Entropy and Fractal Antennas
<p>Rényi and Shannon entropies for a binomial distribution with N = 20: they converge for <math display="inline"> <mrow> <mi>α</mi> <mo>→</mo> <mn>1</mn> </mrow> </math>, in accord with Equation (<a href="#FD3-entropy-18-00084" class="html-disp-formula">3</a>). The computation of both entropies was done for <math display="inline"> <mrow> <mi>b</mi> <mo>=</mo> <mn>2</mn> </mrow> </math>.</p> "> Figure 2
<p>Kolmogorov entropy for 1D-regular, chaotic-deterministic and random systems. The attractor is the classical Lorentz attractor [<a href="#B27-entropy-18-00084" class="html-bibr">27</a>] with <math display="inline"> <mrow> <mi>σ</mi> <mo>=</mo> <mn>10</mn> </mrow> </math>, <math display="inline"> <mrow> <mi>R</mi> <mo>=</mo> <mn>28</mn> </mrow> </math>, <math display="inline"> <mrow> <mi>b</mi> <mo>=</mo> <mn>8</mn> <mo>/</mo> <mn>3</mn> </mrow> </math> and initial values <math display="inline"> <mrow> <mi>x</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mi>z</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mrow> </math>, <math display="inline"> <mrow> <mi>y</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </math>, while the random motion is given by a 2D-random walk from <math display="inline"> <mrow> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>j</mi> </mrow> </math> to <math display="inline"> <mrow> <mn>1</mn> <mo>+</mo> <mi>j</mi> </mrow> </math> of 500 elements in which <span class="html-italic">j</span> is the imaginary unit.</p> "> Figure 3
<p>Graph of the <math display="inline"> <mrow> <msub> <mi mathvariant="script">M</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </mrow> </math>, where <span class="html-italic">A</span> is a bounded subset of the Euclidean metric space <math display="inline"> <msup> <mrow> <mi>R</mi> </mrow> <mi>n</mi> </msup> </math>. It takes only two possible values, and the Hausdorff–Besicovitch dimension of <span class="html-italic">A</span> is given by the value of <span class="html-italic">s</span> in which there is the jump from <span class="html-italic">∞</span> to zero.</p> "> Figure 4
<p>Here, the first steps of the box-counting procedure about England’s coastline are represented.</p> "> Figure 5
<p>Here, the von Kock curve (on the left) and the middle third Cantor set (on the right) are shown: <math display="inline"> <msub> <mi>A</mi> <mn>0</mn> </msub> </math> is the initiator of length equal to one in both cases; in the generator <math display="inline"> <msub> <mi>A</mi> <mn>1</mn> </msub> </math> for the von Kock curve, the middle third of the unit interval is replaced by the other two sides of an equilateral triangle, while that of the middle third Cantor set is obtained removing the middle third of the interval.</p> "> Figure 6
<p>Archimedean spiral antenna (on the left) and commercial log-periodic dipole antenna of 16 elements (on the right) [<a href="#B7-entropy-18-00084" class="html-bibr">7</a>].</p> "> Figure 7
<p>A Sierpinski triangle (on the left) and a Hilbert curve (on the right) are shown: as in <a href="#entropy-18-00084-f005" class="html-fig">Figure 5</a>, <math display="inline"> <msub> <mi>A</mi> <mn>0</mn> </msub> </math> is the initiator, and <math display="inline"> <msub> <mi>A</mi> <mn>1</mn> </msub> </math> is the generator. The Sierpinski triangle is constructed using the iterated function system (IFS), while the other construction is that of David Hilbert. The two relative antennas are shown below with their feed points.</p> "> Figure 8
<p>Examples of non-fractal antennas that offer similar performance over their fractal counterparts. Three different non-fractal antennas are presented above: they outperform their fractal counterparts, while the current distribution on the Sierpinski gasket antenna at the first three resonance frequencies is shown in the middle of the page. The modified Parany antenna (starting from the classical Sierpinski gasket antenna) is represented below.</p> "> Figure 9
<p>The Rényi entropy <math display="inline"> <msub> <mi>H</mi> <mi>α</mi> </msub> </math> of a Sierpinski gasket (<a href="#entropy-18-00084-f007" class="html-fig">Figure 7</a>) with <math display="inline"> <mrow> <mi>α</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </math>: the plot shows us that Hartley entropy <math display="inline"> <msub> <mi>H</mi> <mn>0</mn> </msub> </math> is an upper to both Shannon entropy <math display="inline"> <msub> <mi>H</mi> <mn>1</mn> </msub> </math> and collision entropy <math display="inline"> <msub> <mi>H</mi> <mn>2</mn> </msub> </math>. The main limit of this procedure is clearly the precision of the triangulation.</p> ">
Abstract
:1. Introduction
2. Concept of Entropy
3. Remarks on Fractal Geometry
- it is self-similar, i.e., each very small portion of it is exactly or approximately similar to itself (this property has to be understood in the statistical or approximated sense, because a random element can be introduced in the construction of the fractal);
- it is a space-filling curve [28].
