Response Surface Methodology Control Rod Position Optimization of a Pressurized Water Reactor Core Considering Both High Safety and Low Energy Dissipation
"> Figure 1
<p>Horizontal cross section of the 3D-IAEA problem.</p> "> Figure 2
<p>Vertical cross section of the 3D-IAEA problem.</p> "> Figure 3
<p>Fast neutron flux at the diagonal line at the level of <span class="html-italic">z</span> = 195 cm.</p> "> Figure 4
<p>Thermal neutron flux at the diagonal line at the level of <span class="html-italic">z</span> = 195 cm.</p> "> Figure 5
<p>Local power distribution of standard problem (<b>left</b>: vertical cross section cloud picture at <span class="html-italic">y</span> = 0; <b>right-top</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 315 cm; <b>right-bottom</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 195 cm. <span class="html-italic">P</span><sub>avg</sub> represents the average local power of standard problem).</p> "> Figure 6
<p>Temperature distribution of standard problem (<b>left</b>: vertical cross section cloud picture at <span class="html-italic">y</span> = 0; <b>right-top</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 315 cm; <b>right-bottom</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 195 cm).</p> "> Figure 7
<p>Local entropy production distribution of standard problem (<b>left</b>: vertical cross section cloud picture at <span class="html-italic">y</span> = 0; <b>right-top</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 315 cm; <b>right-bottom</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 195 cm. <span class="html-italic">S</span><sub>0</sub> represents the average local entropy production of standard problem).</p> "> Figure 8
<p>Flow diagram of optimization procedure.</p> "> Figure 9
<p>Local power distribution of optimization scheme (<b>left</b>: vertical cross section cloud picture at <span class="html-italic">y</span> = 0; <b>right-top</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 315 cm; <b>right-bottom</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 195 cm. <span class="html-italic">P</span><sub>avg</sub> represents the average local power of standard problem).</p> "> Figure 10
<p>Temperature distribution of optimization scheme (<b>left</b>: vertical cross section cloud picture at <span class="html-italic">y</span> = 0; <b>right-top</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 315 cm; <b>right-bottom</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 195 cm).</p> "> Figure 11
<p>Local entropy production distribution of optimization scheme (<b>left</b>: vertical cross section cloud picture at <span class="html-italic">y</span> = 0; <b>right-top</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 315 cm; <b>right-bottom</b>: horizontal cross section cloud picture at <span class="html-italic">z</span> = 195 cm. <span class="html-italic">S</span><sub>0</sub> represents the average local entropy production of standard problem).</p> "> Figure 12
<p>Local power, temperature and local entropy production of the standard problem and optimization scheme at the diagonal line on the midplane (the level of <span class="html-italic">z</span> = 195 cm).</p> ">
Abstract
:1. Introduction
2. Description of Problem
3. Numerical Methodology
3.1. Neutron Diffusion
3.2. Heat Transfer and Energy Dissipation
3.3. Response Surface Methodology
4. Results and Discussion
4.1. Standard Problem Solution
4.2. Response Surface Design
4.3. Rod Position Optimization
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Niu, S.; Liu, Y.; Ding, Y.; Qu, W. China’s energy systems transformation and emissions peak. Renew. Sustain. Energy Rev. 2016, 58, 782–795. [Google Scholar] [CrossRef]
- Guo, X.; Guo, X. Nuclear power development in China after the restart of new nuclear construction and approval: A system dynamics analysis. Renew. Sustain. Energy Rev. 2016, 57, 999–1007. [Google Scholar] [CrossRef]
- Shi, H.Y.; Song, H.T. Applying the real option approach on nuclear power project decision making. Energy Procedia 2013, 39, 193–198. [Google Scholar] [CrossRef]
- Weisman, J. Elements of Nuclear Reactor Design, 2nd ed.; Robert, E., Ed.; Krieger Publishing Co. Inc.: Malabar, FL, USA, 1983. [Google Scholar]
- Duderstadt, J.J.; Hamilton, L.J. Nuclear Reactor Analysis; John Wiley and Sons Inc.: New York, NY, USA, 1976. [Google Scholar]
- Nahla, A.A. Efficient computational system for transient neutron diffusion model via finite difference and theta methods. Ann. Nucl. Energy 2015, 89, 28–37. [Google Scholar] [CrossRef]
- Pazirandeh, A.; Jalili, B.M.H.; Abadi, P. Finite difference method for solving neutron diffusion equation in hexagonal geometry. In Proceedings of the International Conference Nuclear Energy for New Europe, Bled, Slovenia, 14–17 September 2009.
