Optimized Piston Motion for an Alpha-Type Stirling Engine
<p>Piston volume <span class="html-italic">V</span> over time <span class="html-italic">t</span> for the standard harmonic motion (STD), and the “adjustable sinusoidal” motion (AS) with <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and different values for <math display="inline"><semantics> <mi>σ</mi> </semantics></math>. Negative values for <math display="inline"><semantics> <mi>σ</mi> </semantics></math> decrease the maximum piston velocity resulting in shorter times spent at the extreme values of the volume, while positive values for <math display="inline"><semantics> <mi>σ</mi> </semantics></math> lead to the opposite effect.</p> "> Figure 2
<p>Piston volume <span class="html-italic">V</span> over time <span class="html-italic">t</span> for the standard harmonic motion (STD), and the “adjustable sinusoidal” motion (AS) with <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and different values for <math display="inline"><semantics> <mi>δ</mi> </semantics></math>. Negative values for <math display="inline"><semantics> <mi>δ</mi> </semantics></math> extend the fraction of time with a volume larger than the mean volume. Positive values lead to the opposite effect.</p> "> Figure 3
<p>Endoreversible model of the Stirling engine with reservoirs (rectangles), endoreversible engines (circles) and reversible (straight lines) and irreversible (wavy lines) interactions. On the left side the hot cylinder 1 is located with its interactions to the hot heat bath H and a transmission unit T1 while on the right side the cold cylinder 2 is displayed with corresponding interactions and the cold heat bath C. Both are connected by the regenerator R in the middle which interacts with an entropy and work reservoir, SR and WR, respectively. Further reservoirs are work reservoirs WT and WF collecting the net power and friction losses, respectively, from the energy converting engines T1 and T2 as well as volume reservoirs E representing the environment.</p> "> Figure 4
<p>Resulting cylinder volumes <math display="inline"><semantics> <msub> <mi>V</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>V</mi> <mn>2</mn> </msub> </semantics></math> over time <span class="html-italic">t</span> for the optimized sinusoidal (OS) motion with base case parameters. For comparison the STD motion is plotted with dashed lines.</p> "> Figure 5
<p>Entropies <math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math> of the hot and cold cylinder, respectively, over time <span class="html-italic">t</span> for the OS motion with base case parameters. For comparison those for the STD motion are plotted with dashed lines.</p> "> Figure 6
<p>Mole numbers <math display="inline"><semantics> <msub> <mi>n</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>n</mi> <mn>2</mn> </msub> </semantics></math> of the hot and cold cylinder, respectively, over time <span class="html-italic">t</span> for the OS motion with base case parameters. For comparison those for the STD motion are plotted with dashed lines.</p> "> Figure 7
<p>Temperatures <math display="inline"><semantics> <msub> <mi>T</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>T</mi> <mn>2</mn> </msub> </semantics></math> of the hot and cold cylinder, respectively, over time <span class="html-italic">t</span> for the OS and STD motions with base case parameters. Note that the difference to the corresponding heat bath temperature is shown. The temperatures for the OS motion feature a much stronger variation than for the STD case. The rich dynamical structure is due to the interaction of the volume changes in both cylinders.</p> "> Figure 8
