Recent Synthesis Developments of Organoboron Compounds via Metal-Free Catalytic Borylation of Alkynes and Alkenes
<p>(<b>a</b>) Transition-metal-free diboration reaction of non-activated olefins; (<b>b</b>) Mixed organocatalytic diboration of non-activated olefins.</p> "> Scheme 2
<p>Suggested catalytic cycle for the diboration of non-activated olefins.</p> "> Scheme 3
<p>(<b>a</b>) Phosphine-Catalyzed 1,2-diboration of alkynoate; (<b>b</b>) 1,2-diboration of N-substituted phenylpropiolamides.</p> "> Scheme 4
<p>Trans-selective diborylation reaction of propargylic alcohols.</p> "> Scheme 5
<p>Reaction of pinB–BMes<sub>2</sub> with terminal alkynes.</p> "> Scheme 6
<p>(<b>a</b>) Synthesis of 1,1-diborylalkenes, (<b>b</b>) Synthesis of functionalized geminal-diborylalkanes.</p> "> Scheme 7
<p>Enantioselective diboration of olefins. (<b>a</b>) synthesis of the 1,2-diborated product; (<b>b</b>) synthesis of pseudoenantiomeric glycol 6-tertbutyldimethylsilyl-1,2-dihydroglucal (<b>4</b>) and dihydrorhamnal (<b>5</b>); (<b>c</b>) synthesis of diboration of cyclic and acyclic homoallylic and bishomoallylic alcohol substrates.</p> "> Scheme 8
<p>The β-borylation of α,β-unsaturated carbonyl compounds.</p> "> Scheme 9
<p>Mechanism for B<sub>2</sub>pin<sub>2</sub> activation and conjugate addition to an enone.</p> "> Scheme 10
<p>Formation of the sp<sup>2</sup>–sp<sup>3</sup> hybridized NHC·B<sub>2</sub>(pin)<sub>2</sub> compound.</p> "> Scheme 11
<p>(<b>a</b>) NHC-catalyzed enantioselective boryl conjugate addition to unsaturated carbonyls, (<b>b</b>) NHC-catalyzed enantioselective boryl conjugate addition to enones.</p> "> Scheme 12
<p>Verkade’s base mediates β-boration of ethyl crotonate.</p> "> Scheme 13
<p>Proposed reaction pathway for β-boration of methyl acrylate.</p> "> Scheme 14
<p>(<b>a</b>) The β-boration of α,β-unsaturated compounds, (<b>b</b>) The β-boration of in situ formed α,β-unsaturated imines.</p> "> Scheme 15
<p>Phosphine-mediated asymmetric β-boration of α,β-unsaturated compounds.</p> "> Scheme 16
<p>Plausible mechanism for the phosphine-catalyzed β-boration of α,β-unsaturated carbonyl compound.</p> "> Scheme 17
<p>Phosphine assisted β-boration reaction of α,β-unsaturated carbonyl compounds in MeOH.</p> "> Scheme 18
<p>Ion pair formation.</p> "> Scheme 19
<p>One-pot three-component synthesis of homoallylboranes.</p> "> Scheme 20
<p>(<b>a</b>) Borylation of tertiary allylic alcohols, (<b>b</b>) Borylation of propargylic alcohols.</p> "> Scheme 21
<p>Suggested mechanism for the metal-free allylic borylation.</p> "> Scheme 22
<p>Direct conversion of allylic alcohols to allylic boronates.</p> "> Scheme 23
<p>Trans-selective alkynylboration reaction of alkynes.</p> "> Scheme 24
<p>(<b>a</b>) Synthesis of alkylboronates from arylacetylenes and vinyl arenes, (<b>b</b>) Synthesis of β-vinylboronates from terminal alkynes, (<b>c</b>) Synthesis of 1,2-diborylalkanes from non-activated olefins, (<b>d</b>) Synthesis of 1,2,3-triborated compounds from 1,3-dienes.</p> "> Scheme 25
<p>Transition-metal-free hydroboration of allenamides.</p> ">
Abstract
:1. Introduction
2. Organoboron Compounds via Transition-Metal-Free Catalytic Diboration of Unsaturated Hydrocarbons
3. Organoboron Compounds via Transition-Metal-Free Catalytic β-boration of α,β-Unsaturated Compounds
