Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optimal paths for a light-driven engine with a linear phenomenological heat transfer law

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An irreversible light-driven engine is described in this paper, in which the heat transfer between the working fluid and the environment obeys a linear phenomenological heat transfer law [q ∝ Δ(T −1)], with a working fluid composed of the bimolecular reacting system 2SO3FaiS2O6F2. Piston trajectories maximizing work output and minimizing entropy generation are determined for such an engine with rate-dependent loss mechanisms of friction and heat leakage. The optimal control theory is applied to determine the optimal configurations of the piston motion trajectory and the fluid temperature. Numerical examples for the optimal configuration are provided, and the obtained results are compared with those derived with Newtonian heat transfer law [q ∝ Δ(T)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andresen B, Berry RS, Ondrechen MJ, Salamon P. Thermodynamics for processes in finite time. Acc Chem Res, 1984, 17: 266–271

    Article  CAS  Google Scholar 

  2. Sieniutycz S, Salamon P, eds. Advances in Thermodynamics. Volume 4: Finite Time Thermodynamics and Thermoeconomics. New York: Taylor & Francis, 1990

    Google Scholar 

  3. Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J Appl Phys, 1996, 79: 1191–1218

    Article  CAS  Google Scholar 

  4. Berry RS, Kazakov VA, Sieniutycz S, Szwast Z, Tsirlin AM. Thermodynamic Optimization of Finite Time Processes. Chichester: Wiley, 1999

    Google Scholar 

  5. Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn, 1999, 24: 327–359

    Article  CAS  Google Scholar 

  6. Hoffmann KH, Burzler J, Fischer A, Schaller M, Schubert S. Optimal process paths for endoreversible systems. J Non-Equilib Thermodyn, 2003, 28: 233–268

    Article  CAS  Google Scholar 

  7. Chen L, Sun F. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2004

    Google Scholar 

  8. Chen L. Finite Time Thermodynamic Analysis of Irreversible Processes and Cycles (in Chinese). Beijing: Higher Education Press, 2005

    Google Scholar 

  9. Wang J, He J, Mao Z. Performance of quantum heat engine cycle with harmonic system. Sci China Ser G-Phys, Mech, Astron, 2007, 50: 163–176

    Article  Google Scholar 

  10. Xia D, Chen L, Sun F. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer. Sci China Ser B-Chem, 2008, 51: 958–970

    Article  CAS  Google Scholar 

  11. Xia S, Chen L, Sun F. Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull, 2009, 54: 3587–3595

    Article  Google Scholar 

  12. Gutowicz-Krusin D, Procaccia J, Ross J. On the efficiency of rate process: Power and efficiency of heat engines. J Chem Phys, 1978, 69: 3898–3906

    Article  Google Scholar 

  13. Curzon FL, Ahlborn B. Efficiency of a Carnot engine at maximum power output. Am J Phys, 1975, 43: 22–24

    Article  Google Scholar 

  14. Rubin MH. Optimal configuration of a class of irreversible heat engines. Phys Rev A, 1979, 19: 1272–1287

    Article  Google Scholar 

  15. Rubin MH. Optimal configuration of an irreversible heat engine with fixed compression ratio. Phys Rev A, 1980, 22: 1741–1752

    Article  Google Scholar 

  16. Band YB, Kafri O, Salamon P. Maximum work production from a heated gas in a cylinder with piston. Chem Phys Lett, 1980, 72: 127–130

    Article  CAS  Google Scholar 

  17. Band YB, Kafri O, Salamon P. Finite time thermodynamics: Optimal expansion of a heated working fluid. J Appl Phys, 1982, 53: 8–28

    Article  CAS  Google Scholar 

  18. Band YB, Kafri O, Salamon P. Optimization of a model external combustion engine. J Appl Phys, 1982, 53: 29–33

    Article  Google Scholar 

  19. Salamon P, Band YB, Kafri O. Maximum power from a cycling working fluid. J Appl Phys, 1982, 53: 197–202

    Article  Google Scholar 

  20. Aizenbud BM, Band YB. Power considerations in the operation of a piston fitted inside a cylinder containing a dynamically heated working fluid. J Appl Phys, 1981, 52: 3742–3744

    Article  Google Scholar 

  21. Aizenbud BM, Band YB, Kafri O. Optimization of a model internal combustion engine. J Appl Phys, 1982, 53: 1277–1282

    Article  Google Scholar 

  22. Huleihil M, Andresen B. Optimal piston trajectories for adiabatic processes in the presence of friction. J Appl Phys, 2006, 100(11): 114914

    Article  Google Scholar 

  23. Mozurkewich M, Berry RS. Finite-time thermodynamics: Engine performance improved by optimized piston motion. Proc Natl Acad Sci USA, 1981, 78: 1986–1988

    Article  Google Scholar 

  24. Mozurkewich M, Berry RS. Optimal paths for thermodynamic systems. The ideal Otto cycle. J Appl Phys, 1982, 53: 34–42

    Article  Google Scholar 

  25. Hoffmann KH, Watowich SJ, Berry RS. Optimal paths for thermodynamic systems. The ideal Diesel cycle. J Appl Phys, 1985, 58: 2125–2134

    Article  Google Scholar 

  26. Blaudeck P, Hoffman KH. Optimization of the power output for the compression and power stroke of the Diesel engine. Proceedings of the International Conference ECOS’95, Volume 2: 754. Istanbul, Turkey, 1995

