Nothing Special   »   [go: up one dir, main page]

\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-balanced scheme for gas-flow in pipeline networks

  • * Corresponding author: Yogiraj Mantri

    * Corresponding author: Yogiraj Mantri 
Abstract / Introduction Full Text(HTML) Figure(8) / Table(2) Related Papers Cited by
  • Gas flow through pipeline networks can be described using $ 2\times 2 $ hyperbolic balance laws along with coupling conditions at nodes. The numerical solution at steady state is highly sensitive to these coupling conditions and also to the balance between flux and source terms within the pipes. To avoid spurious oscillations for near equilibrium flows, it is essential to design well-balanced schemes. Recently Chertock, Herty & Özcan[11] introduced a well-balanced method for general $ 2\times 2 $ systems of balance laws. In this paper, we simplify and extend this approach to a network of pipes. We prove well-balancing for different coupling conditions and for compressors stations, and demonstrate the advantage of the scheme by numerical experiments.

    Mathematics Subject Classification: Primary: 35L60, 35L65, 76M12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Intersection of three pipes at junction O. Right-Zoomed view of the junction with old traces $ U_{{i}}^{{o}} $ and new traces $ U_{{i}}^{{*}} $ given in Section 2

    Figure 2.  Phase plot in terms of equilibrium variables with initial state $ V_i^o = (0.1, 0.4)^T $

    Figure 3.  Momentum for perturbation of order $ 10^{-3} $ for a node connected to two pipes

    Figure 4.  Momentum for perturbation of order $ 10^{-6} $ for a node connected to two pipes

    Figure 5.  Momentum for perturbation of order $ 10^{-3} $ for a node connected to one incoming and two outgoing pipes

    Figure 6.  Momentum for perturbation of order $ 10^{-6} $ for a node connected to one incoming and two outgoing pipes

    Figure 7.  Conservative variables, $ \rho, q $ at T = 0.1 in pipes 1, 2, 3 with WB and NWB scheme

    Figure 8.  Conservative variables, $ \rho, q $ at T = 0.25 in pipes 1, 2, 3 with WB and NWB scheme

    Table 1.  Comparison of L-1 errors between well-balanced(WB) and non well-balanced(NWB) scheme at steady state for a junction at time T = 1

    No. of cells in each pipe L1-error for variable 1 Incoming, 1 Outgoing 1 Incoming, 2 Outgoing 2 Incoming, 1 Outgoing
    WBNWBWBNWBWBNWB
    50K$2.83\text{x}10^{-17}$$6.19\text{x}10^{-7}$ $6.91\text{x}10^{-17}$$3.78\text{x}10^{-7}$ $9.02\text{x}10^{-17}$$3.45\text{x}10^{-7}$
    L$3.44\text{x}10^{-17}$$9.48\text{x}10^{-7}$$5.16\text{x}10^{-17}$$3.57\text{x}10^{-7}$$9.21\text{x}10^{-17}$$7.38\text{x}10^{-7}$
    100K$3.95\text{x}10^{-17}$$1.56\text{x}10^{-7}$$8.12\text{x}10^{-17}$$9.63\text{x}10^{-8}$$8.60\text{x}10^{-17}$$8.67\text{x}10^{-8}$
    L$4.86\text{x}10^{-17}$$2.43\text{x}10^{-7}$$7.38\text{x}10^{-17}$$8.94\text{x}10^{-8}$$8.24\text{x}10^{-17}$$1.87\text{x}10^{-7}$
    200K$5.11\text{x}10^{-17}$$3.88\text{x}10^{-8}$ $8.69\text{x}10^{-17}$$2.62\text{x}10^{-8}$ $1.04\text{x}10^{-16}$$2.69\text{x}10^{-8}$
    L$5.85\text{x}10^{-17}$$6.13\text{x}10^{-8}$$7.06\text{x}10^{-17}$$2.32\text{x}10^{-8}$$9.49\text{x}10^{-17}$$5.03\text{x}10^{-8}$
     | Show Table
    DownLoad: CSV

    Table 2.  Comparison of L-1 errors between well-balanced(WB) and non well-balanced(NWB) scheme at steady state with a compressor at different compression ratios at time T = 1

