Nothing Special   »   [go: up one dir, main page]

Academia.eduAcademia.edu
DOI: https://doi.org/10.1038/nbt0789-686 BIOSEPARATIONS: Design and Engineering of Partitioning Systems y the year 2000, th!:'.' wodd bioch�mical market will re;,.ch an estimated $4O- l 00 billion. 1 • Biop:roce3� engi­ needng is a vital (but currently we:;;.k) link hr:t.ween hb discove:des and the fi.,lfilh:i::tcnt of thi.s comrne,·cialization potential. T<) $trengthen the link, re­ searchers are ei.p�9ring biochemically based i;epatations, e!>peda11y for hiV,h­ value-added chemicals. Biocherofcal approacbes-focluding li<�uid-liquid p;::i. rtiti.o:OJl)g-promise readily scalea­ ble, econoroic;al separation of large l:ii.9molec1.1k�, ai:; well a� an artswer to industry's need for better st�dstical, mec;hanical, ::i.nd thermodynamic model� and measvrements biose­ paratiom. One bioproi::es� in particular-two­ pha8e aque•JU5 partitioning-has great potential as an economical sepa­ ration method for biqchemical prod­ ucts. lt offers the poteri tial for strict produ��t quality (On.trol, as well2 • With many potential appli;::;ation, it) the food and ph::1tmaceutical indus­ tries foi: such things as enriching Ny­ bean aw:l i;c:;,,n endo5perm prot.ein� <1.nd harvesting IYso;,;vmes for use in arr,ificial blood, partitioning serves \.b.ree main roles: • concentratim; dilute solutions of biological substaiices of interest; • purifying enr.ymes and other pro­ tdns; a1,1.d • ex.tractive bioconversion 3 • Based r>n patdtioniri.g the compo­ nents of an organic miic.t1.1te between two hnmJscible (or partly mi�cibk) solvents, this em:rgy-dfi6ei:it method B for uses water a5 the �olvent in dealing who:re with biological materials u . M1 = molecular weioht of the partitioneo In such a two-phase a.qu<oous sys­ substance (i) tem, incompatible polymers segro:-:­ k = Boltzmann constant gate in the water to form_ two phases. T = absolute ternparature While it doesn.'t work for some sm;i.ll A = a constant related to tha two•phase molec1.1 k� �uc.h as amino ;.a.cid� (which syi,;tem's characteristics and ¢\her prop­ erties of the partitioMd substance distribute themselves evenly in the rwo phases\, sud• a syst�m s1_1its Jarg� This exponenti.al relation implies biomolecules. These pa.rtition un­ evenly to form variol.IS kinds of col­ that for large moleculi::s, a small lokh 5 -7-.ind provide a ;::;onvenient change in J... �ignificantly influences handle for separations (see figure 1). partitioning behavior. In general, the partitiou codli.cient for a soluble sub�tance is a function of Calculating the the foliowinfr Partition Coefficient • propenie� of the two phas�$; A useful parameter for chataneriz, • properties of the sarnple: and ing the panition of component i of a mixture in a two-phase matrix is the • temperawte. Note, however, that the coefficient partition coeffidem K; = C)j/Cn,, where C;t and C;b are the concentra­ ren)aim independent of the total vol­ tions of the partitioned substance in ume of the system. Therefore, the the rop and bottom ph;,_5es, respec­ partition coefficients for brge-,t:�I.;: tively. processes will be equal tci the values According to Bronsted 8 the follow­ obtained in lab-scale experime.ms. ing relationship exi5ts for the parti• Calcubtlng the Partitiott Ratio tion coefficient K;: The parliLio11 ratio G1 i� !.he ratio Ki "' exp (M; /./kT) between the amount of sub�tance i in �,..._..�----...........�..........��.......�'P"Wa.Ar.__.......,,__ ax � Polar polym(!t ).fl+- Nonpol3r polymer by: M.Hossein Hatiri, Illinois Institute of Technology, Chicago, IL USA; James F. Ely, NIST, Department of Commerce, Boulder, CO USA; G.Ali.Mansoori*, University of Illiniois at Chicago, Chicago, IL USA. (*). Coresponding author email: mansoori@uic.edu ��-�-....-�.....,...............-�� Figure 1 - Partition of mixture containing macromolecules A and B between two polymer phases. 