<p>Pressures <math display="inline"><semantics> <msub> <mi>p</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>p</mi> <mn>2</mn> </msub> </semantics></math> of the hot and cold cylinder, respectively, over time <span class="html-italic">t</span> for the OS motion with base case parameters. For comparison those for the STD motion are plotted with dashed lines. The curves for <math display="inline"><semantics> <msub> <mi>p</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>p</mi> <mn>2</mn> </msub> </semantics></math> lie on top of each other, for better visibility the <math display="inline"><semantics> <msub> <mi>p</mi> <mn>1</mn> </msub> </semantics></math> curves have been moved up by 0.2 bar.</p> "> Figure 9
<p>Pressure <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>≈</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </semantics></math> over total volume <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>tot</mi> </msub> <mo>=</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>V</mi> <mn>2</mn> </msub> </mrow> </semantics></math> for both the OS and STD motion in base case. The OS motion leads to lower volumes and higher pressures resulting in a higher usable work output.</p> "> Figure 10
<p>Average power output <span class="html-italic">P</span> over varied friction coefficient <math display="inline"><semantics> <mi>β</mi> </semantics></math> for both OS and STD motion. The friction coefficient has been increased from zero until no positive average power output was reached.</p> "> Figure 11
<p>Efficiency <math display="inline"><semantics> <mi>η</mi> </semantics></math> over varied friction coefficient <math display="inline"><semantics> <mi>β</mi> </semantics></math> for both OS and STD motion.</p> "> Figure 12
<p>Average power output <span class="html-italic">P</span> over varied heat transfer coefficient <math display="inline"><semantics> <mi>κ</mi> </semantics></math> for both OS and STD motion. The OS motion reaches average power output values of around 150% compared to the STD motion as well as positive values of <span class="html-italic">P</span> with <math display="inline"><semantics> <mi>κ</mi> </semantics></math> close to zero.</p> "> Figure 13
<p>Efficiency <math display="inline"><semantics> <mi>η</mi> </semantics></math> over varied heat transfer coefficient <math display="inline"><semantics> <mi>κ</mi> </semantics></math> for both OS and STD motion. For higher values of <math display="inline"><semantics> <mi>κ</mi> </semantics></math> the efficiency of the OS motion is slightly lower than that of the STD motion. For lower <math display="inline"><semantics> <mi>κ</mi> </semantics></math> the OS motion leads to better efficiency values.</p> "> Figure 14
<p>Average power output <span class="html-italic">P</span> over varied mass transfer coefficient <math display="inline"><semantics> <mi>α</mi> </semantics></math> for both OS and STD motion. The OS motion leads to an increase in <span class="html-italic">P</span> of more than 50% and to lower feasible values of <math display="inline"><semantics> <mi>α</mi> </semantics></math> compared to the STD motion.</p> "> Figure 15
<p>Efficiency <math display="inline"><semantics> <mi>η</mi> </semantics></math> over varied mass transfer coefficient <math display="inline"><semantics> <mi>α</mi> </semantics></math> for both OS and STD motion. Despite the equally high efficiency values above α > 0.8 mol/(s bar), the OS motion maintains such high values for much lower mass transfer coefficients than the STD motion.</p> ">
Abstract
:1. Introduction
2. Piston Motion Optimization
3. Endoreversible Stirling Engine
3.1. Endoreversible Modeling
3.2. Stirling Engine
3.3. The Working Fluid
3.4. Heat Transfer and Power Losses
3.5. Ideal Regenerator and Mass Transfer
3.6. The Dynamics