- Harvie, D.J.E. An implicit finite volume method for arbitrary transport equations. ANZIAM J. 2010, 52, C1126–C1145. [Google Scholar] [CrossRef]
- Bernal, A.; Roman, J.E.; Miro, R.; Verdú, G. Assembly discontinuity factors for the neutron diffusion equation discretized with the finite volume method application to BWR. Ann. Nucl. Energy 2016, 97, 76–85. [Google Scholar] [CrossRef]
- Theler, G. Unstructured grids and the multigroup neutron diffusion equation. Sci. Technol. Nucl. Instrall. 2013, 2013, 333–339. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, D.; Tian, W.; Wang, K.; Qiu, S.; Su, G.H. Steady and transient solutions of neutronics problems based on finite volume method (FVM) with a CFD code. Prog. Nucl. Energy 2015, 85, 366–374. [Google Scholar] [CrossRef]
- Hosseini, S.A. Development of galerkin finite element method three-dimensional computational code for the on diffusion equation with unstructured tetrahedron elements. Nucl. Eng. Technol. 2015, 48, 43–54. [Google Scholar] [CrossRef]
- Eleodor, N.; Farzad, R. A heterogeneous finite element method in diffusion theory. Ann. Nucl. Energy 2003, 30, 317–347. [Google Scholar]
- Vidal-Ferrandiz, A.; Fayez, R.; Ginestar, D.; Verdú, G. Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry. J. Comput. Appl. Math. 2016, 291, 197–208. [Google Scholar] [CrossRef]
- Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 1979, 101, 718–725. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation through Heat and Fluid Flow. J. Appl. Mech. 1983, 50, 475. [Google Scholar] [CrossRef]
- Bejan, A. Advanced Engineering Thermodynamics, 2nd ed.; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Bejan, A. Entropy Generation Minimization; CRC Press: New York, NY, USA, 1996. [Google Scholar]
- Ibáñez, G.; Cuevas, S.; Haro, M.L.D. Minimization of entropy generation by asymmetric convective cooling. Int. J. Heat Mass Transf. 2003, 46, 1321–1328. [Google Scholar] [CrossRef]
- Makinde, D.; Aziz, A. Analysis of entropy generation and thermal stability in a long hollow cylinder with asymmetry convective cooling. Heat Mass Transf. 2011, 47, 1407–1415. [Google Scholar] [CrossRef]
- Aziz, A.; Khan, W.A. Entropy generation in an asymmetrically cooled slab with temperature-dependent internal heat generation. Heat Trans. Res. 2012, 41, 260–271. [Google Scholar] [CrossRef]
- Malvandi, A.; Ganji, D.D.; Hedayati, F.; Yousefi Rad, E. An analytical study on entropy generation of nanofluids over a flat plate. Alex. Eng. J. 2013, 52, 595–604. [Google Scholar] [CrossRef]
- Torabi, M.; Zhang, K. Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditions. Energy 2014, 65, 387–397. [Google Scholar] [CrossRef]
- Ivanov, K.; Avramova, M. Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis. Energy 2007, 34, 501–513. [Google Scholar] [CrossRef]
