计算机科学 ›› 2020, Vol. 47 ›› Issue (2): 112-117.doi: 10.11896/jsjkx.181202339
李新豆,高陈强,周风顺,韩慧,汤林
LI Xin-dou,GAO Chen-qiang,ZHOU Feng-shun,HAN Hui,TANG Lin
摘要: 为了解决人脸身份认证中的欺诈问题,提出了一种基于图像扩散速度模型和纹理信息的人脸活体检测算法。真实人脸和虚假人脸图像的空间结构不同,为了提取这种差异特征,该方法使用各向异性扩散增强图像的边缘信息。然后,将原始图像与扩散后图像的差值作为图像的扩散速度,并构建扩散速度模型。接着使用局部二值算法提取图像扩散速度特征并训练分类器。真实人脸图像和虚假人脸图像之间存在很多差异特征,为了进一步提高人脸活体检测算法的泛化能力,该方法同时提取人脸图像的模糊程度特征和色彩纹理特征,通过特征矩阵级联的方法将两种特征进行融合,并训练另一个分类器。最后根据分类器输出概率加权融合的结果做出判决。实验结果表明,该算法能够快速有效地检测出虚假的人脸图像。
中图分类号:
[1]BOULKENAFET Z,KOMULAINEN J,HADID A.Face anti-spoofing based on color texture analysis[C]∥IEEE Internatio-nal Conference on Image Processing.Quebec,Canada:IEEE,2015:2636-2640. [2]ZHANG Z,YI D,LEI Z,et al.Face liveness detection by lear-ning multispectral reflectance distributions[C]∥Proceedings of IEEE International Conference on Automatic Face & Gesture Recognition and Workshops.Santa Barbara CA,USA:IEEE Computer Society Press,2011:436-441. [3]MOHAN K,CHANDRASEKHAR P,JILANI S A K.A Combined HOG-LPQ with Fuz-SVM Classifier for Object Face Liveness Detection[C]∥International Conference on ISmac.Palla-dam,India:IEEE Computer Society Press,2017:531-537. [4]MAATTA J,HADID A,PIETIKAINEN M.Face spoofing detection from single images using texture and local shape analysis[J].IET Biometrics,2012,1(1):3-10. [5]PEREIRA T D F,ANJOS A,MARTINO J M D,et al.LBP-TOP,Based Countermeasure against Face Spoofing Attacks[C]∥Proceedings of International Conference on Computer Vision.Berlin,Heidelberg:Springer-Verlag,2012:121-132. [6]LAKSHMINARAYANA N N,NARAYAN N,NAPP N,et al.A discriminative spatio-temporal mapping of face for liveness detection[C]∥IEEE International Conference on Identity,Security and Behavior Analysis.New Delhi,India:IEEE Computer Society Press,2017:1-7. [7]TAN X,LI Y,LIU J,et al.Face liveness detec tion from a single image with sparse low rank bilinear discriminative model[C]∥Proceedings of European Conference on Computer Vision.Crete,Greece:Springer-Verlag,2010:504-517. [8]ZHANG Z,YAN J,LIU S,et al.A face antis-poofing database with diverse attacks[C]∥Pro ceedings of Iapr International Conference on Biometrics.New Delhi,India:IEEE Computer Society Press,2012:26-31. [9]WANG T,YANG J W,LEI Z,et al.Face liveness detection using 3D structure recovered from a single camera[C]∥Procee-dings of IEEE International Conference on Biometrics.Mdrid,Spain:IEEE Computer Society Press,2013:1-6. [10]YANG J,LEI Z,LI S Z.Learn Convolutional Neural Network for Face Anti-Spoofing[J].Computer Science,2014,9218:373-384. [11]AKBULUT Y,SENGUR A,BUDAK U,et al.Deep Learning based Face Liveness Detetion in Videos[C]∥Intertional Artificial Intelligence and Data Processing Symposium.Malatya,Turkey:IEEE Computer Society Press,2017. [12]CAO Y,TU L,WU L F.Face Liveness Detection using Gray Level Co-Occur rence Matrix and Wavelets Analysis in Identity Authentication[J].Journal of Signal processing,2014(7):830-835. [13]KIM W,SUH S,HAN J J.Face Liveness Detection from a Single Image via Diffusion Speed Model.[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,2015,24(8):2456-2456. [14]CHANG C C,LIN C J.LIBSVM:A libraryfor support vector machines[M].New York:Association for Computing Machinery,2011:1-27. [15]PERONA P,MALIK J.Scale-Space and Edge Detection Using Anisotropic Diffusion[M].IEEE Computer Society,1990:629-639. [16]WEICKERT J,ROMENY B H,VIERGEVER M A.Efficient and reliable schemes for nonlinear diffusion filtering[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,1998,7(3):398. [17]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [18]WEN D,HAN H,JAIN A K.Face Spoof Detection With Image Distortion Analysis[J].IEEE Transactions on Information