tetrahedron Lett. 2009, 50, 4435–4438. [Google Scholar] [CrossRef]
- Matthews, D.P.; Green, J.E.; Shuker, A.J. Parallel synthesis of alkyl tetrazole derivatives using solid support chemistry. J. Comb. Chem. 2000, 2, 19–23. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Z.; Zhang, Q.; Luo, J. An intramolecular relay catalysis strategy for Knoevenagel condensation and 1,3-dipolar cycloaddition domino reactions. RSC Adv. 2019, 9, 23614–23621. [Google Scholar] [CrossRef]
- Huisgen, P.D.R. 1,3-Dipolar Cycloadditions Past and Future. Angew. Chem. 1963, 2, 565–632. [Google Scholar] [CrossRef]
- Kras, J.; Sadowski, M.; Zawadzińska, K.; Nagatsky, R.; Woliński, P.; Kula, K.; Łapczuk, A. Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles. Sci. Radices 2023, 2, 247–267. [Google Scholar] [CrossRef]
- Boukis, A.C.; Reiter, K.; Frölich, M.; Hofheinz, D.; Meier, M.A.R. Multicomponent reactions provide key molecules for secret communication. Nat. Commun. 2018, 9, 1439. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Dong, S.; Chen, Y.; Liu, X.; Feng, X. Asymmetric synthesis of tetrazole and dihydroisoquinoline derivatives by isocyanide-based multicomponent reactions. Nat. Commun. 2019, 10, 2116. [Google Scholar] [CrossRef] [PubMed]
- Mardirossian, M.; Pompilio, A.; Degasperi, M.; Runti, G.; Pacor, S.; Di Bonaventura, G.; Scocchi, M. D-BMAP18 antimicrobial peptide is active In Vitro, resists to pulmonary proteases but loses its activity in a murine model of Pseudomonas aeruginosa lung infection. Front. Chem. 2017, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, U. Five-Membered Heterocycles with Four Heteroatoms: Tetrazoles. Mod. Heterocycl. Chem. 2011, 3, 1401–1430. [Google Scholar] [CrossRef]
- Khodamorady, M.; Bahrami, K. Fe3O4@BNPs-CPTMS-Chitosan-Pd(0) as an Efficient and Stable Heterogeneous Magnetic Nanocatalyst for the Chemoselective Oxidation of Alcohols and Homoselective Synthesis of 5-Subestituted 1H-Tetrazoles. ChemistrySelect 2019, 4, 8183–8194. [Google Scholar] [CrossRef]
- Himo, F.; Demko, Z.P.; Noodleman, L.; Sharpless, K.B. Why is tetrazole formation by addition of azide to organic nitriles catalyzed by zinc(II) salts? J. Am. Chem. Soc. 2003, 125, 9983–9987. [Google Scholar] [CrossRef]
- Roh, J.; Vávrová, K.; Hrabálek, A. Synthesis and functionalization of 5-substituted tetrazoles. Eur. J. Org. Chem. 2012, 2012, 6101–6118. [Google Scholar] [CrossRef]
- Szulczyk, D.; Bielenica, A.; Dobrowolski, M.A.; Dobrzycki, Ł.; Krawiecka, M.; Kuran, B.; Struga, M. Synthesis and structure evaluation of new complex butylarylpiperazin-1-yl derivatives. Med. Chem. Res. 2014, 23, 1519–1536. [Google Scholar] [CrossRef]
- Pochini, L.; Galluccio, M.; Scumaci, D.; Giangregorio, N.; Tonazzi, A.; Palmieri, F.; Indiveri, C. Interaction of β-lactam antibiotics with the mitochondrial carnitine/acylcarnitine transporter. Chem. Biol. Interact. 2008, 173, 187–194. [Google Scholar] [CrossRef]
- Yousfi, Y.; Benchouk, W.; Mekelleche, S.M. Prediction of the regioselectivity of the ruthenium-catalyzed [3+2] cycloadditions of benzyl azide with internal alkynes using conceptual DFT indices of reactivity. Chem. Heterocycl. Comp. 2023, 59, 118–127. [Google Scholar] [CrossRef]