3.1. Hausdorff–Besicovitch and Box-Counting Dimensions
3.2. Iterated Function System and Pre-Fractals
4. Fractal Antennas
4.1. Sierpinski Gasket and Hilbert Antenna
4.2. The Results of Best and HRC Conditions
4.3. The Entropy of a Fractal Antenna
5. Conclusions
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
GSM | Global System for Mobile Communications |
HCR | Hohlfeld–Cohen–Rumsey |
IFS | Iterated function system |
IT | Information technology |
MSC | The current 2010 Mathematics Subject Classification |
RF MEMS | Radio frequency microelectromechanical system |
RIFS | Recurrent iterated function system |
RV | Random variable |
UMTS | Universal Mobile Telecommunications System |
WLAN | Wireless local area network |
References
- Shannon, C.E. A mathematical theory of communication. Bell Sys. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Garrido, A. Classifying entropy measures. Symmetry 2011, 3, 487–502. [Google Scholar] [CrossRef]
- Rényi, A. On measures of information and entropy. In Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1960; Volume 1, pp. 547–561.
- Kolmogorov, A.N. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl. Akad. Nauk SSSR (NS) 1958, 119, 861–864. [Google Scholar]
- Barnsley, M.F. Fractals Everywhere: New edition; Cambridge University Press: San Diego, CA, USA, 2012. [Google Scholar]
- Falconer, K.J. Fractal geometry: Mathematical Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Ram, R.J.; Sporer, R.; Blank, H.-S.; Maccarini, P.; Chang, H.-C.; York, R.A. Chaos in microwave antenna arrays. IEEE MTT-S Int. Microw. Symp. Dig. 1996, 3, 1875–1878. [Google Scholar]
- Valdivia, J.A. The Physics of High Altitude Lightning. Ph.D. Thesis, The University of Maryland, College Park, MD, USA, 1997; pp. 48–50. [Google Scholar]
- Best, S.R. A Discussion on the Significance of Geometry in Determining the Resonant Behavior of Fractal and Other Non-Euclidean Wire Antennas. IEEE Antennas Propag. Mag. 2003, 45, 9–28. [Google Scholar] [CrossRef]
- Best, S.R. Operating Band Comparison of the Perturbated Sierpinski and Modified Parany Gasket Antennas. IEEE Antennas Wirel. Propag. Lett. 2002, 1, 35–38. [Google Scholar] [CrossRef]
- Schuster, H.G.; Just, W. Deterministic Chaos: An Introduction; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Papoulis, A.; Pillai, S.U. Probability, Random Variables and Stochastic Processes; McGraw-Hill: New York, NY, USA, 2002; Chapter 14. [Google Scholar]
- Csiszár, I. Axiomatic characterization of information measures. Entropy 2008, 10, 261–273. [Google Scholar] [CrossRef]
- Takens, F.; Verbitski, E. Generalized entropies: Rényi and correlation integral approach. Nonlinearity 1998, 11, 771–782. [Google Scholar] [CrossRef]
- Zmenskal, O.; Dzik, P.; Vesely, M. Entropy of fractal systems. Comput. Math. Appl. 2013, 66, 135–146. [Google Scholar] [CrossRef]
- Marsden, J.E.; Hoffman, M.J. Elementary Classical Analysis; W. H. Freeman and Company: San Francisco, CA, USA, 1993. [Google Scholar]
- Amigó, J.M.; Keller, K.; Unakafova, V.A. On entropy, entropy-like quantities, and applications. Discret. Contin. Dyn. Syst. B 2015, 20, 3301–3343. [Google Scholar] [CrossRef]
- Zanette, D.H. Generalized Kolmogorov entropy in the dynamics of the multifractal generation. Physica A 1996, 223, 87–98. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Majumdar, M. Random Dynamical Systems: Theory and Applications; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Pesin, Y.B. Lyapunov characteristic exponents and smooth ergodic theory. Uspeki Mat. Nauk 1977, 32, 55–112. [Google Scholar] [CrossRef]
- Falniowski, F. On the connections of generalized entropies with Shannon and Kolmogorov-Sinai entropies. Entropy 2014, 11, 3732–3753. [Google Scholar] [CrossRef]
