Complex and Fractional Dynamics
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Wang, X.; Zhou, Y. A Memristor-based Complex Lorenz System and its Modified Projective Synchronization. Entropy 2015, 17, 7628–7644. [Google Scholar] [CrossRef]
- Song, C.; Qiao, Y. A Novel Image Encryption Algorithm Based on DNA Encoding and Spatiotemporal Chaos. Entropy 2015, 17, 6954–6968. [Google Scholar] [CrossRef]
- Salahshour, S.; Ahmadian, A.; Ismail, F.; Baleanu, D. A Novel Weak Fuzzy Solution for Fuzzy Linear System. Entropy 2016, 18, 68. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Wang, H.; Huo, Y.; Luo, J. Adaptive Synchronization for a Class of Uncertain Fractional-Order Neural Networks. Entropy 2015, 17, 7185–7200. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X. Approximate Analytical Solutions of Time Fractional Whitham–Broer–Kaup Equations by a Residual Power Series Method. Entropy 2015, 17, 6519–6533. [Google Scholar] [CrossRef]
- Cirugeda-Roldán, E.; Novak, D.; Kremen, V.; Cuesta-Frau, D.; Keller, M.; Luik, A.; Srutova, M. Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study. Entropy 2015, 17, 7493–7509. [Google Scholar] [CrossRef]
- Alkahtani, B.S.T.; Atangana, A. Chaos on the Vallis Model for El Niño with Fractional Operators. Entropy 2016, 18, 100. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Jalab, H.A.; Gani, A. Cloud Entropy Management System Involving a Fractional Power. Entropy 2016, 18, 14. [Google Scholar] [CrossRef]
- He, S.; Sun, K.; Wang, H. Complexity Analysis and DSP Implementation of the Fractional-Order Lorenz Hyperchaotic System. Entropy 2015, 17, 8299–8311. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Jalab, H.A. Existence of Ulam Stability for Iterative Fractional Differential Equations Based on Fractional Entropy. Entropy 2015, 17, 3172–3181. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Moghaddasi, Z.; Jalab, H.A.; Noor, R.M. Fractional Differential Texture Descriptors based on the Machado Entropy for Image Splicing Detection. Entropy 2015, 17, 4775–4785. [Google Scholar] [CrossRef]
- Machado, J.; Mata, M.E.; Lopes, A.M. Fractional State Space Analysis of Economic Systems. Entropy 2015, 17, 5402–5421. [Google Scholar] [CrossRef]
- Povstenko, Y. Generalized Boundary Conditions for the Time-Fractional Advection Diffusion Equation. Entropy 2015, 17, 4028–4039. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y. H∞ Control for Markov Jump Systems with Nonlinear Noise Intensity Function and Uncertain Transition Rates. Entropy 2015, 17, 4762–4774. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Zhang, W. Identify the Rotating Stall in Centrifugal Compressors by Fractal Dimension in Reconstructed Phase Space. Entropy 2015, 17, 7888–7899. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, A.; Xu, N.; Xue, J. Increment Entropy as a Measure of Complexity for Time Series. Entropy 2016, 18, 22. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F.; Yépez-Martínez, H.; Calderón-Ramón, C.; Cruz-Orduña, I.; Escobar-Jiménez, R.F.; Olivares-Peregrino, V.H. Modeling of a Mass-Spring-Damper System by Fractional Derivatives with and without a Singular Kernel. Entropy 2015, 17, 6289–6303. [Google Scholar] [CrossRef]
- Khalili Golmankhaneh, A.; Baleanu, D. New Derivatives on the Fractal Subset of Real-Line. Entropy 2016, 18, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J. Predicting Traffic Flow in Local Area Networks by the Largest Lyapunov Exponent. Entropy 2016, 18, 32. [Google Scholar] [CrossRef]
- Yilmazer, R.; Inc, M.; Tchier, F.; Baleanu, D. Particular Solutions of the Confluent Hypergeometric Differential Equation by Using the Nabla Fractional Calculus Operator. Entropy 2016, 18, 49. [Google Scholar] [CrossRef]
- Li, G.; Liu, H. Stability Analysis and Synchronization for a Class of Fractional-Order Neural Networks. Entropy 2016, 18, 55. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenreiro Machado, J.A.; Lopes, A.M. Complex and Fractional Dynamics. Entropy 2017, 19, 62. https://doi.org/10.3390/e19020062
Tenreiro Machado JA, Lopes AM. Complex and Fractional Dynamics. Entropy. 2017; 19(2):62. https://doi.org/10.3390/e19020062
Chicago/Turabian StyleTenreiro Machado, J. A., and António M. Lopes. 2017. "Complex and Fractional Dynamics" Entropy 19, no. 2: 62. https://doi.org/10.3390/e19020062
APA StyleTenreiro Machado, J. A., & Lopes, A. M. (2017). Complex and Fractional Dynamics. Entropy, 19(2), 62. https://doi.org/10.3390/e19020062