Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Numerical Discretization of Coupling Conditions by High-Order Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider numerical schemes for \(2\times 2\) hyperbolic conservation laws on graphs. The hyperbolic equations are given on arcs which are one-dimensional in space and are coupled at a single point, the node, by a nonlinear coupling condition. We develop high-order finite volume discretizations for the coupled problem. The reconstruction of the fluxes at the node is obtained using derivatives of the parameterized algebraic conditions imposed at the nodal points in the network. Numerical results illustrate the expected theoretical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aw, A., Rascle, M.: Resurrection of second order models of traffic flow. SIAM J. Appl. Math. 60, 916–944 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banda, M.K., Herty, M., Klar, A.: Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterog. Media 1, 295–314 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banda, M.K., Herty, M., Klar, A.: Gas flow in pipeline networks. Netw. Heterog. Media 1, 41–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bastin, G., Coron, J., dAndréa Novel, B.: Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks. In: Lecture Notes for the Pre-Congress Workshop on Complex Embedded and Networked Control Systems, 17th IFAC World Congress (2008)

  5. Bastin, G., Coron, J., d’Andréa-Novel, B.: On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw. Heterog. Media 4, 177–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borsche, R., Kall, J.: ADER schemes and high order coupling on networks of hyperbolic conservation laws. J. Comput. Phys. 273, 658–670 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bressan, A., Canic, S., Garavello, M., Herty, M., Piccoli, B.: Flow on networks: recent results and perspectives. Eur. Math. Soc. Surv. Math. Sci. 1, 47–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bretti, G., Natalini, R., Piccoli, B.: Fast algorithms for the approximation of a traffic flow model on networks. Discrete Contin. Dyn. Syst. Ser. B 6, 427–448 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bretti, G., Natalini, R., Piccoli, B.: Numerical approximations of a traffic flow model on networks. Netw. Heterog. Media 1, 57–84 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul. 9, 601–623 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colombo, R., Garavello, M.: A well posed Riemann problem for the p-system at a junction. Netw. Heterog. Media 1, 495–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colombo, R.M., Garavello, M.: On the \(p\)-system at a junction. In: Control Methods in PDE-Dynamical Systems, vol. 426 of Contemp, pp. 193–217. Math., Amer. Math. Soc., Providence, RI (2007)

  13. Colombo, R.M., Garavello, M.: On the Cauchy problem for the \(p\)-system at a junction. SIAM J. Math. Anal. 39, 1456–1471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colombo, R.M., Guerra, G., Herty, M., Schleper, V.: Optimal control in networks of pipes and canals. SIAM J. Control Optim. 48, 2032–2050 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colombo, R.M., Herty, M., Sachers, V.: On \(2\times 2\) conservation laws at a junction. SIAM J. Math. Anal. 40, 605–622 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colombo, R.M., Marcellini, F.: Coupling conditions for the \(3\times 3\) Euler system. Netw. Heterog. Media 5, 675–690 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Colombo, R.M., Mauri, C.: Euler system at a junction. J. Hyperbolic Differ. Equ. 5, 547–568 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Courant, R., Friedrichs, K.O., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100, 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin (2005)

  20. D’Apice, C., Göttlich, S., Herty, M., Piccoli, B.: Modeling, Simulation, and Optimization of Supply Chains. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2010). A continuous approach

  21. D’Apice, C., Manzo, R., Piccoli, B.: A fluid dynamic model for telecommunication networks with sources and destinations. SIAM J. Appl. Math. 68, 981–1003 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. D’Apice, C., Manzo, R., Piccoli, B.: Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks. J. Math. Anal. Appl. 362, 374–386 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garavello, M., Piccoli, B.: Traffic flow on a road network using the Aw–Rascle model. Commun. Partial Differ. Equ. 31, 243–275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Garavello, M., Piccoli, B.: Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). Conservation laws models

  25. Godlewski, E., Raviart, P.-A.: Hyperbolic Systems of Conservation Laws. Mathematiques and Applications Ellipses, 1st edn. University of Michigan (1991)

  26. Godunov, S.K.: A difference scheme for the numerical computation of a discontinuous solution of the hydrodynamic equation. Math. Sbornik 47, 271–306 (1959)

    MathSciNet  MATH  Google Scholar 

  27. Gugat, M.: Optimal nodal control of networked hyperbolic systems: evaluation of derivatives. Adv. Model. Optim. 7, 9–37 (2005). (electronic)

    MathSciNet  MATH  Google Scholar 

  28. Haut, B., Bastin, G.: A second order model of road junctions in fluid models of traffic networks. Netw. Heterog. Media 2, 227–253 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Herty, M., Jörres, C., Piccoli, B.: Existence of solution to supply chain models based on partial differential equation with discontinuous flux function. J. Math. Anal. Appl. 401, 510–517 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Herty, M., Rascle, M.: Coupling conditions for a class of second-order models for traffic flow. SIAM J. Math. Anal. 38, 595–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jin, S., Xin, Z.P.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kolb, O., Lang, J., Bales, P.: An implicit box scheme for subsonic compressible flow with dissipative source term. Numer. Algorithms 53, 293–307 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kröner, D.: Numerical Schemes for Conservation Laws. Wiley Teubner. Wiley (1997)

  34. Leugering, G., Schmidt, J.: On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41, 164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, MA (2002)

  36. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

  38. Tan, S., Shu, C.-W.: Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput. Phys. 229, 8144–8166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tan, S., Shu, C.-W.: Inverse Lax-Wendroff procedure for numerical boundary conditions of hyperbolic equations: survey and new developments. In: Advances in Applied Mathematics, Modeling, and Computational Science, vol. 66 of Fields Inst. Commun., pp. 41–63. Springer, New York (2013)

  40. Tan, S., Wang, C., Shu, C.-W., Ning, J.: Efficient implementation of high order inverse Lax–Wendroff boundary treatment for conservation laws. J. Comput. Phys. 231, 2510–2527 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  42. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by DFG ‘Integrated Production in High-Wage Countries’ and the BMBF KinOpt project. This work is also based on the research supported in part by the National Research Foundation of South Africa (Grant No. 93476) and the Research Development Programme of the University of Pretoria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel-Stefan Häck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banda, M.K., Häck, AS. & Herty, M. Numerical Discretization of Coupling Conditions by High-Order Schemes. J Sci Comput 69, 122–145 (2016). https://doi.org/10.1007/s10915-016-0185-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0185-x

Keywords

Mathematics Subject Classification

Navigation