- Crutchfield, J.P.; Feldman, D.P. Regularities unseen, randomness observed: Levels of entropy convergence. Chaos 2003, 13, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Ferenczi, S. Measure-theoretic complexity of ergodic systems. Isr. J. Math. 1997, 100, 189–207. [Google Scholar] [CrossRef]
- Blanchard, F.; Host, B.; Maass, A. Topological complexity. Ergod. Theory Dyn. Syst. 2000, 20, 641–662. [Google Scholar] [CrossRef]
- Galatolo, S. Global and local complexity in weakly chaotic systems. Discret. Contin. Dyn. Syst. 2003, 9, 1607–1624. [Google Scholar] [CrossRef]
- Farmer, D.; Crutchfield, J.; Froehling, H.; Packard, N.; Shaw, R. Power spectra and mixing properties of strange attractors. Ann. N. Y. Acad. Sci. 1980, 375, 453–472. [Google Scholar] [CrossRef]
- Tricot, C. Curves and Fractal Dimension; Springer: New York, NY, USA, 1995. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Company: New York, NY, USA, 1982. [Google Scholar]
- Hata, M.; Kigami, J.; Yamaguti, M. Mathematics of Fractals; American Mathematical Society: Providence, RI, USA, 1997. [Google Scholar]
- Addison, P.S. Fractal and Chaos: An Illustrated Course; Institute of Physics Publishing: London, UK, 1997. [Google Scholar]
- Hutchinson, J.E. Fractals and self similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Cohen, N.L. Fractal’s New Era in Military Antennas Design. Available online: http://defenseelectronicsmag.com/site-files/defenseelectronicsmag.com/files/archive/rfdesign.com/mag/508RFDSF1.pdf (accessed on 4 March 2016).
- Hwang, K.C. A Modified Sierpinski Fractal Antenna for Multiband Application. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 357–360. [Google Scholar] [CrossRef]
- Puente-Baliarda, C.; Romeu, J.; Pous, R.; Cardama, A. On the behavior of the Sierpinski multiband fractal antenna. IEEE Antennas Propag. 1998, 46, 517–524. [Google Scholar] [CrossRef]
- Peitgen, H.; Jürgens, H.; Saupe, D. Chaos and Fractal: New Frontiers in Science; Springer: New York, NY, USA, 2004. [Google Scholar]
- Vinoy, K.J.; Varadan, V.K. Design of reconfigurable fractal antennas and RF-MEMS for spaced-based communication systems. Smart Mater. Struct. 2001, 10, 1211–1223. [Google Scholar] [CrossRef]
- Krzysztofik, W.J. Fractal Geometry in Electromagnetics Applications—From Antenna to Metamaterials. Microw. Rev. 2013, 19, 3–14. [Google Scholar]
- Hohlfeld, R.G.; Cohen, N.L. Self-Similarity and the Geometric Requirements for Frequency Independence in Antennae. Fractals 1999, 7, 79–84. [Google Scholar] [CrossRef]
- Sheluhin, O.I.; Smolskiy, S.M.; Osin, A.V. Self-Similar Processes in Telecommunications; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Martyn, T. A method for numerical estimation of generalized Rényi dimensions of affine Recurrent IFS invariant measures. In Thinking in Patterns: Fractals and Related Phenomena in Nature; Novak, M.N., Ed.; World Scientific Publishing: Singapore, Singapore, 2004; pp. 79–90. [Google Scholar]
- Słomczyński, W.; Kwapień, J.; Życzkowski, K. Entropy computing via integration over fractal measures. Chaos 2000, 10, 180–188. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guariglia, E. Entropy and Fractal Antennas. Entropy 2016, 18, 84. https://doi.org/10.3390/e18030084
Guariglia E. Entropy and Fractal Antennas. Entropy. 2016; 18(3):84. https://doi.org/10.3390/e18030084
Chicago/Turabian StyleGuariglia, Emanuel. 2016. "Entropy and Fractal Antennas" Entropy 18, no. 3: 84. https://doi.org/10.3390/e18030084
APA StyleGuariglia, E. (2016). Entropy and Fractal Antennas. Entropy, 18(3), 84. https://doi.org/10.3390/e18030084