3.1. N-Heterocyclic Carbene Catalysis
3.2. Base Catalysis
3.3. Phosphine Catalysis
4. Organoboron Compounds via Transition-Metal-Free Catalytic Borylation of Allyic and Propargylic Alcohols
5. Organoboron Compounds via Transition-Metal-Free Catalytic Hydroboration of Unsaturated Hydrocarbons
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Paton, R.S.; Goodman, J.M.; Pellegrinet, S.C. Theoretical Study of the Asymmetric Conjugate Alkenylation of Enones Catalyzed by Binaphthols. J. Org. Chem. 2008, 73, 5078–5089. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, T.; Nakamura, M.; Nakamura, E. Diastereoselective Addition of Zincated Hydrazones to Alkenylboronates and Stereospecific Trapping of Boron/Zinc Bimetallic Intermediates by Carbon Electrophiles. J. Am. Chem. Soc. 2008, 130, 15688–15701. [Google Scholar] [CrossRef] [PubMed]
- Carson, M.W.; Giese, M.W.; Coghlan, M.J. An Intra/Intermolecular Suzuki Sequence to Benzopyridyloxepines Containing Geometrically Pure Exocyclic Tetrasubstituted Alkenes. Org. Lett. 2008, 10, 2701–2704. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yokokawa, N.; Ohmiya, H.; Sawamura, M. Synthesis of Conjugated Allenes through Copper-Catalyzed γ-Selective and Stereospecific Coupling between Propargylic Phosphates and Aryl-or Alkenylboronates. Org. Lett. 2012, 14, 816–819. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Kirchberg, S.; Fröhlich, R.; Studer, A. Oxidative Heck Arylation for the Stereoselective Synthesis of Tetrasubstituted Olefins Using Nitroxides as Oxidants. Angew. Chem. Int. Ed. 2012, 51, 3699–3702. [Google Scholar] [CrossRef] [PubMed]
- Pospiech, S.; Bolte, M.; Lerner, H.-W.; Wagner, M. Insertion Reactions into the Boron–Boron Bonds of Barrelene-Type 1,2-Diaminodiboranes (4). Organometallics 2014, 33, 6967–6974. [Google Scholar] [CrossRef]
- Hyodo, K.; Suetsugu, M.; Nishihara, Y. Diborylation of Alkynyl MIDA Boronates and Sequential Chemoselective Suzuki–Miyaura Couplings: A Formal Carboborylation of Alkynes. Org. Lett. 2014, 16, 440–443. [Google Scholar] [CrossRef]
- Mora-Radó, H.; Bialy, L.; Czechtizky, W.; Méndez, M.; Harrity, J.P.A. An Alkyne Diboration/6π-Electrocyclization Strategy for the Synthesis of Pyridine Boronic Acid Derivatives. Angew. Chem. Int. Ed. 2016, 55, 5834–5836. [Google Scholar] [CrossRef] [Green Version]
- Kuang, Z.J.; Li, B.N.; Song, Q.L. Cu/Pd cooperatively catalyzed tandem intramolecular anti-Markovnikov hydroarylation of unsaturated amides: Facile construction of 3,4-dihydroquinolinones via borylation/intramolecular C(sp3)–C(sp2) cross coupling. Chem. Commun. 2018, 54, 34–37. [Google Scholar] [CrossRef]
- Stephens, T.C.; Pattison, G. Transition-Metal-Free Homologative Cross-Coupling of Aldehydes and Ketones with Geminal Bis(boron) Compounds. Org. Lett. 2017, 19, 3498–3501. [Google Scholar] [CrossRef] [Green Version]
- Kuang, Z.J.; Chen, H.H.; Yan, J.X.; Yang, K.; Lan, Y.; Song, Q.L. Base-Catalyzed Borylation/B–O Elimination of Propynols and B2pin2 Delivering Tetrasubstituted Alkenylboronates. Org. Lett. 2018, 20, 5153–5157. [Google Scholar] [CrossRef] [PubMed]
- Okura, K.; Teranishi, T.; Yoshida, Y.; Shirakawa, E. Electron-Catalyzed Cross-Coupling of Arylboron Compounds with Aryl Iodides. Angew. Chem. Int. Ed. 2018, 57, 7186–7190. [Google Scholar] [CrossRef] [PubMed]