4. Results
4.1. Optimized Piston Motion: The Base Case
4.2. Optimized Piston Motion: Friction
4.3. Optimized Piston Motion: Heat Conduction
4.4. Optimized Piston Motion: Mass Transport
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andresen, B.; Salamon, P.; Berry, R.S. Thermodynamics in Finite Time. Phys. Today 1984, 37, 62–70. [Google Scholar] [CrossRef]
- Andresen, B.; Berry, R.S.; Nitzan, A.; Salamon, P. Thermodynamics in Finite Time. I. The Step-Carnot Cycle. Phys. Rev. A 1977, 15, 2086–2093. [Google Scholar] [CrossRef]
- Salamon, P.; Andresen, B.; Berry, R.S. Thermodynamics in Finite Time. II. Potentials for Finite-Time Processes. Phys. Rev. A 1977, 15, 2094–2102. [Google Scholar] [CrossRef]
- Andresen, B.; Salamon, P.; Berry, R.S. Thermodynamics in finite time: Extremals for imperfect heat engines. J. Chem. Phys. 1977, 66, 1571–1577. [Google Scholar] [CrossRef]
- Salamon, P.; Nitzan, A.; Andresen, B.; Berry, R.S. Minimum Entropy Production and the Optimization of Heat Engines. Phys. Rev. A 1980, 21, 2115–2129. [Google Scholar] [CrossRef]
- Ondrechen, M.J.; Andresen, B.; Berry, R.S. Thermodynamics in Finite Time: Processes with Temperature-Dependent Chemical Reactions. J. Chem. Phys. 1980, 73, 5838–5843. [Google Scholar] [CrossRef]
- Salamon, P.; Nitzan, A. Finite Time Optimizations of a Newton’s Law Carnot Cycle. J. Chem. Phys. 1981, 74, 3546–3560. [Google Scholar] [CrossRef]
- Gordon, J.M. Observations on Efficiency of Heat Engines Operating at Maximum Power. Am. J. Phys. 1990, 58, 370–375. [Google Scholar] [CrossRef]
- Esposito, M.; Kawai, R.; Lindenberg, K.; Van den Broeck, C. Efficiency at Maximum Power of Low-Dissipation Carnot Engines. Phys. Rev. Lett. 2010, 105, 150603. [Google Scholar] [CrossRef]
- Blaudeck, P.; Hoffmann, K.H. Optimization of the Power Output for the Compression and Power Stroke of the Diesel Engine. In Efficiency, Costs, Optimization and Environmental Impact of Energy Systems; Gögūş, Y.A., Öztürk, A., Tsatsaronis, G., Eds.; International Centre for Applied Thermodynamics (ICAT): Istanbul, Turkey, 1995; Volume 2, p. 754. [Google Scholar]
- Chen, L.; Sun, F.; Wu, C. Optimal configuration of a two-heat-reservoir heat-engine with heat-leak and finite thermal-capacity. Appl. Energy 2006, 83, 71–81. [Google Scholar] [CrossRef]
- Song, H.; Chen, L.; Sun, F. Endoreversible heat-engines for maximum power-output with fixed duration and radiative heat-transfer law. Appl. Energy 2007, 84, 374–388. [Google Scholar] [CrossRef]
- Hoffmann, K.H. An introduction to endoreversible thermodynamics. AAPP Phys. Math. Nat. Sci. 2008, 86, 1–19. [Google Scholar] [CrossRef]
- Lu, C.; Bai, L. Nonlinear Dissipation Heat Devices in Finite-Time Thermodynamics: An Analysis of the Trade-Off Optimization. J. Non-Equilib. Thermodyn. 2017, 42, 277–286. [Google Scholar] [CrossRef]
- Feidt, M.; Costea, M. From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager’s Relations Revisited. J. Non-Equilib. Thermodyn. 2018, 43, 151–161. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, L.; Sun, F. Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Math. Comput. Model. 2009, 50, 101–108. [Google Scholar] [CrossRef]
- Michaelidies, E.E. Entropy production and optimization of geothermal power plants. J. Non-Equilib. Thermodyn. 2012, 37, 233–246. [Google Scholar] [CrossRef]
- Andresen, B. Current Trends in Finite-Time Thermodynamics. Angew. Chem. 2011, 50, 2690–2705. [Google Scholar] [CrossRef]
- Badescu, V. Upper Bounds for the Conversion Efficiency of Diluted Blackbody Radiation Energy into Work. J. Non-Equilib. Thermodyn. 2018, 43, 273–287. [Google Scholar] [CrossRef]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot Engine at Maximum Power Output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Páez-Hernández, R.T.; Portillo-Díaz, P.; Ladino-Luna, D.; Ramírez-Rojas, A.; Pacheco-Paez, J.C. An analytical study of the endoreversible Curzon-Ahlborn cycle for a non-linear heat transfer law. J. Non-Equilib. Thermodyn. 2016, 41, 19–27. [Google Scholar] [CrossRef]
