计算机科学 ›› 2022, Vol. 49 ›› Issue (2): 83-91.doi: 10.11896/jsjkx.210800130
李建, 郭延明, 于天元, 武与伦, 王翔汉, 老松杨
LI Jian, GUO Yan-ming, YU Tian-yuan, WU Yu-lun, WANG Xiang-han, LAO Song-yang
摘要: 深度神经网络在很多领域表现出色,但是研究表明其很容易受到对抗样本的攻击。目前针对神经网络进行攻击的算法众多,但绝大多数攻击算法的攻击速度较慢,因此快速生成对抗样本逐渐成为对抗样本领域的研究重点。AdvGAN是一种使用网络攻击网络的算法,生成对抗样本的速度极快,但是当进行有目标攻击时,其要为每个目标训练一个网络,使攻击的效率较低。针对上述问题,提出了一种基于生成对抗网络的多目标攻击网络MTA,在进行攻击时MTA仅需要训练一次就可以完成多目标攻击并快速生成对抗样本。实验结果表明,MTA在CIFAR10和MNIST数据集上有目标攻击的成功率高于AdvGAN。文中还做了对抗样本的迁移实验和防御背景下的攻击实验,结果表明,MTA生成的对抗样本的迁移性比其他多目标攻击算法更强,而且在防御背景下攻击成功率更高。
中图分类号:
[1]SZEGEDY C,ZARENBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[C]//International Conference on Learning Representations.2014. [2]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining andharnessing adversarial examples[C]//International Conference on Learning Representations.2015. [3]CARLINI N,WAGNER D.Towards evaluating the robustness of neural networks[C]//IEEE Symposium on Security and Privacy (SP).IEEE,2017:39-57. [4]MOOSAVIDEZFOOLI S M,FAWZI A,FROSSARD P.Deep-fool:A simple and accurate method to fool deep neural networks[C]//Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2016:2574-2582. [5]CHEN P Y,ZHANG H,SHARMA Y,et al.Zoo:Zeroth orderoptimization based black-box attacks to deep neural networks without training substitute models[C]//Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security.2017:15-26. [6]XIAO C,LI B,ZHU J Y,et al.Generating Adversarial Exampleswith Adversarial Networks[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.2018:3905-3911. [7]LI B,XIE J Z.Study on the Prediction of Imbalanced Bank Customer Churn Based on Generative Adversarial Network[J].Journal of Chongqing University of Technology(Natural Science),2021,35(8):136-143. [8]MADRY A,MAKELOV A,SCHMIDT L,et al.Towards DeepLearning Models Resistant to Adversarial Attacks[C]//International Conference on Learning Representations.2017. [9]KURAKIN A,GOODFELLOW I,BENGIO S.Adversarialexamples in the physical world[C]//International Conference on Learning Representations Workshop.2017. [10]RONY J,HAFEMANN L G,OLIVEIRA L S,et al.Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and defenses[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.IEEE,2019:4322-4330. [11]BRENDEL W,RAUBER J,BETHGE M.Decision-based adversarial attacks:Reliable attacks against black-box machine lear-ning models[C]//International Conference on Learning Representations.2018. [12]CHENG M,LE T,CHEN P Y,et al.Query-efficient hard-label black-box attack:An optimization-based approach[C]//International Conference on Learning Representations.2019. [13]CHENG M,SINGH S,CHEN P,et al.Sign-opt:A query-efficient hard-label adversarial attack[C]//International Conference on Learning Representations.2020. [14]XU W,EVANS D,QI Y.Feature squeezing:Detecting adversa-rial examples in deep neural networks[C]//Network and Distri-buted System Security Symposium.2018. [15]MENG D,CHEN H.Magnet:a two-pronged defense against adversarial examples[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.2017:135-147. [16]TRAMÈR F,KURAKIN A,PAPERNOT N,et al.Ensembleadversarial training:Attacks and defenses[C]//International Conference on Learning Representations.2018. [17]DAS N,SHANBHOGUE M,CHEN S T.Keeping the Bad Guys Out:Protecting and Vaccinating Deep Learning with JPEG Compression[J].arXiv:1705.02900,2017. [18]RAFF E,SYLVESTER J,FORSYTH S,et al.Barrage of Random Transforms for Adversarially Robust Defense[C]//Confe-rence on Computer Vision and Pattern Recognition (CVPR).IEEE,2019:6521-6530. [19]JEDDI A,SHAFIEE M J,KARG M,et al.Learn2perturb:an end-to-end feature perturbation learning to improve adversarial robustness[C]//Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2020:1241-1250. [20]JIANG Z,CHEN T,CHEN T,et al.Robust Pre-Training by Adversarial Contrastive Learning[C]//Advances in Neural Information Processing Systems.2020. [21]KIM M,TACK J,HWANG S J,et al.Adversarial self-supervised contrastive learning [C]//Advances in Neural Information Processing Systems.2020. [22]BAI Y,ZENG Y,JIANG Y,et al.Improving adversarial robustness via channel-wise activation suppressing [C]//International Conference on Learning Representations.2021. |
[1] | 宁晗阳, 马苗, 杨波, 刘士昌. 密码学智能化研究进展与分析 Research Progress and Analysis on Intelligent Cryptology 计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053 |
[2] | 张佳, 董守斌. 基于评论方面级用户偏好迁移的跨领域推荐算法 Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer 计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131 |
[3] | 周芳泉, 成卫青. 基于全局增强图神经网络的序列推荐 Sequence Recommendation Based on Global Enhanced Graph Neural Network 计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085 |
[4] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
[5] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[6] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[7] | 王润安, 邹兆年. 基于物理操作级模型的查询执行时间预测方法 Query Performance Prediction Based on Physical Operation-level Models 计算机科学, 2022, 49(8): 49-55. https://doi.org/10.11896/jsjkx.210700074 |
[8] | 陈泳全, 姜瑛. 基于卷积神经网络的APP用户行为分析方法 Analysis Method of APP User Behavior Based on Convolutional Neural Network 计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121 |
[9] | 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥. 基于注意力机制的医学影像深度哈希检索算法 Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism 计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153 |
[10] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[11] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[12] | 闫佳丹, 贾彩燕. 基于双图神经网络信息融合的文本分类方法 Text Classification Method Based on Information Fusion of Dual-graph Neural Network 计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042 |
[13] | 金方焱, 王秀利. 融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取 Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM 计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190 |
[14] | 彭双, 伍江江, 陈浩, 杜春, 李军. 基于注意力神经网络的对地观测卫星星上自主任务规划方法 Satellite Onboard Observation Task Planning Based on Attention Neural Network 计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093 |
[15] | 费星瑞, 谢逸. 基于HMM-NN的用户点击流识别 Click Streams Recognition for Web Users Based on HMM-NN 计算机科学, 2022, 49(7): 340-349. https://doi.org/10.11896/jsjkx.210600127 |
|