计算机科学 ›› 2021, Vol. 48 ›› Issue (4): 138-143.doi: 10.11896/jsjkx.200300042
李梦荷, 许宏吉, 石磊鑫, 赵文杰, 李娟
LI Meng-he, XU Hong-ji, SHI Lei-xin, ZHAO Wen-jie, LI Juan
摘要: 人体行为识别(Human Activity Recognition,HAR)技术是计算机视觉领域的研究热点,目前多人HAR的研究仍存在很多技术难点。针对多人HAR中人数判断不准确、特征提取难度大导致行为识别准确率低的问题,提出了一种基于骨骼关键点检测的多人行为识别系统。该系统将骨骼点提取与动作识别相结合,首先对原始视频进行图像帧提取,然后通过OpenPose算法得到人体骨骼关键点数据来对人体进行检测并标注,最后根据骨骼点的特点提取人体姿态特征。同时,为准确描述特征之间的关系,提出了一种基于帧窗口矩阵的特征描述方法,该方法将支持向量机(Support Vector Machine,SVM)作为分类器以完成多人行为识别。选择UT-Interaction和HMDB51这两个公开的数据集中的10类日常典型行为作为测试对象,实验结果表明,所提方法可以有效提取图像中的多人骨骼关键点信息,且其对10类日常典型行为的平均识别准确率达86.25%,优于对比的其他已有方法。
中图分类号:
[1]LIU A A,SU Y T,JIA P P,et al.Multiple/Single-View HumanAction Recognition via Part-Induced Multitask Structural Learning [J].IEEE Transactions on Cybernetics,2015,45(6):1194-1208. [2]GONG W.Design and Implementation of Student Learning Behavior Recognition System Based on Skeleton Keypoint Detection [D].Changchun:Jilin University,2019. [3]DAWAR N,KEHTARNAVAZ N.Action Detection and Recognition inContinuous Action Stream by Deep Learning-Based Sensing Fusion [J].IEEE Sensors Journal,2018,18(23):9660-9668. [4]CHENG J,LIU H J,WANG F,et al.Silhouette Analysis for Human Action Recognition Based on Supervised Temporal T-SNE and Incremental Learning [J].IEEE Transactions on Image Processing,2015,24(10):3203-3217. [5]LIU A A,XU N,NIE W Z,et al.Multi-Domain and Multi-Task Learning for Human Action Recognition[J].IEEE Transactions on Image Processing,2019,28(2):853-867. [6]SUN J F,XU H J,ZHOU Y M,et al.Human Actions Recognition Using Improved MHI and 2-D Gabor Filter Based on Energy Blocks [C]//2018 International Conference on Artificial Intelligence:Technologies and Applications(ICAITA2018).Chengdu:Atlantis Press,2018:1-4. [7]TU Z G,LU H Y,ZHANG D J,et al.Action-Stage Emphasized Spatiotemporal VLAD for Video Action Recognition [J].IEEE Transactions on Image Processing,2019,28(6):2799-2812. [8]BAGAUTDINOV T,ALAHI A,FLEURET F,et al.SocialScene Understanding:End-to-End Multi-Person Action Localization and Collective Activity Recognition [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2017).Hawaii:IEEE,2017:3425-3434. [9]ZHOU Q Q,ZHONG B N.Deep Alignment Network BasedMulti-Person Tracking with Occlusion and Motion Reasoning [J].IEEE Transactions on Multimedia.2019,21(5):1183-1194. [10]LI M P,ZHOU Z M,et al.Multi-Person Pose Estimation Using Bounding Box Constraint and LSTM [J].IEEE Transactions on Multimedia.2019,21(10):2653-2263. [11]LIN L,WANG Y F,et al.Multi-Person Pose Estimation Using Aurous Convolution [J].Electronics Letters.2019,55(9):533-535. [12]CHEN X,YANG G K.Multi-Person Pose Estimation withLIMB Detection Heatmaps [C]//2018 IEEE International Conference on Image Processing(ICIP 2018).Athens:IEEE,2018:4078-4082. [13]ANDRILUKA M,ROTH S,SCHIELE B.Pictorial StructuresRevisited:People Detection and Articulated Pose Estimation [C]//2009 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2009).Miami,FL:IEEE,2009:1014-1021. [14]CAO Z,SIMON T,WEI S E,et al.Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2017).Hawaii:IEEE,2017:1302-1310. [15]CAO Z,HIDALGO G,SIMON T.OpenPose:Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields [C]//2019 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2019).Hawaii:IEEE,2019:1-14. [16]RYOO M S,AGGARWAL J K.Spatio Temporal Relationship Match:Video Structure Comparison for Recognition of Complex Human Activities [C]//2009 IEEE International Conference on Computer Vision(CVPR 2009).2009:1593-1600. [17]YAN S J,XIONG Y J,LIN D H.Spatial Temporal Graph Con-volutional Networks for Skeleton Based Action Recognition [C]//2018 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2018).Salt Lake City:IEEE,2018:7444-7452. [18]CARREIRAL J,ZISSENRMAN A.Quo Vadis:Action Recognition? A New Model and the Kinetics Dataset [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2017).Hawaii:IEEE,2017:4724-4733. [19]CHOUTAS V,WEINZAEPFEL P,REVAUD J.Potion:Pose-Motion Representation for Action Recognition [C]//2018 Conference on Computer Vision and Pattern Recognition(CVPR 2018).Salt Lake City:IEEE,2018:7024-7033. [20]WANG L,KONIUSZ P,HUYNH D Q.Hallucinating IDT Descriptors and I3D Optical Feature for Action Recognition with CNNs [C]//2019 IEEE International Conference on Computer Vision(ICCV 2019).Seoul:IEEE,2019:1-12. |
[1] | 赵澄, 陈君新, 姚明海. 基于SVM分类器的XSS攻击检测技术 XSS Attack Detection Technology Based on SVM Classifier 计算机科学, 2018, 45(11A): 356-360. |
[2] | 李昆仑,张亚欣,刘利利,耿雪菲. 基于改进PCA和支持向量机的掌纹识别 Palmprint Recognition Based on Improved PCA and SVM 计算机科学, 2015, 42(Z11): 146-150. |
[3] | 申铉京,李梦臻,吕颖达,陈海鹏. 基于LBC的计算机生成图像盲鉴别算法 Blind Identification Algorithm of Photorealistic Computer Graphics Based on Local Binary Count 计算机科学, 2015, 42(6): 135-138. https://doi.org/10.11896/j.issn.1002-137X.2015.06.030 |
[4] | 刘纯利,张弓. 物体边沿特征提取及应用 Grain Classification Based on Edge Feature 计算机科学, 2013, 40(7): 280-282. |
[5] | 张永,薛芝茂. 基于两级分类器的人脸检测系统设计 Face Detection System Design Based on Two Classifiers 计算机科学, 2010, 37(4): 293-. |
|