Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2022, Vol. 49 ›› Issue (4): 37-42.doi: 10.11896/jsjkx.210800255

• 基于社会计算的多学科交叉融合专题* 上一篇    下一篇

众包平台用户价值识别与细分:基于改进的RFM模型

陈丹红, 彭张林, 万德全, 杨善林   

  1. 合肥工业大学管理学院 合肥 230009; 过程优化与智能决策教育部重点实验室 合肥 230009
  • 收稿日期:2021-08-30 修回日期:2021-12-09 发布日期:2022-04-01
  • 通讯作者: 彭张林(pengzhanglin@hfut.edu.cn.)
  • 作者简介:(alicealice_hi@163.com)
  • 基金资助:
    教育部人文社会科学研究基金(16YJC630093); 国家自然科学基金(72071060,71601066,71901086)

Identification and Segmentation of User Value in Crowdsourcing Platforms:An Improved RFMModel

CHEN Dan-hong, PENG Zhang-lin, WAN De-quan, YANG Shan-lin   

  1. School of Management, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Process Optimization and Intelligent Decision, Ministry of Education, Hefei 230009, China
  • Received:2021-08-30 Revised:2021-12-09 Published:2022-04-01
  • About author:CHEN Dan-hong,born in 1996,postgraduate.Her main research interests include crowdsourcing users and cluster analysis.PENG Zhang-lin,born in 1984,Ph.D,associate professor.His main research interests include information resource management,swarm intelligence and so on.
  • Supported by:
    This work was supported by the Humanities and Social Science Research Foundation of Ministry of Education(16YJC630093) and National Natural Science Foundation of China(72071060,71601066,71901086).

摘要: 在众包平台上,不同类型的用户在参与意愿、工作动机、业务能力等方面具有多样性和差异性的特征,在平台上产生的价值也不同。基于用户价值度量对用户进行细分,是更好地洞察用户价值和需求、对用户进行个性化和精细化管理的关键。同时,选择众包用户价值衡量维度也是目前需要解决的问题。因此,该研究首先基于RFM模型并结合众包平台及众包用户的特性,将用户信用纳入用户价值模型,提出并构建了众包用户价值衡量模型RFMC(Recency,Frequency,Monetary,Credit);然后,结合“一品威客”平台获取所需的实验数据,运用GBDT算法完成众包用户分类;最后,比较了Nave Bayes,Multinomial Logistic Regression与GBDT算法的分类效果,并比较了不考虑用户信用的传统模型与RFMC模型的分类效果。结果表明,所提模型适用于众包用户且具有较好的实验效果。

关键词: GBDT算法, RFM模型, 用户细分, 众包

Abstract: On the crowdsourcing platform, different types of users have diversity and differences in participation intention, work motivation, business ability and other aspects, and the value they generated on the platform is also different.The segmentation of users based on user value measurement is the key to better insight into user value and needs for personalized and refined management of users.At the same time, the choice of crowdsourcing user value measurement dimension is also a problem to be solved.Therefore, based on the RFM model, combined with the characteristics of crowdsourcing platform and crowdsourcing users, this paper firstly incorporates user credit into the user value model, proposes and constructes a crowdsourcing user value measurement model-RFMC.Secondly, combined with the required data obtained on the platform of “Yipinweike”, using GBDT algorithm to complete the crowdsourcing user classification.Finally, the classification performance of Nave Bayes, Multinomial Logistic Regression and GBDT are compared.Also, the classification performance of RFMC model is compared with that of traditional model without considering user credit.Evaluation indicators show that the proposed model is suitable for crowdsourcing users and has good experimental results.