- Sjenitzer, B.L.; Hoogenboom, J.E.; Escalante, J.J.; Espinoza, V.S. Coupling of dynamic Monte Carlo with thermal-hydraulic feedback. Ann. Nucl. Energy 2015, 76, 27–39. [Google Scholar] [CrossRef]
- Knoll, D.A.; Keyes, D.E. Jacobian-free Newton-Krylov methods: A survey of approaches and applications. J. Comput. Phys. 2004, 193, 357–397. [Google Scholar] [CrossRef]
- Song, H.; Luo, R.; Wan, J.; Li, S.; Zhao, F. Development of a novel 1D coupled neutronics/thermal-hydraulics code and its verification on PWR rod ejection accident benchmark. Prog. Nucl. Energy 2016, 92, 197–210. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, S.G. Response surface designs for experiments in bioprocessing. Biometrics 2006, 62, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kalil, S.J.; Maugeri, F.; Rodrigues, M.I. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem. 2000, 36, 539–550. [Google Scholar] [CrossRef]
- Rajashekhar, M.R.; Ellingwood, B.R. A new look at the response surface approach for reliability analysis. Struct. Saf. 1993, 12, 205–220. [Google Scholar] [CrossRef]
- Bucher, C.G.; Bourgund, U. A fast and efficient response surface approach for structural reliability problems. Struct. Saf. 1990, 7, 57–66. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Maggi, M.A. Investigation by response surface methodology of the combined effect of pH and composition of water-methanol mixtures on the stability of curcuminoids. Food Chem. 2017, 219, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Espadabellido, E.; Ferreirogonzalez, M.; Carrera, C.; Palma, M.; Barroso, C.G.; Barbero, G.F. Optimization of the ultrasound- assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chem. 2016, 219, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Y.; Ding, H.; Liu, S.; Han, X.; Gui, J.; Liu, D. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chem. 2017, 218, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Argonne Code Center: Benchmark Problem Book. ANL-7416 (Supplement 2). Available online: https://www.osti.gov/scitech/servlets/purl/5037820 (accessed on 8 February 2017).
- Stacey, W.M. Nuclear Reactor Physics; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Bernal, A.; Roman, J.E.; Miró, R.; Ginestar, D. Development of a finite volume inter-cell polynomial expansion method for the neutron diffusion equation. J. Nucl. Sci. Technol. 2016, 53, 1212–1223. [Google Scholar] [CrossRef]
- Chen, W.; Yu, L.; Hao, J. Thermal-Hydraulics of Nuclear Power Facilities; Atomic Press: Beijing, China, 2012. [Google Scholar]
- Aslan, N.; Cebeci, Y. Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 2007, 86, 90–97. [Google Scholar] [CrossRef]