- Xia, S.; Chen, L.; Sun, F. Maximum cycle work output optimization for generalized radiative law Otto cycle engines. Eur. Phys. J. Plus 2016, 131, 394. [Google Scholar] [CrossRef]
- Ponmurugan, M. Attainability of Maximum Work and the Reversible Efficiency of Minimally Nonlinear Irreversible Heat Engines. J. Non-Equilib. Thermodyn. 2019, 44, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guo, J.; Lin, G.; Chen, J. Universal Optimization Efficiency for Nonlinear Irreversible Heat Engines. J. Non-Equilib. Thermodyn. 2017, 42, 253–263. [Google Scholar] [CrossRef]
- Schwalbe, K.; Hoffmann, K.H. Stochastic Novikov engine with time dependent temperature fluctuations. Appl. Therm. Eng. 2018, 142, 483–488. [Google Scholar] [CrossRef]
- Schwalbe, K.; Hoffmann, K.H. Performance Features of a Stationary Stochastic Novikov Engine. Entropy 2018, 20, 52. [Google Scholar] [CrossRef] [Green Version]
- Schwalbe, K.; Hoffmann, K.H. Stochastic Novikov Engine with Fourier Heat Transport. J. Non-Equilib. Thermodyn. 2019, 44, 417–424. [Google Scholar] [CrossRef]
- Narducci, D. Efficiency at Maximum Power of Dissipative Thermoelectric Generators: A Finite-time Thermodynamic Analysis. J. Mat. Eng. Perform. 2018, 27, 6274–6278. [Google Scholar] [CrossRef]
- Roach, T.N.; Salamon, P.; Nulton, J.; Andresen, B.; Felts, B.; Haas, A.; Calhoun, S.; Robinett, N.; Rohwer, F. Application of finite-time and control thermodynamics to biological processes at multiple scales. J. Non-Equilib. Thermodyn. 2018, 43, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Zaeva, M.A.; Tsirlin, A.M.; Didina, O.V. Finite Time Thermodynamics: Realizability Domain of Heat to Work Converters. J. Non-Equilib. Thermodyn. 2019, 44, 181–191. [Google Scholar] [CrossRef]
- Mozurkewich, M.; Berry, R.S. Optimal Paths for Thermodynamic Systems: The ideal Otto Cycle. J. Appl. Phys. 1982, 53, 34–42. [Google Scholar] [CrossRef]
- Fischer, A.; Hoffmann, K.H. Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak? J. Non-Equilib. Thermodyn. 2004, 29, 9–28. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, L.; Sun, F. Optimal path of piston motion of irreversible Otto cycle for minimum entropy generation with radiative heat transfer law. J. Energy Inst. 2012, 85, 140–149. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Watowich, S.J.; Berry, R.S. Optimal Paths for Thermodynamic Systems: The Ideal Diesel Cycle. J. Appl. Phys. 1985, 58, 2125–2134. [Google Scholar] [CrossRef]
- Burzler, J.M.; Blaudeck, P.; Hoffmann, K.H. Optimal Piston Paths for Diesel Engines. In Thermodynamics of Energy Conversion and Transport; Stanislaw Sieniutycz, S., de Vos, A., Eds.; Springer: Berlin, Germany, 2000; pp. 173–198. [Google Scholar] [CrossRef]
- Chen, L.; Xia, S.; Sun, F. Optimizing piston velocity profile for maximum work output from a generalized radiative law Diesel engine. Math. Comput. Model. 2011, 54, 2051–2063. [Google Scholar] [CrossRef]
- Xia, S.; Chen, L.; Sun, F. Engine performance improved by controlling piston motion: Linear phenomenological law system Diesel cycle. Int. J. Therm. Sci. 2012, 51, 163–174. [Google Scholar] [CrossRef]
- Lin, J.; Chang, S.; Xu, Z. Optimal motion trajectory for the four-stroke free-piston engine with irreversible Miller cycle via a Gauss pseudospectral method. J. Non-Equilib. Thermodyn. 2014, 39, 159–172. [Google Scholar] [CrossRef]
- Watowich, S.J.; Hoffmann, K.H.; Berry, R.S. Intrinsically Irreversible Light-Driven Engine. J. Appl. Phys. 1985, 58, 2893–2901. [Google Scholar] [CrossRef]