686 I I M.H. Hariri, J.F. Ely, G.A. Mansoori Bioseparations: Design and Engineering of Partitioning Systems Nature Biotechnology, Volume 7, Pages 686-688, July 1989 DOI: https://doi.org/10.1038/nbt0789-686 BIOSEPARATIONS: Design and Engineering of Partitioning Systems the top s1nd bottom phases, s1nd is written as tling- rnt.e by adding a salt, a third polymer, or an electric fit:ld. Column Design Macromolecules and other biologi­ where C; is the concentration of the c;al substances with differing paxtition solute j and V is volume. Subscripts t coefficients can be separated either in a11J l, d<:n<.>te top and bouom ph.i.ses. a sini,i;le-stagc (batch or continuous) For efficient large-scale separation or ml�ltistage app«1'atus�,1o_ of componenr.s p and q of a mixture of For industrial-scale partitioning, biological macromolecules, par6tion multistage separati.ons rely on a liq" tatios G and Gq m.ust have suitable uid-liquid partitioning column. In values. The best separation occurs this arrangement, a pump feeds a when hcavy polymer/ha�� into the top of the column an a lighter phase into the bottom of the column. These im­ miscible phases m.ove in opposite di­ Another vitai pai·arneter, the tim<:: rections through alternatihg mbdng required for phase separation, de­ and separation stages (see figure 2). pends on both the viscosities and the The mixing stages effect mass density differences between the two transfer; settling stages allow for phases, Ne:ar th� c:;ritic;al point, �t:l­ phase separation. To perform a sep,4tling time is long. due to the sm.all n.ation, the operator introduces;_; sam· density difference. Far from the criti­ pk in one of two war: either by cal point, settling time is also long, in feeding it alon15 with one of the two this instance due to high phase-vi5cos­ polyrne, phases, or by injecting it ity. The shortest setthng times occur directly into one of the mixing or at intermediate polymer phase com­ �cttling stagc3. positions, One can also enhance setAn alternative multistage system LEGEND i ,1:"� 13.ri�; 2 3 4 5 6 ? B g Stjrring .,�g� SeltlinQ sla�e Protein A pufiHcatiur1 unit f'ro!llin B p1.nilic.1,ion vn11 Lower" i:;iolyr·ner �h�e: in Low1'r ;:x:;,lym.u i:,i·i..1:.1-Q- out l,JpPt, polyme:r ptla�" in Upper polymer phase out consi5ts <:>fa 5i'>.ries of stag.:=s 5epar::ited by filter plates. Mixing ,md separat• ing take place in the same stage. The lighter ph<1.si'>. wt.er� from the bottom of the column and move� upward whJ.li:; the heavy phase is kept station· ary. A.Jter allowing mixing and phase �ep�.ra,�j,on to occur; the �y�t�m pump1 � volume of the lighter pha�c:: mm the column from below. This inflllx pushes an equal volume of light ph;a.5<;, th,ovgh the fi).ter and into the st=.a.ge above, where it mi.gr.ates \Jf) thrqugh the stationary phase. M11t.bematical Model� of J>artitioni.n1r Given that t�n o, more variables affect a biological rnbstancc's parti­ tion coefficierit ll , qctalitative attd q1Jantitative understanding of thi5 process presents a formidable t,3.5k, And although :a v:ast ;,mount of scat­ tered data on protein partition coeffi­ cients have been published l · 12 , these data apply to 5ystems that are ther, modynarnically unspecified and in­ con�isLt:nL c1mong expei:iments. Predictive models that illuminate � Figure 2;, Multistage paroum.itng wilb altiernating mixing and 21cpa£11ting stages. fi su .-e 3. Pha"e diag.a,:n_ r,f' .- mixt\U'€ • of twQ J>(>lymets and wat.,r. Mixtures having compositions repN>$e�ted l>v points 11.b()ve the binuda.l curve: will scpa.i:a� h:d.1J two phases; mixtures repres=tcd by J>(lints below the bino• Slngls-pha�8 !.!al cunr<" e,t.ist. a,, a single phase. A, region ·--._-..:; Tu/bid mi�\�r� L s;riitcm with total composition F scpa­ ratf!s into uppel." phase U and lowe:r Folyme,· A, % pha.!le .l., with thci ratio of the voh:ime� of the two pha:oies 11.pproximiitell equ,id to the ratio of the dl1i.bnc,:,5 F and FU on the cc:>m).��i.