- Kincl, M.; Turk, S.; Vrecer, F. Application of experimental design methodology in development and optimization of drug release method. Int. J. Pharm. 2005, 291, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.A. The fourth generation of nuclear power. Prog. Nucl. Energy 2002, 40, 301–307. [Google Scholar] [CrossRef]
Region | D1 | D2 | Σs,1→2 | Σa1 | Σa2 | υΣf | Material |
---|---|---|---|---|---|---|---|
1 | 1.5 | 0.4 | 0.02 | 0.01 | 0.08 | 0.135 | Fuel 1 |
2 | 1.5 | 0.4 | 0.02 | 0.01 | 0.085 | 0.135 | Fuel 1 |
3 | 1.5 | 0.4 | 0.02 | 0.01 | 0.13 | 0.135 | Fuel 2 + Rod |
4 | 2.0 | 0.3 | 0.04 | 0 | 0.01 | 0 | Reflector |
5 | 2.0 | 0.3 | 0.04 | 0 | 0.055 | 0 | Refl. + Rod |
Parameter | Pcore/MW | λ/W·m−1·K−1 | Tboundary/K | ||||
---|---|---|---|---|---|---|---|
λ1 | λ2 | λ3 | λ4 | λ5 | |||
Value | 10 | 5 | 5.25 | 5.25 | 5 | 5 | 400 |
No. | Mesh Quantity | keff | Error |
---|---|---|---|
1 | 17 × 17 × 19 (5491) | 1.02904 | - |
2 | 34 × 34 × 38 (43,928) | 1.02855 | 0.048% |
3 | 51 × 51 × 57 (148,257) | 1.02867 | 0.012% |
4 | 68 × 68 × 76 (351,424) | 1.02873 | 0.006% |
Parameter | Pmax | Tmax | Stot |
---|---|---|---|
Value | 2.5107 | 657.4 | 0.8021 |
No. | Positions | Calculation Results | No. | Positions | Calculation Results | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z1 | Z2 | Z3 | Z4 | Pmax | Tmax | Stot | Z1 | Z2 | Z3 | Z4 | Pmax | Tmax | Stot | ||
1 | 360 | 190 | 20 | 190 | 3.258 | 681.4 | 0.8159 | 16 | 190 | 190 | 360 | 360 | 2.594 | 658 | 0.7794 |
2 | 190 | 190 | 190 | 190 | 3.24 | 690.7 | 0.8615 | 17 | 360 | 190 | 360 | 190 | 2.808 | 673.1 | 0.8231 |
3 | 20 | 190 | 190 | 360 | 2.445 | 641.4 | 0.7607 | 18 | 190 | 190 | 360 | 20 | 3.228 | 688.6 | 0.8565 |
4 | 360 | 20 | 190 | 190 | 2.211 | 633 | 0.7141 | 19 | 190 | 190 | 20 | 360 | 2.889 | 658.6 | 0.7531 |
5 | 190 | 20 | 190 | 20 | 2.696 | 649.8 | 0.7491 | 20 | 190 | 360 | 190 | 20 | 3.257 | 694.4 | 0.8805 |
6 | 190 | 190 | 190 | 190 | 3.24 | 690.7 | 0.8615 | 21 | 190 | 190 | 20 | 20 | 3.919 | 703.4 | 0.8588 |
7 | 190 | 20 | 20 | 190 | 2.052 | 610.4 | 0.6448 | 22 | 190 | 360 | 360 | 190 | 2.511 | 663.8 | 0.8186 |
8 | 190 | 190 | 190 | 190 | 3.24 | 690.7 | 0.8615 | 23 | 20 | 190 | 360 | 190 | 2.328 | 639.5 | 0.7644 |
9 | 190 | 360 | 190 | 360 | 2.624 | 663.7 | 0.7999 | 24 | 190 | 190 | 190 | 190 | 3.24 | 690.7 | 0.8615 |
10 | 190 | 20 | 190 | 360 | 2.071 | 619.4 | 0.6795 | 25 | 360 | 190 | 190 | 360 | 2.938 | 676 | 0.8196 |
11 | 20 | 190 | 190 | 20 | 2.919 | 668.8 | 0.8355 | 26 | 190 | 360 | 20 | 190 | 2.89 | 669.4 | 0.8045 |
12 | 360 | 190 | 190 | 20 | 3.649 | 709.8 | 0.9074 | 27 | 360 | 360 | 190 | 190 | 2.839 | 680.2 | 0.8497 |
13 | 190 | 20 | 360 | 190 | 2.026 | 622.4 | 0.7011 | 28 | 190 | 190 | 190 | 190 | 3.24 | 690.7 | 0.8615 |
14 | 20 | 360 | 190 | 190 | 2.332 | 645.7 | 0.7842 | 29 | 20 | 20 | 190 | 190 | 2.041 | 595.6 | 0.6406 |