- Yang, E.S.; Mapp, A.; Taylor, A.; Beer, P.D.; Goicoechea, J.M. Cyaphide-Azide 1,3-Dipolar Cycloaddition Reactions: Scope and Applicability. Chem.—A Eur. J. 2023, 29, e202301648. [Google Scholar] [CrossRef] [PubMed]
- Revathi, S.; Shinde, A.L.; Rajashekhar, M.K.; Mandal, D.; Maity, A.R.; Garai, S.; Ghatak, T. N-Heterocyclic imino-catalyzed 1,4-regioselective azide–alkyne cycloaddition (AAC): A metal-free approach. Chem. Commun. 2023, 59, 12699–12702. [Google Scholar] [CrossRef] [PubMed]
- Heravi, M.M.; Zadsirjan, V.; Dehghani, M.; Ahmadi, T. Towards click chemistry: Multicomponent reactions via combinations of name reactions. Tetrahedron 2018, 74, 3391–3457. [Google Scholar] [CrossRef]
- Jasiński, R.; Dresler, E. On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions: A Critical Review. Organics 2020, 1, 49–69. [Google Scholar] [CrossRef]
- Gyoung, Y.S.; Shim, J.G.; Yamamoto, Y. Regiospecific synthesis of 2-allylated-5-substituted tetrazoles via palladium-catalyzed reaction of nitriles, trimethylsilyl azide, and allyl acetates. Tetrahedron Lett. 2000, 41, 4193–4196. [Google Scholar] [CrossRef]
- Abdollahi-Alibeik, M.; Moaddeli, A. Multi-component one-pot reaction of aldehyde, hydroxylamine and sodium azide catalyzed by Cu-MCM-41 nanoparticles: A novel method for the synthesis of 5-substituted 1H-tetrazole derivatives. New J. Chem. 2015, 39, 2116–2122. [Google Scholar] [CrossRef]
- Gutmann, B.; Roduit, J.P.; Kappe, C.O.; Roberge, D. Synthesis of 5-substituted lH-tetrazoles from nitriles and hydrazoic acid by using a safe and scalable high-temperature microreactor approach. Angew. Chem.—Int. Ed. 2010, 49, 7101–7105. [Google Scholar] [CrossRef]
- Woliński, P.; Kącka-Zych, A.; Demchuk, O.M.; Łapczuk-Krygier, A.; Mirosław, B.; Jasiński, R. Clean and molecularly programmable protocol for preparation of bis-heterobiarylic systems via a domino pseudocyclic reaction as a valuable alternative for TM-catalyzed cross-couplings. J. Clean. Prod. 2020, 275, 122086. [Google Scholar] [CrossRef]
- El-Sewedy, A.; El-Bordany, E.A.; Mahmoud, N.F.H.; Ali, K.A.; Ramadan, S.K. One-pot synthesis, computational chemical study, molecular docking, biological study, and in silico prediction ADME/pharmacokinetics properties of 5-substituted 1H-tetrazole derivatives. Sci. Rep. 2023, 13, 17869. [Google Scholar] [CrossRef]
- El Anwar, S.; Růžičková, Z.; Bavol, D.; Fojt, L.; Grüner, B. Tetrazole Ring Substitution at Carbon and Boron Sites of the Cobalt Bis(dicarbollide) Ion Available via Dipolar Cycloadditions. Inorg. Chem. 2020, 59, 17430–17442. [Google Scholar] [CrossRef]
- Aali, E.; Gholizadeh, M.; Noroozi-Shad, N. 1-Disulfo-[2,2-bipyridine]-1,1-diium chloride ionic liquid as an efficient catalyst for the green synthesis of 5-substituted 1H-tetrazoles. J. Mol. Struct. 2022, 1247, 131289. [Google Scholar] [CrossRef]
- Duncia, J.V.; Santella, J.B.; Pierce, M.E. Three Synthetic Routes to a Sterically Hindered Tetrazole. A New One-Step Mild Conversion of an Amide into a Tetrazole. J. Org. Chem. 1991, 56, 2395–2400. [Google Scholar] [CrossRef]
- Clémençon, I.F.; Ganem, B. Tandem multicomponent/click reactions: Synthesis of functionalized oxazoles and tetrazoles from acyl cyanides. Tetrahedron 2007, 63, 8665–8669. [Google Scholar] [CrossRef]