�g !i!lt', Simi· Two-phase l,u:ly, a system 'With total ,;,om. sition f po rey,�n F' SCPaJ:ate9 h1to _phases f tu:id L: At cnticiJ. point C, die two H<Juid pha:!<es bec:r,me id<i!nticaL li'igu.l."e 4, An aqlJrouil 21olution of ... polydispm11e polymer1i1 A and ll. Sbnded area i.ndicate-. :region'> in which m;xrurei. will be i.omewbat tur­ bid, dUt!: to wcom!;il• SiJh•hHity <.>f PolymetA,% certain mo1ecula.r welgbtt< of B i,,:, -A­ ��··' and. vi11:e versa. 687 M.H. Hariri, J.F. Ely, G.A. Mansoori Bioseparations: Design and Engineering of Partitioning Systems Nature Biotechnology, Volume 7, Pages 686-688, July 1989 DOI: https://doi.org/10.1038/nbt0789-686 the imenelationships among system variables should primarily predict the p hase diagram of the polymers ( see figun': � ) . But. �u<.:h modds are com­ plicated by the polydisperslty o f the pol y met:s and J:, y ti'.le effect of salt ions in enhancing the partition of ,;:b,;,u;gcd pt:oteins 1 3• Interactions between the polymers and the proteins further ,;:omplkate m.mer!;;. Q!;'). e (i'i!.1::1. , however , calculate phase diagx.i.m$ of two-phase aqueous sys­ tems from the equality relatiomhip between the components ' chemical potentials, To 1,.1n(;ierstand multicom ­ ponent interactions, the modeler sys­ tematically rearrange$ them in(o bi­ nary interactions fol:" calculation. A diffic.:ulty jn predicting aqueous chemical potentials stem$ from the common assumption that po lymers in two-phase systems are rnon­ :uei;ms • ' I e componen t s J 4 ' I � is perse a s sing PolymeJ"$ have a molecular w�igh t distribution , so treating them as sin­ gle components is not always satisfac­ tory. Ma.l'.l.roori and Ely's phase equilibri11rn model fo1· µo]ydJspene solu­ tions 1 7, modified · and e'x.tended to pol ydispem: polymer aqueo�s sol�­ tions , take� the molecular weight dis­ tribution into account. It leads to the followi11g equations for chemical po­ tentials of system5 �har-J.cterized as p olydis p ¢rse polymer 1 /polydisper:se polymer �/w;_i,ter ; l"ll ,.. RT . ij "' l n m 2 i + 6 m 2 1 + /j M2 1 (m1J1 + m:iJ2) l' w - ,.. ·w = _1_ - RT ½ m � h + (fl m2 mw rm1 L + m� + i m� f 1 + 2 'fvl� + a m1�1)(m1J1 + m:i.J2)] where In the equations above, m1 = l: m 1 1, M1 = :r m11Mdm1 and mru's are the molalities of the i111 molecular - weight fraction of poly­ mers 1 and 2. Mm's are the ratios of molar volumes of the ith fraction of polymeni l and 2 with respect to w,1 1er (w) , r esp e ctivel y. The chemical potentials in the working conditions and refer<;r:u;;e state: are denoted as µ, and µ,* , resp e c­ tively. a , !3 ,8, and € are interaction terms fol:" polymer-polymer and poly­ mer - water systems . Th e .rnolec11lar weight distribu tion functions of the two polymers in the twc, pha5es can be exorcssed as F 1 ( I ,o·\ ,"1 1 ) and Fi ( l,0-2,"12)', where o- 1 and cr2 are variances and 'Il l an d 112 are mean molecular weights of the two polymers , respectively. (] 2 1 f2 , rn 2 , and :M: 2 are defined similady to J 1 , f1 . etc. ) UMng the " � uality of chemical p o· tentials" algorithm fot continuous mi:i.ture phase equilibtia 1 7 • 1 1' , we can calculate equilibrium compositions of the two phases. If the biomolecule in t he tw<>·phase �ystem is rnmidered as another poly­ mer molecule , and assuming the large biomolecule bears a net char ge ZSMM • then: µ BMM - µpolymer + ! BMM F 4, phase In this expression, IJ.polym�r is the chemical potential of a polymer in the .solution, F i5 the Faraday number, and 4:>pha.t is the electrostatic poten ­ tial . The second term in this eq uation contributes to partitioning when there is an electrostatic potential dif­ ference between the two pha5e� . A� a result, the contribution o f macrom o­ lecufa:r charge to it!! partitfon coeffi­ cient is as follows : Since each phase in cquilibtium must be electricall y neutral, .:ilj) b(:­ tween the two phases must 5atJ.5 fy the electroneutrality condition5, which