- He, Z.Q.; Song, F.F.; Sun, H.; Huang, Y. Transition-Metal-Free Suzuki-Type Cross-Coupling Reaction of Benzyl Halides and Boronic Acids via 1,2-Metalate Shift. J. Am. Chem. Soc. 2018, 140, 2693–2699. [Google Scholar] [CrossRef] [PubMed]
- Iafe, R.G.; Kuo, J.L.; Hochstatter, D.G.; Saga, T.; Turner, J.W.; Merlic, C.A. Increasing the Efficiency of the Transannular Diels–Alder Strategy via Palladium(II)-Catalyzed Macrocyclizations. Org. Lett. 2013, 15, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.L.; Kiesman, W.F.; Levina, A.; Xin, Z.L. Catalytic Asymmetric Petasis Reactions of Vinylboronates. J. Org. Chem. 2013, 78, 9415–9423. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Kageyuki, I.; Takaki, K. Silver-Catalyzed Highly Regioselective Formal Hydroboration of Alkynes. Org. Lett. 2014, 16, 3512–3515. [Google Scholar] [CrossRef] [PubMed]
- Obligacion, J.V.; Neely, J.M.; Yazdani, A.N.; Pappas, I.; Chirik, P.J. Cobalt Catalyzed Z-Selective Hydroboration of Terminal Alkynes and Elucidation of the Origin of Selectivity. J. Am. Chem. Soc. 2015, 137, 5855–5858. [Google Scholar] [CrossRef]
- Huang, X.; Hu, J.J.; Wu, M.Y.; Wang, J.Y.; Peng, Y.Q.; Song, G.H. Catalyst-free chemoselective conjugate addition and reduction of α,β-unsaturated carbonyl compounds via a controllable boration/protodeboronation cascade pathway. Green Chem. 2018, 20, 255–260. [Google Scholar] [CrossRef]
- Lavergne, J.L.; Jayaraman, A.; Castro, L.C.M.; Rochette, É.; Fontaine, F.-G. Metal-Free Borylation of Heteroarenes Using Ambiphilic Aminoboranes: On the Importance of Sterics in Frustrated Lewis Pair C–H Bond Activation. J. Am. Chem. Soc. 2017, 139, 14714–14723. [Google Scholar] [CrossRef]
- Farrell, J.M.; Schmidt, D.; Grande, V.; Wurthner, F. Synthesis of a Doubly Boron-Doped Perylene through NHC-Borenium Hydroboration/C–H Borylation/Dehydrogenation. Angew. Chem. Int. Ed. 2017, 56, 11846–11850. [Google Scholar] [CrossRef]
- Pintaric, C.; Olivero, S.; Gimbert, Y.; Chavant, P.Y.; Duňach, E. An Opportunity for Mg-Catalyzed Grignard-Type Reactions: Direct Coupling of Benzylic Halides with Pinacolborane with 10 mol% of Magnesium. J. Am. Chem. Soc. 2010, 132, 11825–11827. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-T.; Zhang, Z.-Q.; Tajuddin, H.; Wu, C.-C.; Liang, J.; Liu, J.-H.; Fu, Y.; Czyzewska, M.; Steel, P.G.; Marder, T.B.; et al. Alkylboronic Esters from Copper-Catalyzed Borylation of Primary and Secondary Alkyl Halides and Pseudohalides. Angew. Chem. Int. Ed. 2012, 124, 543–547. [Google Scholar] [CrossRef]
- Kubota, K.; Iwamoto, H.; Ito, H. Formal nucleophilic borylation and borylative cyclization of organic halides. Org. Biomol. Chem. 2017, 15, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.K.; Mandal, S.; Geetharani, K. Efficient Synthesis of Aryl Boronates via Cobalt-Catalyzed Borylation of Aryl Chlorides and Bromides. ACS Catal. 2018, 8, 4049–4054. [Google Scholar] [CrossRef]
- Yoshida, T.; Ilies, L.; Nakamura, E. Iron-Catalyzed Borylation of Aryl Chlorides in the Presence of Potassium t-Butoxide. ACS Catal. 2017, 7, 3199–3203. [Google Scholar] [CrossRef]