15 | 20 | 190 | 20 | 190 | 2.486 | 637.9 | 0.7365 | - | - | - | - | - | - | - | - |
Coefficient | b1 | b2 | b3 | Coefficient | b1 | b2 | b3 |
---|---|---|---|---|---|---|---|
β0 | 1.825872 | 573.3465 | 0.564135 | β23 | −3.10 × 10−6 | −1.50 × 10−4 | −3.60 × 10−7 |
β1 | 0.005768 | 0.374931 | 0.000685 | β24 | −7.00 × 10−8 | −2.20 × 10−6 | −9.50 × 10−8 |
β2 | 0.010037 | 0.628899 | 0.001546 | Β34 | 3.42 × 10−6 | 1.23 × 10−4 | 2.48 × 10−7 |
β3 | 0.002126 | 0.207316 | 0.000692 | β11 | −1.00 × 10−5 | −6.10 × 10−4 | −1.10 × 10−6 |
β4 | −0.00324 | −0.1222 | −0.00021 | β22 | −2.20 × 10−5 | −1.19 × 10−4 | −2.80 × 10−6 |
β12 | 2.91 × 10−6 | −2.50 × 10−5 | −6.90 × 10−8 | β33 | −7.10 × 10−6 | −5.10 × 10−4 | −1.50 × 10−6 |
β13 | −2.50 × 10−6 | −8.60 × 10−5 | −1.80 × 10−7 | β44 | 2.59 × 10−6 | 3.41 × 10−5 | −1.10 × 10−7 |
β14 | −2.10 × 10−6 | −5.60 × 10−5 | −1.10 × 10−7 | - | - | - | - |
Response | Pmax | Tmax | Stot |
---|---|---|---|
R-square | 0.9495 | 0.9905 | 0.9892 |
No. | Positions | Stot | Pmax | Tmax |
---|---|---|---|---|
1 | [30 30 300 300] | 0.6703 | 1.9408 | 600.47 |
2 | [30 40 300 300] | 0.6707 | 1.9418 | 600.58 |
3 | [50 30 300 300] | 0.6709 | 1.9433 | 600.64 |
4 | [40 30 300 300] | 0.6710 | 1.9439 | 600.66 |
5 | [30 30 290 300] | 0.6724 | 1.9602 | 601.19 |
6 | [40 30 300 290] | 0.6731 | 1.9550 | 601.25 |
7 | [30 30 300 290] | 0.6733 | 1.9561 | 601.30 |
8 | [30 30 300 280] | 0.6752 | 1.9674 | 601.86 |
Parameter | Standard Problem | Optimization Scheme | Decrease |
---|---|---|---|
Pmax | 2.5107 | 1.9408 | 23% |
Tmax | 657.4 | 600.47 | 8.7% |
Stot | 0.8021 | 0.6703 | 16% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-N.; Zhang, H.-C.; Yu, H.-Y.; Ma, C. Response Surface Methodology Control Rod Position Optimization of a Pressurized Water Reactor Core Considering Both High Safety and Low Energy Dissipation. Entropy 2017, 19, 63. https://doi.org/10.3390/e19020063
Zhang Y-N, Zhang H-C, Yu H-Y, Ma C. Response Surface Methodology Control Rod Position Optimization of a Pressurized Water Reactor Core Considering Both High Safety and Low Energy Dissipation. Entropy. 2017; 19(2):63. https://doi.org/10.3390/e19020063
Chicago/Turabian StyleZhang, Yi-Ning, Hao-Chun Zhang, Hai-Yan Yu, and Chao Ma. 2017. "Response Surface Methodology Control Rod Position Optimization of a Pressurized Water Reactor Core Considering Both High Safety and Low Energy Dissipation" Entropy 19, no. 2: 63. https://doi.org/10.3390/e19020063
APA StyleZhang, Y. -N., Zhang, H. -C., Yu, H. -Y., & Ma, C. (2017). Response Surface Methodology Control Rod Position Optimization of a Pressurized Water Reactor Core Considering Both High Safety and Low Energy Dissipation. Entropy, 19(2), 63. https://doi.org/10.3390/e19020063