vary for each two- phase partitioning s y,tem. Ions present in the two phases and, possibly, ioni.tadon of the biomolecules affect the elec.:troneu­ trality conditions of � two-phase sy$­ tem. ters between polymer$ and water and between the po l ymers themselves us­ ing �ooo.e bi!rn:t y poly1ner-w.i.ter wix­ 20 L u,i::: data , As5umin g adequ<1te R & D fundi ng au(i plMnin g , partition-based biose­ paration.i arc:· lik.dy 1.0 llml incrc:iilsi ng u5c in biotechnology product de,·el­ opme:nt, due to the system's biocom­ patibilit y , am-enability to scale-up, and favorab.1.e e<;;<>n.o�jc;;� com p ared wJ.tb o0'.1¢r biq�e p ara�ion, �ec.:hni q 1,1es. ,&ek,:e,:,�"-1' 1 . Humphrey, A. E. 19ij5. Critical needs in biotechnology, Testimon y before the l.i.5 . House of Representative� , S1.1b<::ommitti:<: on Sci,::o�e. lt.e�arch, ;,;,d Technolog�. 2. �,b.n$o¢n, (;. A- aod �Jy, J . f. 1 987. Parti­ tioning of monoi;lisp•me/polydi�per� poly­ mers and biological macromolttule� in aq1,1eo11$ two-phase $�1em$ (A ri:emler Re­ �a,ch Report). National Bureau of Stan­ dar<;L� Techni�al l'iot<: 3. Alb(tt., >l()n, !'. A. 1 986. i•arthioning l)f' Cell Po.rtide� and Ma�rom<>l=-...I;;;. ll�d �diti.,,1, I . Wiley & Sons, New York. 4- Walter. H-, .8roolla. D- E,, and Fisher, D1985. Partitioninf in Aqueous Two-rhase SYl'l<!':!1'1<, Ar.<1 d�ni� �<!':•� . Orhr1rlo, FL 5. Shaw, D. J 1 980. Introduction to CoHotd a�<I S11rra�e Ch¢«)imy. :Std ewtion, Butter­ worths, London , U . K. 6 . Voy11t5ky, S. ! 97.',. Colluid Chemi$try. MIR Pltbl�h.tr;, �..fo;coiv, U.S.5. R. English trans­ lation , 1 978. 7. J irgensons, B . and Straumanis, M. E, 1 954A Shori Tie-i<tbook of Colloid Chemi;try. J . Wiley & Sons, New York. 8. Bro,1�1.ed , J N . 1 9� I . M9lecular Magnitude and Phase mstribution. I. 'l • .l' hy�. C:hem. Bodenstein-F�iband . p. 257. 9. Rometsch, R. 19M. Helv. Chim , ;\ct.J. ''(�6): ! 81l o. sd,elbel, I L c;. and Karr, A. E. 1 9/10. l ! itl. En g. CJ:11:::m . ,U(6): 1 048. 1 1 . F,::rlur�, R. A. ·rt.c 1-'"nition of �i11gle com­ pqi>•:mt .J.!lQ. binar}· �Q!llJ)Qf!�!H protein mix­ t\.lres in polvethylt:,no, gly�ol-d�xtr�n " 'l ""­ ,,u,i two-phase systems. Natio11al Bu.-.::au of Stw.�rds T�chnki-.1 Not,:,. Ill. Walter, H., Brook$, I). E., and Fisher, D . 1 985. Plirtitior)ing h, 2quec;,us two• phas<t 5ystetn$- Academic l'resi, Odani:lo , FL 1 3. Johannon, (;_ 1 970. Partition of �alu and th ,:,lr dfo�t., on partilion of proteins in a de11tran-polyethylene glycol-water twc,­ ph.-se Sy$W�- :Bio.:him. Siophys. Acta !! ! :3B7, 14. O g5ton, A. C. !962. Arch. Ilioch<::m­ .8ioph)'s., Suppl. No, 1 ;39. 15. Flory, P, J . 1114 1 , The,modynamici 1,t· hi gh polymer solutions. J , Chem. Ph�·- . 9:660. 16. Mansoori, G. A. and Ely , J - F- 1 987 . P.-rtl1ioning of biological macromolecules in aqueous two- phase systems. Presented at 1he AIChE annual meeting, New York, 1 7. Ou, P- C. �ml M�1Miw•"i, G. A, !960. Fluid phase equilibri.- S0,5 7. 18, Ou, I'- c. 0.nd M�l'.ISOOn, G. A. 1987. Co-1tinuou5 mbdng pha�t cquilibrh.!.�n calcijla,. ti<,n 9..,:,d ph= rule. Ch=- Ens- Comro­ M: 139. 19. Olien, N . A. 1 987. Thettt1ophy&ical pro_per­ ti� for biopnx11:ss ('ll.g:i r!¢¢tmg. Chem. En g. P�owess., 0<;;1. p- 45. 20. Hanri, H-, Ely, ) - f., �nd M.-1:> '!0ori, G . A . Blo.sep.:ratlc;,111 U$1ng piiirt.itioning of po) ydi.5... P"r"' polymer, in aqu�ous twu-phue sys­ tems. Pr�sented at AlChE meetintt, Hous­ toi::1, "J'X, April !989. Research Needs and Prospects A recent N ational llureau of Stan• dards workshop drew a dear consen­ sus that more experimental data are e5scntial to develop predictive parti­ liouing modr:l� - CaJ:-e in choosing the systems for 5tudy will en�urc: that the number of measurements is. ke pt low 19 . For example, using mol.alities at the cntlO!l point of the solutiog, , For a free �of1Y of thi$ article (while. availabk), one can calculate interaction parame- w·rite in .50? on Reader Ssroic11 Card 688