计算机科学 ›› 2015, Vol. 42 ›› Issue (Z11): 151-154.
张颢,孟祥伟,刘磊,李德胜
ZHANG Hao, MENG Xiang-wei, LIU Lei and LI De-sheng
摘要: 传统的Parzen窗检测算法假设目标占整个背景中较小的一部分,将SAR图像中的所有像素用于估计杂波概率密度函数,容易造成检测阈值的增大从而对不太明显的SAR图像舰船目标产生漏检。对此,提出了一种改进的Parzen窗检测算法,该算法通过自适应地设置目标窗口,将潜在的目标从检测图像中剔除,对剔除后的杂波背景采用Parzen窗进行非参数化的杂波模型估计,进而确定检测阈值,完成目标的检测。相比传统的Parzen窗检测算法,提出的SAR图像舰船目标检测算法减少了漏检数量,改善了检测性能。实测SAR图像的检测结果表明了该方法的有效性。
[1] Wang Yun-hua,Liu Xiao-yan,Li Hui-min,et al.Targets detecting in the ocean using the cross-polarized channels of fully polarimetric SAR data[J].Acta Oceanologica Sinica,2015,34(1):85-93 [2] Novak L M,Halversen S D,Owirka G J,et al.Effects of polarization and Resolution on SAR ATR[J].IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):102-115 [3] Maurizio B,Carmela G.CFAR detection of extended objects in high-resolution SAR images[J].IEEE Transactions on Geoscie-nce and Remote Sensing,2005,43(4):833-843 [4] Magraner E,Bertaux N,Refregier P.Detection in Gamma-dis-tributed nonhomogeneous background[J].IEEE Transactions on Aerospace and Electronic System,2010,46(3):1127-1139 [5] Makhoul E,Zhan Yu,Broquetas A,et al.Sea clutter statistical characterization using TerraSAR-X data[C]∥2014 IEEE International Geoscience and Remote Sensing Symposium (IGA-RSS).2014:5130-5133 [6] Gao Gui.A Parzen-window-kernel-based CFAR algorithm forship detection in SAR images[J].IEEE Geoscience and Remote Sensing Letters,2011,8(3):557-561 [7] Kapur J N,Sahoo P K,Wong A K C.A new method for gray level picture thresholding using the entropy of the histogram[J].Computer Vision,Graphics and Image Process,1985,29(3):273-285 [8] 张宏稷,杨健,李延,等.基于条件熵和Parzen窗的极化SAR舰船检测[J].清华大学学报(自然科学版),2012,52(12):1693-1697 [9] Silverman B W.Density estimation for statistics and data analysis[M].Chapman & Hall,London,1986:84-87 [10] 林旭,洪峻,孙显,等.一种基于自适应背景杂波模型的宽幅SAR图像CFAR舰船检测算法[J].遥感技术与应用,2014,29(1):75-81 |
No related articles found! |
|