- Mkhalid, I.A.I.; Barnard, J.H.; Marder, T.B.; Murphy, J.M.; Hartwig, J.F. C–H Activation for the Construction of C–B Bonds. Chem. Rev. 2010, 110, 890–931. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.S.; Jiménez-Hoyos, C.A.; Videa, M.F.; Hartwig, J.F.; Hall, M.B. Origins of the Selectivity for Borylation of Primary over Secondary C–H Bonds Catalyzed by Cp*-Rhodium Complexes. J. Am. Chem. Soc. 2010, 132, 3078–3091. [Google Scholar] [CrossRef]
- Xu, L.; Wang, G.H.; Zhang, S.; Wang, H.; Wang, L.H.; Liu, L.; Jiao, J.; Li, P.F. Recent advances in catalytic C–H borylation reactions. Tetrahedron 2017, 73, 7123–7157. [Google Scholar] [CrossRef]
- Jayaraman, A.; Castro, L.C.M.; Desrosiers, V.; Fontaine, F.G. Metal-free borylative dearomatization of indoles: Exploring the divergent reactivity of aminoborane C–H borylation catalysts. Chem. Sci. 2018, 9, 5057–5063. [Google Scholar] [CrossRef]
- Lee, Y.; Jang, H.; Hoveyda, A.H. Vicinal Diboronates in High Enantiomeric Purity through Tandem Site-Selective NHC–Cu-Catalyzed Boron–Copper Additions to Terminal Alkynes. J. Am. Chem. Soc. 2009, 131, 18234–18235. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Ishikawa, Y.; Asao, N.; Yamamoto, Y.; Jin, T. Remarkable Catalytic Property of Nanoporous Gold on Activation of Diborons for Direct Diboration of Alkynes. Org. Lett. 2013, 15, 5766–5769. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-Y.; Yun, J. Copper-Catalyzed Double Borylation of Silylacetylenes: Highly Regio-and Stereoselective Synthesis of Syn-Vicinal Diboronates. Org. Lett. 2012, 14, 2606–2609. [Google Scholar] [CrossRef] [PubMed]
- Bidal, Y.D.; Lazreg, F.; Cazin, C.S.J. Copper-Catalyzed Regioselective Formation of Tri-and Tetrasubstituted Vinylboronates in Air. ACS Catal. 2014, 4, 1564–1569. [Google Scholar] [CrossRef]
- Yuan, W.M.; Ma, S.M. CuCl-K2CO3-catalyzed highly selective borylcupration of internal alkynes—Ligand effect. Org. Biomol. Chem. 2012, 10, 7266–7268. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-Y.; Feng, X.H.; Kim, H.; Yun, J. Copper-catalyzed boration of activated alkynes. Chiral boranes via a one-pot copper-catalyzed boration and reduction protocol. Tetrahedron 2012, 68, 3444–3449. [Google Scholar] [CrossRef]
- Zhao, F.; Jia, X.W.; Li, P.Y.; Zhao, J.W.; Zhou, Y.; Wang, J.; Liu, H. Catalytic and catalyst-free diboration of alkynes. Org. Chem. Front. 2017, 4, 2235–2255. [Google Scholar] [CrossRef]
- Wen, Y.M.; Xie, J.Y.; Deng, C.M.; Li, C.D. Selective Synthesis of Alkylboronates by Copper(I)-Catalyzed Borylation of Allyl or Vinyl Arenes. J. Org. Chem. 2015, 80, 4142–4147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Tong, M.; Wang, H.; Xu, S. Transition-metal-free synthesis of 1,1-diboronate esters with a fully substituted benzylic center via diborylation of lithiated carbamates. Org. Biomol. Chem. 2017, 15, 3418–3422. [Google Scholar] [CrossRef]
- Yamamoto, E.; Izumi, K.; Horita, Y.; Ito, H. Anomalous Reactivity of Silylborane: Transition-Metal-Free Boryl Substitution of Aryl, Alkenyl, and Alkyl Halides with Silylborane/Alkoxy Base Systems. J. Am. Chem. Soc. 2012, 134, 19997–20000. [Google Scholar] [CrossRef]
- Zhang, J.M.; Wu, H.-H.; Zhang, J.L. Cesium Carbonate Mediated Borylation of Aryl Iodides with Diboron in Methanol. Eur. J. Org. Chem. 2013, 6263–6266. [Google Scholar] [CrossRef]
