Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2015, Vol. 42 ›› Issue (Z11): 151-154.

• 模式识别与图像处理 • 上一篇    下一篇

改进的基于Parzen窗算法的SAR图像目标检测

张颢,孟祥伟,刘磊,李德胜   

  1. 海军航空工程学院电子信息工程系 烟台264001,海军航空工程学院电子信息工程系 烟台264001,海军航空工程学院电子信息工程系 烟台264001,海军航空工程学院电子信息工程系 烟台264001
  • 出版日期:2018-11-14 发布日期:2018-11-14

Improved Parzen Window Based Ship Detection Algorithm in SAR Images

ZHANG Hao, MENG Xiang-wei, LIU Lei and LI De-sheng   

  • Online:2018-11-14 Published:2018-11-14

摘要: 传统的Parzen窗检测算法假设目标占整个背景中较小的一部分,将SAR图像中的所有像素用于估计杂波概率密度函数,容易造成检测阈值的增大从而对不太明显的SAR图像舰船目标产生漏检。对此,提出了一种改进的Parzen窗检测算法,该算法通过自适应地设置目标窗口,将潜在的目标从检测图像中剔除,对剔除后的杂波背景采用Parzen窗进行非参数化的杂波模型估计,进而确定检测阈值,完成目标的检测。相比传统的Parzen窗检测算法,提出的SAR图像舰船目标检测算法减少了漏检数量,改善了检测性能。实测SAR图像的检测结果表明了该方法的有效性。

关键词: SAR图像,舰船,检测,Parzen窗

Abstract: The classical Parzen algorithmis is based on the assumption that the targets occupy a small part of the SAR image and uses all pixels of the SAR image to estimate the probability density function of the clutter background.This method results in the elevation of the detection threshold,and then it is possible to miss targets that are less obvious.In order to overcome this problem,we proposed an improved Parzen detection algorithm.The proposed algorithm adaptively sets the target windows according to the size of the target and deletes the potential targets from the background.Then it estimates the clutter distribution based on Parzen window method.Finally,it determines the detection threshold for the target detection.Compared with the traditional Parzen detection method,the proposed algorithm decreases the number of missing target and also improves the detection performance.The detection results with the real SAR images verify the effectiveness of the algorithm.

Key words: SAR image,Ship,Detection,Parzen windows

[1] Wang Yun-hua,Liu Xiao-yan,Li Hui-min,et al.Targets detecting in the ocean using the cross-polarized channels of fully polarimetric SAR data[J].Acta Oceanologica Sinica,2015,34(1):85-93
[2] Novak L M,Halversen S D,Owirka G J,et al.Effects of polarization and Resolution on SAR ATR[J].IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):102-115
[3] Maurizio B,Carmela G.CFAR detection of extended objects in high-resolution SAR images[J].IEEE Transactions on Geoscie-nce and Remote Sensing,2005,43(4):833-843
[4] Magraner E,Bertaux N,Refregier P.Detection in Gamma-dis-tributed nonhomogeneous background[J].IEEE Transactions on Aerospace and Electronic System,2010,46(3):1127-1139
[5] Makhoul E,Zhan Yu,Broquetas A,et al.Sea clutter statistical characterization using TerraSAR-X data[C]∥2014 IEEE International Geoscience and Remote Sensing Symposium (IGA-RSS).2014:5130-5133
[6] Gao Gui.A Parzen-window-kernel-based CFAR algorithm forship detection in SAR images[J].IEEE Geoscience and Remote Sensing Letters,2011,8(3):557-561
[7] Kapur J N,Sahoo P K,Wong A K C.A new method for gray level picture thresholding using the entropy of the histogram[J].Computer Vision,Graphics and Image Process,1985,29(3):273-285
[8] 张宏稷,杨健,李延,等.基于条件熵和Parzen窗的极化SAR舰船检测[J].清华大学学报(自然科学版),2012,52(12):1693-1697
[9] Silverman B W.Density estimation for statistics and data analysis[M].Chapman & Hall,London,1986:84-87
[10] 林旭,洪峻,孙显,等.一种基于自适应背景杂波模型的宽幅SAR图像CFAR舰船检测算法[J].遥感技术与应用,2014,29(1):75-81

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!