Key words: Crowdsourcing, GBDT algorithm, RFM model, User segmentation

中图分类号: 

  • C934
[1] FENG S,LIU J P,JIANG H Y,et al.Attribute Value Extraction Method Based on Machine Reading Comprehension Model and Crowdsourcing Verification[J].Computer Engineering,2021,47(5):97-103.
[2] SUN Y,HE S J,SHANG R A,et al.Research on the influence of social work platform on employees’ improvisation ability:Based on the perspective of online social network[J].Management World,2019,35(3):157-168.
[3] LU X Y,LONG D Z,CHEN Y.An analysis of the influence factors of customer engagement intention based on loyalty in crowdsourcing mode[J].Journal of Management Science,2016,13(7):1038-1044.
[4] CARBAJAL S G.Customer Segmentation through Path Reconstruction[J].Sensors,2021,21(6):1-17.
[5] NILASHI M,SAMAD S,MINAEI-BIDGOLI B,et al.OnlineReviews Analysis for Customer Segmentation through Dimensionality Reduction and Deep Learning Techniques[J].Arabian Journal for Science and Engineering,2021,46(9):8697-8709.
[6] LIN J,YANG Z J.User Network Behavior characteristics andProfessional Knowledge level:An empirical Study based on autohome Registered Users[J].Management Review,2021,33(5):1-10.
[7] LU H,ZHANG X X,ZHANG L M,et al.Research on User Interaction Behavior in Virtual Academic Community from the Perspective of Conversation Analysis[J].Library and Information Service,2020,64(13):80-89.
[8] XIAO J,CAO H,JIANG X,et al.GMDH-based semi-supervised feature selection for customer classification[J].Know-ledge-Based Systems,2017,132:236-248.
[9] SHI H,LI H J,LAI W,et al.User classification based on Folksonomy tags[J].Library and Information Service,2011,55(2):117-120.
[10] ZHU H C,HU X,LI S L.Research on User Experience Factor Classification of Government Data Open Platform Based on Kano Model[J].Modern Information,2018,38(12):13-21.
[11] HU Z X,DU Y,LIU X Y.Design of automatic book recommendation System based on User interest Classification[J].Modern Electronic Technique,2021,44(6):58-62.
[12] LI Y,MU W S,CHU X Q,et al.K-means Clustering Algorithm based on improved quantum Particle Swarm and its application[J].Control and Decision,2021,13(2):1-10.
[13] SHANG H.Classification of Internet Users Based on Improved SVM[J].Application of Computer Systems,2021,30(4):266-270.
[14] SHI X,LI G,LI K,et al.Customer Classification Method of Logistics Enterprises Based on BP-AdaBoost[J].Journal of Phy-sics,2020,1670(1):12-18.
[15] ANITHA P,PATIL M M.RFM model for customer purchase behavior using K-Means algorithm[J].Journal of King Saud University-Computer and Information Sciences,2019(12):1-11.
[16] CHEN B C,LIANG B,ZHOU Y B,et al.An Application of Self-organizing mapping Neural Network (SOM) in Customer Classification[J].Systems Engineering theory & Practice,2004(3):8-14.
[17] ZHANG Z G,LUO T Y.Technology Opportunity Identification Based on RFM model and Random Actor-oriented Model[J].Journal of Information Science,2021,40(1):53-61.
[18] JI H J,NI F,LIU J,et al.Customer value Classification ofEcommerce based on Grey Correlation degree and K-Means++[J].Application of Computer Systems,2020,29(9):249-254.
[19] HUGHES A M.Strategic database marketing[M].NewYork:McGraw-Hill Publishing Company,2005.
[20] YAN H L.Gradient Effect and mechanism of e-commerce platform credit mechanism and user embedment[J].Business Research,2020(4):1-12.