Forensics & Security,2015,10(4):746-761. [19]CHINGOVSKA I,ANJOS A,MARCEL S.On the effectiveness of local binary patterns in face anti-spoofing[C]∥Proceedings of Biometrics Special Interest Group.Darmstadt,Germany:IEEE Computer Society Press,2012:1-7. [20]LIU X,KAN M,WANGLONG W U,et al.VIPLFaceNet:an Open Source Deep Face Recognition SDK[J].Frontiers of Computer Science,2017,11(2):208-218. [21]YANG J,LEI Z,LIAO S,et al.Face liveness detection with component dependent descriptor[C]∥Proceedings of International Conference on Biometrics.Madrid,Spain:IEEE Computer Society Press,2013:1-6. [22]ALOTAIBI A,MAHMOOD A.Deep face liveness detection based on nonlinear diffusion using convolution neural network[J].Signal Image & Video Processing,2016,11(4):1-8. [23]XU Z,LI S,DENG W.Learning temporal fea tures using LSTM-CNN architecture for face anti-spoofing[C]∥Procee-dings of Pattern Recognition.Kuala Lumpur,Malaysia:IEEE Computer Society Press,2016:141-145. |
[1] | 黄璞, 杜旭然, 沈阳阳, 杨章静. 基于局部正则二次线性重构表示的人脸识别 Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation 计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018 |
[2] | 黄璞, 沈阳阳, 杜旭然, 杨章静. 基于局部约束特征线表示的人脸识别 Face Recognition Based on Locality Constrained Feature Line Representation 计算机科学, 2022, 49(6A): 429-433. https://doi.org/10.11896/jsjkx.210300169 |
[3] | 程祥鸣, 邓春华. 基于无标签知识蒸馏的人脸识别模型的压缩算法 Compression Algorithm of Face Recognition Model Based on Unlabeled Knowledge Distillation 计算机科学, 2022, 49(6): 245-253. https://doi.org/10.11896/jsjkx.210400023 |
[4] | 魏勤, 李瑛娇, 娄平, 严俊伟, 胡辑伟. 基于边云协同的人脸识别方法研究 Face Recognition Method Based on Edge-Cloud Collaboration 计算机科学, 2022, 49(5): 71-77. https://doi.org/10.11896/jsjkx.210300222 |
[5] | 何嘉玉, 黄宏博, 张红艳, 孙牧野, 刘亚辉, 周哲海. 基于深度学习的单幅图像三维人脸重建研究综述 Review of 3D Face Reconstruction Based on Single Image 计算机科学, 2022, 49(2): 40-50. https://doi.org/10.11896/jsjkx.210500215 |
[6] | 陈长伟, 周晓峰. 快速局部协同表示分类器及其在人脸识别中的应用 Fast Local Collaborative Representation Based Classifier and Its Applications in Face Recognition 计算机科学, 2021, 48(9): 208-215. https://doi.org/10.11896/jsjkx.200800155 |
[7] | 温荷, 罗频捷. 基于改进脉冲耦合神经网络的动态人脸识别 Dynamic Face Recognition Based on Improved Pulse Coupled Neural Network 计算机科学, 2021, 48(6A): 85-88. https://doi.org/10.11896/jsjkx.200600172 |
[8] | 吴晓丽, 胡伟. 基于注意力的热点块和显著像素卷积神经网络的人脸防伪方法 Attention-based Hot Block and Saliency Pixel Convolutional Neural Network Method for Face Anti-spoofing 计算机科学, 2021, 48(4): 316-324. https://doi.org/10.11896/jsjkx.200300128 |
[9] | 白子轶, 毛懿荣, 王瑞平. 视频人脸识别进展综述 Survey on Video-based Face Recognition 计算机科学, 2021, 48(3): 50-59. https://doi.org/10.11896/jsjkx.210100210 |
[10] | 杨章静, 王文博, 黄璞, 张凡龙, 王昕. 基于局部加权表示的线性回归分类器及人脸识别 Local Weighted Representation Based Linear Regression Classifier and Face Recognition 计算机科学, 2021, 48(11A): 351-359. https://doi.org/10.11896/jsjkx.210100173 |
[11] | 栾晓, 李晓双. 基于多特征融合的人脸活体检测算法 Face Anti-spoofing Algorithm Based on Multi-feature Fusion 计算机科学, 2021, 48(11A): 409-415. https://doi.org/10.11896/jsjkx.210100181 |
[12] | 陆要要, 袁家斌, 何珊, 王天星. 基于超分辨率重建的低质量视频人脸识别方法 Low-quality Video Face Recognition Method Based on Super-resolution Reconstruction 计算机科学, 2021, 48(11A): 295-302. https://doi.org/10.11896/jsjkx.201200159 |
[13] | 吴庆洪, 高晓东. 稀疏表示和支持向量机相融合的非理想环境人脸识别 Face Recognition in Non-ideal Environment Based on Sparse Representation and Support Vector Machine 计算机科学, 2020, 47(6): 121-125. https://doi.org/10.11896/jsjkx.190500058 |
[14] | 韩旭, 谌海云, 王溢, 许瑾. 基于SPCA和HOG的单样本人脸识别算法 Face Recognition Using SPCA and HOG with Single Training Image Per Person 计算机科学, 2019, 46(6A): 274-278. |
[15] | 金堃, 陈少昌. 步态识别现状与发展 Status and Development of Gait Recognition 计算机科学, 2019, 46(6A): 30-34. |
|