- Watowich, S.J.; Hoffmann, K.H.; Berry, R.S. Optimal Paths for a Bimolecular, Light-Driven Engine. Il Nuovo Cim. B 1989, 104, 131–147. [Google Scholar] [CrossRef]
- Ma, K.; Chen, L.; Sun, F. Optimal paths for a light-driven engine with a linear phenomenological heat transfer law. Sci. China Chem. 2010, 53, 917–926. [Google Scholar] [CrossRef]
- Chen, L.; Ma, K.; Ge, Y.; Sun, F. Minimum entropy generation path for light-driven engine with [a]-[b] system and heat transfer law. Environ. Eng. Manag. J. 2017, 16, 2035–2043. [Google Scholar] [CrossRef]
- Chen, L.; Ma, K.; Ge, Y. Optimal Configuration of a Bimolecular, Light-Driven Engine for Maximum Ecological Performance. Arab J. Sci. Eng. 2017, 38, 341–350. [Google Scholar] [CrossRef]
- Ma, K.; Chen, L.; Sun, F. Ecological performance improved by controlling piston motion: Linear phenomenological system bimolecular, light driven engine. J. Energy Inst. 2013, 86, 210–219. [Google Scholar] [CrossRef]
- Ladas, G.H.; Ibrahim, O.M. Finite-Time View of the Stirling Engine. Energy 1994, 19, 837–843. [Google Scholar] [CrossRef]
- Wu, F.; Chen, L.; Wu, C.; Sun, F. Optimum performance of irreversible stirling engine with imperfect regeneration. Energy Convers. Manag. 1998, 39, 727–732. [Google Scholar] [CrossRef]
- Timoumi, Y.; Tlili, I.; Nasrallah, S.B. Performance optimization of Stirling engines. Renew. Energy 2008, 33, 2134–2144. [Google Scholar] [CrossRef]
- Chen, C.H.; Yu, Y.J. Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism. Renew. Energy 2012, 37, 161–173. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Bayat, R.; Ashouri, M.; Feidt, M. Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm. Energy Convers. Manag. 2015, 91, 315–322. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Pourfayaz, F.; Bidi, M.; Hosseinzade, H.; Feidt, M. Optimization of powered Stirling heat engine with finite speed thermodynamics. Energy Convers. Manag. 2016, 108, 96–105. [Google Scholar] [CrossRef]
- Kojima, S. Maximum Work of Free-Piston Stirling Engine Generators. J. Non-Equilib. Thermodyn. 2017, 42, 169–186. [Google Scholar] [CrossRef]
- Craun, M.; Bamieh, B. Optimal Periodic Control of an Ideal Stirling Engine Model. J. Dyn. Syst. Meas. Control 2015, 137, 071002. [Google Scholar] [CrossRef] [Green Version]
- Craun, M.; Bamieh, B. Control-Oriented Modeling of the Dynamics of Stirling Engine Regenerators. J. Dyn. Syst. Meas. Control 2018, 140, 041001. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Burzler, J.M.; Schubert, S. Endoreversible Thermodynamics. J. Non-Equilib. Thermodyn. 1997, 22, 311–355. [Google Scholar]
- Hoffmann, K.H.; Burzler, J.M.; Fischer, A.; Schaller, M.; Schubert, S. Optimal Process Paths for Endoreversible Systems. J. Non-Equilib. Thermodyn. 2003, 28, 233–268. [Google Scholar] [CrossRef]
- De Vos, A. Reflections on the power delivered by endoreversible engines. J. Phys. D Appl. Phys. 1987, 20, 232–236. [Google Scholar] [CrossRef]
- Chen, J.; Yan, Z. Optimal Performance of an Endoreversible-Combined Refrigeration Cycle. J. Appl. Phys. 1988, 63, 4795–4798. [Google Scholar] [CrossRef]
- De Vos, A. Is a solar cell an edoreversible engine? Sol. Cells 1991, 31, 181–196. [Google Scholar] [CrossRef]
- Andresen, B.; Salamon, P. Distillation by Thermodynamic Geometry. In Thermodynamics of Energy Conversion an Transport; Sieniutycz, S., De Vos, A., Eds.; Springer: New York, NY, USA, 2000; Chapter 12; pp. 319–331. [Google Scholar]
- Wagner, K.; Hoffmann, K.H. Endoreversible modeling of a PEM fuel cell. J. Non-Equilib. Thermodyn. 2015, 40, 283–294. [Google Scholar] [CrossRef]