- Maddila, S.; Naicker, K.; Momin, M.I.K.; Rana, S.; Gorle, S.; Maddila, S.; Yalagala, K.; Singh, M.; Koorbanally, N.A.; Jonnalagadda, S.B. Novel 2-(1-(substitutedbenzyl)-1H-tetrazol-5-yl)-3-phenylacrylonitrile derivatives: Synthesis, in vitro antitumor activity and computational studies. Med. Chem. Res. 2016, 25, 283–291. [Google Scholar] [CrossRef]
- Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via Multicomponent Reactions. Chem. Rev. 2019, 119, 1970–2042. [Google Scholar] [CrossRef]
- Safapoor, S.; Dekamin, M.G.; Akbari, A.; Naimi-Jamal, M.R. Synthesis of (E)-2-(1H-tetrazole-5-yl)-3-phenylacrylenenitrile derivatives catalyzed by new ZnO nanoparticles embedded in a thermally stable magnetic periodic mesoporous organosilica under green conditions. Sci. Rep. 2022, 12, 10723. [Google Scholar] [CrossRef]
- Suresh, S.; Karthikeyan, S.; Jayamoorthy, K. Effect of bulk and nano-Fe2O3 particles on peanut plant leaves studied by Fourier transform infrared spectral studies Effect of Fe2O3 particles on peanut plant leaves. J. Adv. Res. 2016, 7, 739–747. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Zhou, J.; Wu, R. Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway. J. Phys. Chem. C 2008, 112, 4538–4544. [Google Scholar] [CrossRef]
- Fattahi Meyabadi, T.; Dadashian, F.; Mir Mohamad Sadeghi, G.; Ebrahimi Zanjani Asl, H. Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol. 2014, 261, 232–240. [Google Scholar] [CrossRef]
- Behloul, C.; Benlahrech, M.; Foubelo, F.; Nájera, C.; Yus, M. Indium-, Magnesium-, and Zinc-Mediated Debenzylation of Protected 1 H -Tetrazoles: A Comparative Study. Synth. 2018, 50, 3430–3435. [Google Scholar] [CrossRef]
- Akbarzadeh, P.; Koukabi, N.; Kolvari, E. Three-component solvent-free synthesis of 5-substituted-1H-tetrazoles catalyzed by unmodified nanomagnetite with microwave irradiation or conventional heating. Res. Chem. Intermed. 2019, 45, 1009–1024. [Google Scholar] [CrossRef]
- Tisseh, Z.N.; Dabiri, M.; Nobahar, M.; Khavasi, H.R.; Bazgir, A. Catalyst-free, aqueous and highly diastereoselective synthesis of new 5-substituted 1H-tetrazoles via a multi-component domino Knoevenagel condensation/1,3 dipolar cycloaddition reaction. Tetrahedron 2012, 68, 1769–1773. [Google Scholar] [CrossRef]
- Ahmed, N.; Siddiqui, Z.N. Silica molybdic acid catalysed eco-friendly three component synthesis of functionalised tetrazole derivatives under microwave irradiation in water. RSC Adv. 2015, 5, 16707–16717. [Google Scholar] [CrossRef]
- Saghian, M.; Dehghanpour, S.; Bayatani, Z. A facile, rapid procedure for Knoevenagel condensation reaction catalyzed by efficient amino-bifunctional frameworks under mild conditions. Sci. Rep. 2023, 13, 15563. [Google Scholar] [CrossRef]
- Nouri Parouch, A.; Koukabi, N.; Abdous, E. Tetrazole derivatives synthesis using Fe3O4@fibroin-SO3H as a magnetically separable green solid acid nanocatalyst under solvent-free conditions. Res. Chem. Intermed. 2020, 46, 3295–3310. [Google Scholar] [CrossRef]
Entry | (mg) | Yield * (%) |
---|---|---|
1 | Fe2O3 (5 mg) | low |
2 | Cellulose (5 mg) | - |
3 | Fe2O3@cellulose@Mn (5 mg) | 71 |
4 | Fe2O3@cellulose@Mn (10 mg) | 83 |
5 | Fe2O3@cellulose@Mn (15 mg) | 92 |
6 | Fe2O3@cellulose@Mn (20 mg) | 92 |
7 | Fe2O3@cellulose@Mn (25 mg) | 93 |
Entry | Solvent | Yield * (%) |
---|---|---|
1 | Methanol | 88 |
2 | Glycerol | 80 |