- Lee, Y.; Baek, S.; Park, J.; Kim, S.T.; Tussupbayev, S.; Kim, J.; Baik, M.H.; Cho, S.H. Chemoselective Coupling of 1,1-Bis[(pinacolato)boryl]alkanes for the Transition-Metal-Free Borylation of Aryl and Vinyl Halides: A Combined Experimental and Theoretical Investigation. J. Am. Chem. Soc. 2017, 139, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Miralles, N.; Romero, R.M.; Fernández, E.; Munñiz, K. A mild carbon-boron bond formation from diaryliodonium salts. Chem. Commun. 2015, 51, 14068–14071. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.X.; Li, H.-P.; Peng, J.-B.; Wu, X.-F. Borylation of aryldiazonium salts at room temperature in an aqueous solution under catalyst-free conditions. Tetrahedron Lett. 2017, 58, 3851–3853. [Google Scholar] [CrossRef]
- Zhu, C.; Yamane, M. Transition-Metal-Free Borylation of Aryltriazene Mediated by BF3·OEt2. Org. Lett. 2012, 14, 4560–4563. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, L.; Zhang, Y.; Wang, J.B. Transition-Metal-Free Synthesis of Pinacol Alkylboronates from Tosylhydrazones. Angew. Chem. Int. Ed. 2012, 51, 2943–2946. [Google Scholar] [CrossRef] [PubMed]
- Chena, K.; Wang, L.H.; Meng, G.; Li, P.F. Recent Advances in Transition-Metal-Free Aryl C–B Bond Formation. Synthesis 2017, 49, 4719–4730. [Google Scholar]
- Liu, Y.L.; Kehr, G.; Daniliuc, C.G.; Erker, G. Metal-Free Arene and Heteroarene Borylation Catalyzed by Strongly Electrophilic Bis-boranes. Chem. Eur. J. 2017, 23, 12141–12144. [Google Scholar] [CrossRef] [Green Version]
- McGough, J.S.; Cid, J.; Ingleson, M.J. Catalytic Electrophilic C-H Borylation Using NHC center dot Boranes and Iodine Forms C2−, not C3−, Borylated Indoles. Chem. Eur. J. 2017, 23, 8180–8184. [Google Scholar] [CrossRef]
- Bonet, A.; Pubill-Ulldemolins, C.; Bo, C.; Gulyás, H.; Fernández, E. Transition-Metal-Free Diboration Reaction by Activation of Diboron Compounds with Simple Lewis Bases. Angew. Chem. Int. Ed. 2011, 50, 7158–7161. [Google Scholar] [CrossRef]
- Miralles, N.; Cid, J.; Cuenca, A.B.; Carbó, J.J.; Fernández, E. Mixed diboration of alkenes in a metal-free context. Chem. Commun. 2015, 51, 1693–1696. [Google Scholar] [CrossRef] [Green Version]
- Nagao, K.; Ohmiya, H.; Sawamura, M. Anti-Selective Vicinal Silaboration and Diboration of Alkynoates through Phosphine Organocatalysis. Org. Lett. 2015, 17, 1304–1307. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Snead, R.F.; Dai, Y.; Slebodnick, C.; Yang, Y.; Yu, H.; Yao, F.; Santos, W.L. Substrate-Assisted, Transition-Metal-Free Diboration of Alkynamides with Mixed Diboron: Regio-and Stereoselective Access to trans-1,2-Vinyldiboronates. Angew. Chem. Int. Ed. 2017, 56, 5111–5115. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, Y.; Hirano, K.; Takita, R.; Uchiyama, M. Trans-Diborylation of Alkynes: Pseudo-Intramolecular Strategy Utilizing a Propargylic Alcohol Unit. J. Am. Chem. Soc. 2014, 136, 8532–8535. [Google Scholar] [CrossRef] [PubMed]
- Kojima, C.; Lee, K.-H.; Lin, Z.; Yamashita, M. Direct and Base-Catalyzed Diboration of Alkynes using The Unsymmetrical Diborane(4), pinB-BMes2. J. Am. Chem. Soc. 2016, 138, 6662–6669. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, A.; Nagao, K.; Ohmiya, H.; Sawamura, M. Synthesis of 1,1-Diborylalkenes through a Brønsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron. Angew. Chem. Int. Ed. 2015, 54, 15859–15862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, G.L.; Kuang, Z.J.; Song, Q.L. Functionalized Geminal-diborylalkanes from Various Electron-Deficient Alkynes and B2pin2. Org. Chem. Front. 2018, 5, 2249–2253. [Google Scholar] [CrossRef]