    No. of cells in each pipe L1-error for variable CR=1.5 CR=2.0 CR=2.5
    WB NWB WB NWB WB NWB
    50 K $1.11\text{x}10^{-17}$ $4.16\text{x}10^{-7}$ $5.30\text{x}10^{-17}$ $3.78\text{x}10^{-7}$ $1.97\text{x}10^{-17}$ $3.77\text{x}10^{-7}$
    L $2.66\text{x}10^{-17}$ $4.00\text{x}10^{-7}$ $5.38\text{x}10^{-17}$ $3.57\text{x}10^{-7}$ $1.39\text{x}10^{-17}$ $3.54\text{x}10^{-7}$
    100 K $2.90\text{x}10^{-17}$ $1.05\text{x}10^{-7}$ $7.28\text{x}10^{-17}$ $9.63\text{x}10^{-8}$ $4.22\text{x}10^{-17}$ $9.68\text{x}10^{-8}$
    L $4.08\text{x}10^{-17}$ $1.01\text{x}10^{-7}$ $7.24\text{x}10^{-17}$ $8.94\text{x}10^{-8}$ $4.66\text{x}10^{-17}$ $8.89\text{x}10^{-7}$
    200 K $4.26\text{x}10^{-17}$ $2.64\text{x}10^{-8}$ $8.15\text{x}10^{-17}$ $2.62\text{x}10^{-8}$ $5.02\text{x}10^{-17}$ $2.84\text{x}10^{-8}$
    L $4.69\text{x}10^{-17}$ $2.53\text{x}10^{-8}$ $7.45\text{x}10^{-17}$ $2.32\text{x}10^{-8}$ $5.76\text{x}10^{-17}$ $2.59\text{x}10^{-8}$
     | Show Table
    DownLoad: CSV
  • [1] E. AudusseF. BouchutM.-O. BristeauR. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25 (2004), 2050-2065.  doi: 10.1137/S1064827503431090.
    [2] M. K. BandaA.-S. Häck and M. Herty, Numerical discretization of coupling conditions by high-order schemes, J. Sci. Comput., 69 (2016), 122-145.  doi: 10.1007/s10915-016-0185-x.
    [3] M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.  doi: 10.3934/nhm.2006.1.295.
    [4] M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.  doi: 10.3934/nhm.2006.1.41.
    [5] A. BermúdezX. López and M. E. Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, J. Comput. Phys., 344 (2017), 187-209.  doi: 10.1016/j.jcp.2017.04.066.
    [6] A. BollermannG. X. ChenA. Kurganov and S. Noelle, A well-balanced reconstruction of wet/dry fronts for the shallow water equations, J. Sci. Comput., 56 (2013), 267-290.  doi: 10.1007/s10915-012-9677-5.
    [7] R. Borsche and J. Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, J. Comput. Phys., 273 (2014), 658-670.  doi: 10.1016/j.jcp.2014.05.042.
    [8] A. BressanS. ČanićM. GaravelloM. Herty and B. Piccoli, Flows on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.  doi: 10.4171/EMSS/2.
    [9] J. BrouwerI. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9 (2011), 601-623.  doi: 10.1137/100813580.
    [10] G. X. Chen and S. Noelle, A new hydrostatic reconstruction scheme based on subcell reconstructions, SIAM J. Numer. Anal., 55 (2017), 758-784.  doi: 10.1137/15M1053074.
    [11] A. ChertockM. Herty and Ş. N. Özcan, Well-balanced central-upwind schemes for $2\times 2$ system of balance laws, Theory, Numerics and Applications of Hyperbolic Problems. Ⅰ, Springer Proc. Math. Stat. Springer, Cham, 236 (2018), 345-361. 
    [12] R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.  doi: 10.1137/080716372.
    [13] R. M. ColomboM. Herty and V. Sachers, On $2\times 2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.  doi: 10.1137/070690298.
    [14] R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.  doi: 10.3934/nhm.2006.1.495.
    [15] R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.  doi: 10.1137/060665841.
    [16] R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbolic Differ. Equ., 5 (2008), 547-568.  doi: 10.1142/S0219891608001593.
    [17] R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, N. Y., 1948.
    [18] S. A. DyachenkoA. ZlotnikA. O. Korotkevich and M. Chertkov, Operator splitting method for simulation of dynamic flows in natural gas pipeline networks, Phys. D, 361 (2017), 1-11.  doi: 10.1016/j.physd.2017.09.002.
    [19] H. Egger, A robust conservative mixed finite element method for isentropic compressible flow on pipe networks, SIAM J. Sci. Comput., 40 (2018), A108–A129. doi: 10.1137/16M1094373.
    [20] E. GodlewskiK.-C. Le Thanh and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. Ⅱ. The case of systems, M2AN Math. Model. Numer. Anal., 39 (2005), 649-692.  doi: 10.1051/m2an:2005029.
    [21] M. GugatM. Herty and S. Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, Netw. Heterog. Media, 12 (2017), 371-380.  doi: 10.3934/nhm.2017016.
    [22] M. Gugat and S. Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, J. Math. Anal. Appl., 454 (2017), 439-452.  doi: 10.1016/j.jmaa.2017.04.064.
    [23] M. HertyJ. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.  doi: 10.1002/mma.1197.
    [24] M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, Internat. J. Numer. Methods Fluids, 56 (2008), 485-506.  doi: 10.1002/fld.1531.
    [25] A. KurganovS. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23 (2001), 707-740.  doi: 10.1137/S1064827500373413.
    [26] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), 241-282.  doi: 10.1006/jcph.2000.6459.
    [27] A. Morin and G. A. Reigstad, Pipe networks: Coupling constants in a junction for the isentropic euler equations, Energy Procedia, 64 (2015), 140-149.  doi: 10.1016/j.egypro.2015.01.017.
    [28] A. NaumannO. Kolb and M. Semplice, On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws, Appl. Math. Comput., 325 (2018), 252-270.  doi: 10.1016/j.amc.2017.12.041.
    [29] S. NoelleN. PankratzG. Puppo and J. R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213 (2006), 474-499.  doi: 10.1016/j.jcp.2005.08.019.
    [30] S. NoelleY. L. Xing and C.-W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys., 226 (2007), 29-58.  doi: 10.1016/j.jcp.2007.03.031.
    [31] A. Osiadacz, Nonlinear programming applied to the optimum control of a gas compressor station, Internat. J. Numer. Methods Engrg., 15 (1980), 1287-1301.  doi: 10.1002/nme.1620150902.
    [32] G. Puppo and G. Russo, Numerical Methods for Balance Laws, Quaderni di Matematica, 24. Department of Mathematics, Seconda Università di Napoli, Caserta, 2009.
    [33] G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Netw. Heterog. Media, 9 (2014), 65-95.  doi: 10.3934/nhm.2014.9.65.
    [34] G. A. Reigstad, Existence and uniqueness of solutions to the generalized {R}iemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.  doi: 10.1137/140962759.
    [35] G. A. ReigstadT. FlåttenN. Erland Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.  doi: 10.1142/S0219891615500022.
  • 加载中

Figures(8)

Tables(2)

SHARE

Article Metrics

HTML views(2401) PDF downloads(395) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return