- Tsirlin, A.; Sukin, I.A.; Balunov, A.; Schwalbe, K. The Rule of Temperature Coefficients for Selection of Optimal Separation Sequence for Multicomponent Mixtures in Thermal Systems. J. Non-Equilib. Thermodyn. 2017, 42, 359–369. [Google Scholar] [CrossRef]
- Xia, S.; Chen, L.; Sun, F. Maximum power configuration for multireservoir chemical engines. J. Appl. Phys. 2009, 105, 1–6. [Google Scholar] [CrossRef]
- Marsik, F.; Weigand, B.; Thomas, M.; Tucek, O.; Novotny, P. On the Efficiency of Electrochemical Devices from the Perspective of Endoreversible Thermodynamics. J. Non-Equilib. Thermodyn. 2019, 44, 425–437. [Google Scholar] [CrossRef]
- Huleihil, M.; Andresen, B. Optimal piston trajectories for adiabatic processes in the presence of friction. J. Appl. Phys. 2006, 100, 114914. [Google Scholar] [CrossRef] [Green Version]
- Aragón-González, G.; Canales-Palma, A.; León-Galicia, A.; Morales-Gómez, J.R. Maximum Power, Ecological Function and Efficiency of an Irreversible Carnot Cycle. A Cost and Effectiveness Optimization. Braz. J. Phys. 2008, 38, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Paéz-Hernández, R.T.; Chimal-Eguía, J.C.; Sánchez-Salas, N.; Ladino-Luna, D. General Properties for an Agrowal Thermal Engine. J. Non-Equilib. Thermodyn. 2018, 43, 131–139. [Google Scholar] [CrossRef]
- Masser, R.; Hoffmann, K.H. Dissipative Endoreversible Engine with Given Efficiency. Entropy 2019, 21, 1117. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Chen, L.; Sun, F. Finite time exergoeconomic performance for six endoreversible heat engine cycles: Unified description. Appl. Math. Mod. 2011, 35, 728–736. [Google Scholar] [CrossRef]
- Rogolino, P.; Sellitto, A.; Cimmelli, V.A. Minimal entropy production and efficiency of energy conversion in nonlinear thermoelectric systems with two temperatures. J. Non-Equilib. Thermodyn. 2017, 42, 287–303. [Google Scholar] [CrossRef]
- Schwalbe, K.; Hoffmann, K.H. Optimal Control of an Endoreversible Solar Power Plant. J. Non-Equilib. Thermodyn. 2018, 43, 255–271. [Google Scholar] [CrossRef]
- Schwalbe, K.; Hoffmann, K.H. Novikov engine with fluctuating heat bath temperature. J. Non-Equilib. Thermodyn. 2018, 43, 141–150. [Google Scholar] [CrossRef]
- Açıkkalp, E.; Yamık, H. Modeling and optimization of maximum available work for irreversible gas power cycles with temperature dependent specific heat. J. Non-Equilib. Thermodyn. 2015, 40, 25–39. [Google Scholar] [CrossRef]
- Masser, R.; Hoffmann, K.H. Endoreversible Modeling of a Hydraulic Recuperation System. Entropy 2020, 22, 383. [Google Scholar] [CrossRef] [Green Version]
- Essex, C.; Andresen, B. The principal equation of state for classical particles, photons, and neutrinos. J. Non-Equilib. Thermodyn. 2013, 38, 293–312. [Google Scholar] [CrossRef] [Green Version]
- Wagner, K.; Hoffmann, K.H. Chemical reactions in endoreversible thermodynamics. Eur. J. Phys. 2016, 37, 015101. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masser, R.; Khodja, A.; Scheunert, M.; Schwalbe, K.; Fischer, A.; Paul, R.; Hoffmann, K.H. Optimized Piston Motion for an Alpha-Type Stirling Engine. Entropy 2020, 22, 700. https://doi.org/10.3390/e22060700
Masser R, Khodja A, Scheunert M, Schwalbe K, Fischer A, Paul R, Hoffmann KH. Optimized Piston Motion for an Alpha-Type Stirling Engine. Entropy. 2020; 22(6):700. https://doi.org/10.3390/e22060700
Chicago/Turabian StyleMasser, Robin, Abdellah Khodja, Mathias Scheunert, Karsten Schwalbe, Andreas Fischer, Raphael Paul, and Karl Heinz Hoffmann. 2020. "Optimized Piston Motion for an Alpha-Type Stirling Engine" Entropy 22, no. 6: 700. https://doi.org/10.3390/e22060700
APA StyleMasser, R., Khodja, A., Scheunert, M., Schwalbe, K., Fischer, A., Paul, R., & Hoffmann, K. H. (2020). Optimized Piston Motion for an Alpha-Type Stirling Engine. Entropy, 22(6), 700. https://doi.org/10.3390/e22060700