- Bonet, A.; Sole, C.; Gulyás, H.; Fernández, E. Asymmetric organocatalytic diboration of alkenes. Org. Biomol. Chem. 2012, 10, 6621–6623. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Yan, L.; Haeffner, F.; Morken, J.P. Carbohydrate-Catalyzed Enantioselective Alkene Diboration: Enhanced Reactivity of 1,2-Bonded Diboron Complexes. J. Am. Chem. Soc. 2016, 138, 2508–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaisdell, T.P.; Caya, T.C.; Zhang, L.; Sanz-Marco, A.; Morken, J.P. Hydroxyl-Directed Stereoselective Diboration of Alkenes. J. Am. Chem. Soc. 2014, 136, 9264–9267. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-S.; Zhugralin, A.R.; Hoveyda, A.H. Efficient C-B Bond Formation Promoted by N-Heterocyclic Carbenes: Synthesis of Tertiary and Quaternary B-Substituted Carbons through Metal-Free Catalytic Boron Conjugate Additions to Cyclic and Acyclic α,β-Unsaturated Carbonyls. J. Am. Chem. Soc. 2009, 131, 7253–7255. [Google Scholar] [CrossRef] [PubMed]
- Kleeberg, C.; Crawford, A.G.; Batsanov, A.S.; Hodgkinson, P.; Apperley, D.C.; Cheung, M.S.; Lin, Z.; Marder, T.B. Spectroscopic and Structural Characterization of the CyNHC Adduct of B2pin2 in Solution and in the Solid State. J. Org. Chem. 2012, 77, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Radomkit, S.; O’Brien, J.M.; Hoveyda, A.H. Metal-Free Catalytic Enantioselective C–B Bond Formation: (Pinacolato)boron Conjugate Additions to α,β-Unsaturated Ketones, Esters, Weinreb Amides, and Aldehydes Promoted by Chiral N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2012, 134, 8277–8285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radomkit, S.; Hoveyda, A.H. Enantioselective Synthesis of Boron-Substituted Quaternary Carbon Stereogenic Centers through NHC-Catalyzed Conjugate Additions of (Pinacolato)boron Units to Enones. Angew. Chem. Int. Ed. 2014, 53, 3387–3391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Chen, Z.; Ma, M.; Duan, W.; Song, C.; Ma, Y. Synthesis and application of a dual chiral [2.2]paracyclophane-based N-heterocyclic carbene in enantioselective β-boration of acyclic enones. Org. Biomol. Chem. 2015, 13, 10691–10698. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.; Chen, J.; Gao, F.; Bhadury, P.S.; Fanb, E.; Sun, Z. Metal free catalytic hydroboration of multiple bonds in methanol using N-heterocyclic carbenes under open atmosphere. Org. Biomol. Chem. 2013, 11, 6350–6356. [Google Scholar] [CrossRef] [PubMed]
- Pubill-Ulldemolins, C.; Bonet, A.; Bo, C.; Gulyás, H.; Fernández, E. Activation of Diboron Reagents with Brønsted Bases and Alcohols: An Experimental and Theoretical Perspective of the Organocatalytic Boron Conjugate Addition Reaction. Chem. Eur. J. 2012, 18, 1121–1126. [Google Scholar] [CrossRef]
- Cid, J.; Carbó, J.J.; Fernández, E. A Clear-Cut Example of Selective Bpin-Bdan Activation and Precise Bdan Transfer on Boron Conjugate Addition. Chem. Eur. J. 2014, 20, 3616–3620. [Google Scholar] [CrossRef]
- Cascia, E.L.; Sanz, X.; Bo, C.; Whiting, A.; Fernández, E. Asymmetric metal free β-boration of α,β-unsaturated imines assisted by (S)-MeBoPhoz. Org. Biomol. Chem. 2015, 13, 1328–1332. [Google Scholar] [CrossRef] [Green Version]