3 | Water | - |
4 | Ethanol | 92 |
5 | Ethylene glycol | 85 |
6 | PEG | 78 |
Entry | Watt | Time (min) | Yield * (%) |
---|---|---|---|
1 | Reflux | 600 | 66 |
2 | 100 | 10 | 92 |
3 | 110 | 7 | 93 |
4 | 120 | 3 | 98 |
5 | 130 | 3 | 96 |
6 | 140 | 3 | 92 |
Cycle | Yield * (%) |
---|---|
1 | 98 |
2 | 95 |
3 | 94 |
4 | 91 |
5 | 90 |
Entry | Time (min) | Yield * (%) |
---|---|---|
1 | 1 | 75 |
2 | 2 | 80 |
3 | 3 | 95 |
4 | 4 | 96 |
5 | 5 | 94 |
Entry | Aldehydes (1a–m) | Product (4a–m) | Time (min) | Yield a (%) | Obs. mp (°C) | Lit. mp (°C) | References |
---|---|---|---|---|---|---|---|
1 | (1a) | (4a) | 3 | 98 | 165–167 | 168–170 | [8] |
2 | (1b) | (4b) | 2 | 97 | 161–163 | 159–163 | [40] |
3 | (1c) | (4c) | 2 | 96 | 168–169 | 166–168 | [41] |
4 | (1d) | (4d) | 3 | 97 | 171–173 | 175–177 | [42] |
5 | (1e) | (4e) | 3 | 95 | 160–161 | 158–159 | [40] |
6 | (1f) | (4f) | 3 | 96 | 163–164 | 165–167 | [41] |
7 | (1g) | (4g) | 3 | 93 | 165–167 | 168–169 | [8] |
8 | (1h) | (4h) | 2 | 97 | 152–153 | 153–155 | [41] |
9 | (1i) | (4i) | 3 | 96 | 161–164 | 159–161 | [43] |
10 | (1j) | (4j) | 3 | 95 | 188–190 | 189–191 | [40] |
11 | (1k) | (4k) | 3 | 98 | 167–169 | 168–170 | [8] |
12 | (1l) | (4l) | 2 | 94 | 170–171 | 171–172 | [41] |
13 | (1m) | (4m) | 3 | 98 | 87–89 | 85–86 | [40] |
Entry | Gram (−ve) Bacteria | Gram (+ve) Bacteria | Fungi | |||||
---|---|---|---|---|---|---|---|---|
K. pneumonia | E. coli | S. pyogenes | B. subtilis | A. sclerotiorum | A. janus | S. aureus | A. niger | |
4a | 8 | 8 | 8 | 16 | 8 | 8 | 16 | 4 |
4b | 16 | 8 | 16 | 16 | 4 | 4 | 4 | 8 |
4c | 4 | 8 | 4 | 8 | 4 | 4 | 8 | 4 |
4d | 8 | 4 | 4 | 4 | 8 | 16 | 8 | 8 |
4e | 8 | 8 | 16 | 16 | – | 8 | 16 | 16 |
4f | 8 | 16 | 8 | 8 | 8 | 16 | 16 | 16 |
4g | 8 | 8 | 32 | 16 | – | 8 | 4 | 16 |
4h | 16 | 32 | 16 | 64 | 16 | 32 | - | 64 |
4i | 32 | 32 | 32 | 16 | 4 | 8 | 8 | 4 |
4j | 64 | 8 | 16 | 32 | 32 | 64 | 64 | 16 |
4k | 32 | 16 | 16 | 8 | 8 | 16 | 8 | 8 |
4l | 16 | 8 | 8 | 8 | 8 | 8 | 8 | 16 |
4m | 32 | 16 | 16 | 16 | 4 | 4 | 4 | 4 |
Cefixime | 4 | 4 | 4 | 4 | – | – | 4 | – |
Fluconazole | – | – | – | – | 2 | 2 | – | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanda, A.; Kaur, N.; Kaur, M.; Husain, F.M.; Han, H.; Bhowmik, P.K.; Sohal, H.S. Synthesis and Antimicrobial Activity of (E)-1-Aryl-2-(1H-tetrazol-5-yl)acrylonitrile Derivatives via [3+2] Cycloaddition Reaction Using Reusable Heterogeneous Nanocatalyst under Microwave Irradiation. Molecules 2024, 29, 4339. https://doi.org/10.3390/molecules29184339
Nanda A, Kaur N, Kaur M, Husain FM, Han H, Bhowmik PK, Sohal HS. Synthesis and Antimicrobial Activity of (E)-1-Aryl-2-(1H-tetrazol-5-yl)acrylonitrile Derivatives via [3+2] Cycloaddition Reaction Using Reusable Heterogeneous Nanocatalyst under Microwave Irradiation. Molecules. 2024; 29(18):4339. https://doi.org/10.3390/molecules29184339
Chicago/Turabian StyleNanda, Ayashkanta, Navneet Kaur, Manvinder Kaur, Fohad Mabood Husain, Haesook Han, Pradip K. Bhowmik, and Harvinder Singh Sohal. 2024. "Synthesis and Antimicrobial Activity of (E)-1-Aryl-2-(1H-tetrazol-5-yl)acrylonitrile Derivatives via [3+2] Cycloaddition Reaction Using Reusable Heterogeneous Nanocatalyst under Microwave Irradiation" Molecules 29, no. 18: 4339. https://doi.org/10.3390/molecules29184339