[21] STONE B,JACOBS R.Successful direct marketing methods[M].NewYork:McGraw-Hill Publishing Company,2007.
[22] LIU H Y,CHEN J,CHEN G Q.A Review of Data Classification Algorithms in Data Mining[J].Journal of Tsinghua University (Science & Technology),2002(6):727-730.
[23] YOU T H,GAO M L.An Interval Number Multi-attribute Decision Making Method Based on Error Analysis[J].Journal of Systems Management,2014,23(2):224-228.
[1] 傅彦铭, 朱杰夫, 蒋侃, 黄保华, 孟庆文, 周兴.
移动众包中基于多约束工人择优的激励机制研究
Incentive Mechanism Based on Multi-constrained Worker Selection in Mobile Crowdsourcing
计算机科学, 2022, 49(9): 275-282. https://doi.org/10.11896/jsjkx.210700129
[2] 严磊, 张功萱, 王添, 寇小勇, 王国洪.
混合云下具有交付期约束的众包任务调度算法
Scheduling Algorithm for Bag-of-Tasks with Due Date Constraints on Hybrid Clouds
计算机科学, 2022, 49(5): 244-249. https://doi.org/10.11896/jsjkx.210300120
[3] 阳真, 黄松, 郑长友.
基于区块链与改进CP-ABE的众测知识产权保护技术研究
Study on Crowdsourced Testing Intellectual Property Protection Technology Based on Blockchain and Improved CP-ABE
计算机科学, 2022, 49(5): 325-332. https://doi.org/10.11896/jsjkx.210900075
[4] 沈彪, 沈立炜, 李弋.
空间众包任务的路径动态调度方法
Dynamic Task Scheduling Method for Space Crowdsourcing
计算机科学, 2022, 49(2): 231-240. https://doi.org/10.11896/jsjkx.210400249
[5] 韩丽霞, 张占营.
基于树增益朴素贝叶斯网络的服务定价策略
TAN-based Service Pricing Strategy
计算机科学, 2021, 48(6A): 203-. https://doi.org/10.11896/jsjkx.200900024
[6] 张少杰, 鹿旭东, 郭伟, 王世鹏, 何伟.
供需匹配中的非诚信行为预防
Prevention of Dishonest Behavior in Supply-Demand Matching
计算机科学, 2021, 48(4): 303-308. https://doi.org/10.11896/jsjkx.200900090
[7] 赵杨, 倪志伟, 朱旭辉, 刘浩, 冉家敏.
基于改进狮群进化算法的面向空间众包平台的多工作者多任务路径规划方法
Multi-worker and Multi-task Path Planning Based on Improved Lion Evolutionary Algorithm forSpatial Crowdsourcing Platform
计算机科学, 2021, 48(11A): 30-38. https://doi.org/10.11896/jsjkx.201200085
[8] 李玉, 段宏岳, 殷昱煜, 高洪皓.
基于区块链的去中心化众包技术综述
Survey of Crowdsourcing Applications in Blockchain Systems
计算机科学, 2021, 48(11): 12-27. https://doi.org/10.11896/jsjkx.210600152
[9] 唐文君,张佳丽,陈荣,郭世凯.
基于强化学习的Web服务众测任务分派方法
Web Service Crowdtesting Task Assignment Approach Based onReinforcement Learning
计算机科学, 2020, 47(3): 54-60. https://doi.org/10.11896/jsjkx.191100085
[10] 余敦辉, 成涛, 袁旭.
基于排序学习的软件众包任务推荐算法
Software Crowdsourcing Task Recommendation Algorithm Based on Learning to Rank
计算机科学, 2020, 47(12): 106-113. https://doi.org/10.11896/jsjkx.200300107
[11] 王扩, 王忠杰.
众包协作流程的恢复方法
Crowdsourcing Collaboration Process Recovery Method
计算机科学, 2020, 47(10): 19-25. https://doi.org/10.11896/jsjkx.191200164
[12] 张光园, 王宁.
基于小样本置信区间的众包答案决策方法
Truth Inference Based on Confidence Interval of Small Samples in Crowdsourcing
计算机科学, 2020, 47(10): 26-31. https://doi.org/10.11896/jsjkx.191100086
[13] 胡颖, 王莹洁, 童向荣.
基于众包工人移动轨迹的任务推荐模型
Task Recommendation Model Based on Crowd Worker’s Movement Trajectory
计算机科学, 2020, 47(10): 32-40. https://doi.org/10.11896/jsjkx.200600180
[14] 吕佳高,梁奎阳,蔡伟.
基于文献计量和众包技术的前沿科技关键词挖掘
Frontier Scientific Keyword Extraction Based on Bibliometric and Crowdsourcing
计算机科学, 2019, 46(3): 275-282. https://doi.org/10.11896/j.issn.1002-137X.2019.03.041
[15] 侯禹臣, 吴伟.
静态图像行为标注众包系统的设计与实现
Design and Implementation of Crowdsourcing System for Still Image Activity Annotation
计算机科学, 2019, 46(11A): 580-583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!