- Bonet, A.; Gulyás, H.; Fernández, E. Metal-Free Catalytic Boration at the β-Position of α,β-Unsaturated Compounds: A Challenging Asymmetric Induction. Angew. Chem. Int. Ed. 2010, 49, 5130–5134. [Google Scholar] [CrossRef]
- Pubill-Ulldemolins, C.; Bonet, A.; Gulyás, H.; Bo, C.; Fernández, E. Essential role of phosphines in organocatalytic β-boration reaction. Org. Biomol. Chem. 2012, 10, 9677–9682. [Google Scholar] [CrossRef]
- Ibrahem, I.; Breistein, P.; Córdova, A. One-Pot Three-Component Highly Selective Synthesis of Homoallylboronates by Using Metal-Free Catalysis. Chem. Eur. J. 2012, 18, 5175–5179. [Google Scholar] [CrossRef] [PubMed]
- Miralles, N.; Alam, R.; Szabó, K.J.; Fernández, E. Transition-Metal-Free Borylation of Allylic and Propargylic Alcohols. Angew. Chem. Int. Ed. 2016, 55, 4303–4307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, K.; Nogami, M.; Hirano, K.; Kurauchi, D.; Kato, H.; Miyamoto, K.; Saitoa, T.; Uchiyama, M. Allylic borylation of tertiary allylic alcohols: A divergent and straightforward access to allylic boronates. Org. Chem. Front. 2016, 3, 565–569. [Google Scholar] [CrossRef]
- Nogami, M.; Hirano, K.; Kanai, M.; Wang, C.; Saito, T.; Miyamoto, K.; Muranaka, A.; Uchiyama, M. Transition Metal-Free trans-Selective Alkynylboration of Alkynes. J. Am. Chem. Soc. 2017, 139, 12358–12361. [Google Scholar] [CrossRef] [PubMed]
- Yanga, K.; Song, Q. Transition-metal-free regioselective synthesis of alkylboronates from arylacetylenes and vinyl arenes. Green Chem. 2016, 18, 932–936. [Google Scholar] [CrossRef]
- Hong, S.B.; Zhang, W.; Liu, M.Y.; Yao, Z.J.; Deng, W. Transition-metal-free hydroboration of terminal alkynes activated by base. Tetrahedron Lett. 2016, 57, 1–4. [Google Scholar] [CrossRef]
- Deng, C.M.; Ma, Y.F.; Wen, Y.M. Transition-Metal-Free Borylation of Alkynes and Alkenes. Chem. Sel. 2018, 3, 1202–1204. [Google Scholar] [CrossRef]
- Davenport, E.; Fernández, E. Transition-metal-free synthesis of vicinal triborated compounds and selective functionalisation of the internal C–B bond. Chem. Commun. 2018, 54, 10104–10107. [Google Scholar] [CrossRef]
- García, L.; Sendra, J.; Miralles, N.; Reyes, E.; Carbó, J.J.; Vicario, J.L.; Fernández, E. Transition-metal-free stereoselective borylation of allenamides. Chem. Eur. J. 2018, 24, 14059–14063. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Deng, C.; Xie, J.; Kang, X. Recent Synthesis Developments of Organoboron Compounds via Metal-Free Catalytic Borylation of Alkynes and Alkenes. Molecules 2019, 24, 101. https://doi.org/10.3390/molecules24010101
Wen Y, Deng C, Xie J, Kang X. Recent Synthesis Developments of Organoboron Compounds via Metal-Free Catalytic Borylation of Alkynes and Alkenes. Molecules. 2019; 24(1):101. https://doi.org/10.3390/molecules24010101
Chicago/Turabian StyleWen, Yanmei, Chunmei Deng, Jianying Xie, and Xinhuang Kang. 2019. "Recent Synthesis Developments of Organoboron Compounds via Metal-Free Catalytic Borylation of Alkynes and Alkenes" Molecules 24, no. 1: 101. https://doi.org/10.3390/molecules24010101
APA StyleWen, Y., Deng, C., Xie, J., & Kang, X. (2019). Recent Synthesis Developments of Organoboron Compounds via Metal-Free Catalytic Borylation of Alkynes and Alkenes. Molecules, 24(1), 101. https://doi.org/10.3390/molecules24010101