    Google Scholar 

  27. Teh KY, Edwards CF. An optimal control approach to minimizing entropy generation in an adiabatic IC engine with fixed compression ratio. Proceedings of IMECE2006, IMECE2006-13581, 2006 ASME International Mechanical Engineering Congress and Exposition, November 5–10, 2006, Chicago, Illinois, USA

  28. Teh KY, Edwards CF. An optimal control approach to minimizing entropy generation in an adiabatic internal combustion engine. J Dyn Syst Meas Control, 2008, 130: 041008

    Article  Google Scholar 

  29. Watowich SJ, Hoffmann KH, Berry RS. Intrinsically irreversible light-driven engine. J Appl Phys, 1985, 58: 2893–2901

    Article  CAS  Google Scholar 

  30. Watowich SJ, Hoffmann KH, Berry RS. Optimal path for a bimolecular, light-driven engine. Il Nuovo Cimento B, 1989, 104: 131–147

    Article  Google Scholar 

  31. de Vos A. Efficiency of some heat engines at maximum power conditions. Am J Phys, 1985, 53: 570–573

    Article  Google Scholar 

  32. Chen L, Yan Z. The effect of heat transfer law on the performance of a two-heat-source endoreversible cycle. J Chem Phys, 1989, 90: 3740–3743

    Article  Google Scholar 

  33. Chen L, Sun F, Wu C. The influence of heat transfer law on the endoreversible Carnot refrigerator. J Inst Energy, 1996, 69: 96–100

    CAS  Google Scholar 

  34. Chen L, Sun F, Wu C. Effect of heat transfer law on the performance of a generalized irreversible Carnot engine. J Phys D: Appl Phys, 1999, 32: 99–105

    Article  CAS  Google Scholar 

  35. Chen L, Bi Y, Wu C. Unified description of endoreversible cycles for another linear heat transfer law. Int J Energ Environ Econ, 1999, 9: 77–93

    Google Scholar 

  36. Huleihil M, Andresen B. Convective heat transfer law for an endoreversible engine. J Appl Phys, 2006, 100: 014911

    Article  Google Scholar 

  37. Qin X, Chen L, Sun F. Performance of real absorption heat-transformer with a generalized heat transfer law. Appl Thermal Eng, 2008, 28: 767–776

    Article  CAS  Google Scholar 

  38. Song H, Chen L, Li J, Sun F, Wu C. Optimal configuration of a class of endoreversible heat engines with linear phenomenological heat transfer law. J Appl Phys, 2006, 100: 124907

    Article  Google Scholar 

  39. Song H, Chen L, Sun F. Endoreversible heat engines for maximum power output with fixed duration and radiative heat-transfer law. Appl Energy, 2007, 84: 374–388

    Article  CAS  Google Scholar 

  40. Song H, Chen L, Sun F. Optimal configuration of a class of endoreversible heat engines for maximum efficiency with radiative heat transfer law. Sci China Ser G-Phys, Mech, Astron, 2008, 51: 1272–1286

    Article  Google Scholar 

  41. Song H, Chen L, Sun F, Wang S. Configuration of heat engines for maximum power output with fixed compression ratio and generalized radiative heat transfer law. J Non-Equilib Thermody, 2008, 33: 275–295

    Article  Google Scholar 

  42. Chen L, Song H, Sun F. Optimal configuration of heat engines for maximum efficiency with generalized radiative heat transfer law. Riv Mex Fis, 2009, 55: 55–67

    Google Scholar 

  43. Chen L, Sun F, Wu C. Optimal expansion of a heated working fluid with phenomenological heat transfer. Energy Convers Mgmt, 1998, 39: 149–156

    Article  CAS  Google Scholar 

  44. Song H, Chen L, Sun F. Optimal expansion of a heated working fluid for maximum work output with generalized radiative heat transfer law. J Appl Phys, 2007, 102: 094901

    Article  Google Scholar 

  45. Burzler MJ, Hoffmann KH. Optimal piston paths for Diesel engines, Chapter 7. In: Sienuitycz S, de Vos A, eds. Thermodynamics of Energy Conversion and Transport. New York: Springer, 2000

    Google Scholar 

  46. Burzler JM. Performance Optima for Endoreversible Systems. Ph. D. Thesis, Technical University of Chemnitz, Germany, 2002

    Google Scholar 

  47. Xia S, Chen L, Sun F. Optimal path of piston motion for Otto cycle with linear phenomenological heat transfer law. Sci China Ser G-Phys, Mech, Astron, 2009, 52: 708–719

    Article  Google Scholar 

  48. Shu L, Chen L, Sun F. The minimal average heat consumption for heat-driven binary separation process with linear phenomenological heat transfer law. Sci China Ser B-Chem, 2009, 58: 1154–1163

    Article  Google Scholar 

  49. Li J, Chen L, Sun F. Optimal configuration for a finite high-temperature source heat engine cycle with complex heat transfer law. Sci China Ser G-Phys, Mech, Astron, 2009, 52: 587–592

    Article  CAS  Google Scholar 

  50. Taylor CF. The Internal Combustion Engine in Theory and Practice (Volumes 1 and 2). Cambridge: MIT, 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Additional information

This work was supported by the Program for New Century Excellent Talents in University of China (Grant No. 20041006) and the Foundation for the Authors of National Excellent Doctoral Dissertation of China (Grant No. 200136)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, K., Chen, L. & Sun, F. Optimal paths for a light-driven engine with a linear phenomenological heat transfer law. Sci. China Chem. 53, 917–926 (2010). https://doi.org/10.1007/s11426-009-0172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0172-2

Keywords

Navigation