[1]
|
E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25 (2004), 2050-2065.
doi: 10.1137/S1064827503431090.
|
[2]
|
M. K. Banda, A.-S. Häck and M. Herty, Numerical discretization of coupling conditions by high-order schemes, J. Sci. Comput., 69 (2016), 122-145.
doi: 10.1007/s10915-016-0185-x.
|
[3]
|
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.
doi: 10.3934/nhm.2006.1.295.
|
[4]
|
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.
doi: 10.3934/nhm.2006.1.41.
|
[5]
|
A. Bermúdez, X. López and M. E. Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, J. Comput. Phys., 344 (2017), 187-209.
doi: 10.1016/j.jcp.2017.04.066.
|
[6]
|
A. Bollermann, G. X. Chen, A. Kurganov and S. Noelle, A well-balanced reconstruction of wet/dry fronts for the shallow water equations, J. Sci. Comput., 56 (2013), 267-290.
doi: 10.1007/s10915-012-9677-5.
|
[7]
|
R. Borsche and J. Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, J. Comput. Phys., 273 (2014), 658-670.
doi: 10.1016/j.jcp.2014.05.042.
|
[8]
|
A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli, Flows on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.
doi: 10.4171/EMSS/2.
|
[9]
|
J. Brouwer, I. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9 (2011), 601-623.
doi: 10.1137/100813580.
|
[10]
|
G. X. Chen and S. Noelle, A new hydrostatic reconstruction scheme based on subcell reconstructions, SIAM J. Numer. Anal., 55 (2017), 758-784.
doi: 10.1137/15M1053074.
|
[11]
|
A. Chertock, M. Herty and Ş. N. Özcan, Well-balanced central-upwind schemes for $2\times 2$ system of balance laws, Theory, Numerics and Applications of Hyperbolic Problems. Ⅰ, Springer Proc. Math. Stat. Springer, Cham, 236 (2018), 345-361.
|
[12]
|
R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.
doi: 10.1137/080716372.
|
[13]
|
R. M. Colombo, M. Herty and V. Sachers, On $2\times 2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.
doi: 10.1137/070690298.
|
[14]
|
R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.
doi: 10.3934/nhm.2006.1.495.
|
[15]
|
R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.
doi: 10.1137/060665841.
|
[16]
|
R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbolic Differ. Equ., 5 (2008), 547-568.
doi: 10.1142/S0219891608001593.
|
[17]
|
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, N. Y., 1948.
|
[18]
|
S. A. Dyachenko, A. Zlotnik, A. O. Korotkevich and M. Chertkov, Operator splitting method for simulation of dynamic flows in natural gas pipeline networks, Phys. D, 361 (2017), 1-11.
doi: 10.1016/j.physd.2017.09.002.
|
[19]
|
H. Egger, A robust conservative mixed finite element method for isentropic compressible flow on pipe networks, SIAM J. Sci. Comput., 40 (2018), A108–A129.
doi: 10.1137/16M1094373.
|
[20]
|
E. Godlewski, K.-C. Le Thanh and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. Ⅱ. The case of systems, M2AN Math. Model. Numer. Anal., 39 (2005), 649-692.
doi: 10.1051/m2an:2005029.
|
[21]
|
M. Gugat, M. Herty and S. Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, Netw. Heterog. Media, 12 (2017), 371-380.
doi: 10.3934/nhm.2017016.
|
[22]
|
M. Gugat and S. Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, J. Math. Anal. Appl., 454 (2017), 439-452.
doi: 10.1016/j.jmaa.2017.04.064.
|
[23]
|
M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.
doi: 10.1002/mma.1197.
|
[24]
|
M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, Internat. J. Numer. Methods Fluids, 56 (2008), 485-506.
doi: 10.1002/fld.1531.
|
[25]
|
A. Kurganov, S. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23 (2001), 707-740.
doi: 10.1137/S1064827500373413.
|
[26]
|
A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), 241-282.
doi: 10.1006/jcph.2000.6459.
|
[27]
|
A. Morin and G. A. Reigstad, Pipe networks: Coupling constants in a junction for the isentropic euler equations, Energy Procedia, 64 (2015), 140-149.
doi: 10.1016/j.egypro.2015.01.017.
|
[28]
|
A. Naumann, O. Kolb and M. Semplice, On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws, Appl. Math. Comput., 325 (2018), 252-270.
doi: 10.1016/j.amc.2017.12.041.
|
[29]
|
S. Noelle, N. Pankratz, G. Puppo and J. R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213 (2006), 474-499.
doi: 10.1016/j.jcp.2005.08.019.
|
[30]
|
S. Noelle, Y. L. Xing and C.-W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys., 226 (2007), 29-58.
doi: 10.1016/j.jcp.2007.03.031.
|
[31]
|
A. Osiadacz, Nonlinear programming applied to the optimum control of a gas compressor station, Internat. J. Numer. Methods Engrg., 15 (1980), 1287-1301.
doi: 10.1002/nme.1620150902.
|
[32]
|
G. Puppo and G. Russo, Numerical Methods for Balance Laws, Quaderni di Matematica, 24. Department of Mathematics, Seconda Università di Napoli, Caserta, 2009.
|
[33]
|
G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Netw. Heterog. Media, 9 (2014), 65-95.
doi: 10.3934/nhm.2014.9.65.
|
[34]
|
G. A. Reigstad, Existence and uniqueness of solutions to the generalized {R}iemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.
doi: 10.1137/140962759.
|
[35]
|
G. A. Reigstad, T. Flåtten, N. Erland Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.
doi: 10.1142/S0219891615500022.
|