Nothing Special   »   [go: up one dir, main page]

Academia.eduAcademia.edu

(1975) Comparative Mammalian Haematology

MAN QUADRUMANA. I O~Q CHEIROPTERA. QQQ ! QQQ I I HR£ 19QQ90Q9Q9~1 CETA CEA PACHYDERMATA 199910999991 ~ I~~~? 9? 999Q999~~\)vr:r,1 ~ I IQQQC? 009190101 ~ ),.. ®®~)®8@®0@(~@@ ...."...:.0.' ~ RUMINANTlA. RODENTIA EDtNTATA ~ MARSUP. MONOTR rG ee .. e' .. 00 K0G(S~)G~6 --~ Sieboldia )l. r::\(:lC\ 8\50800 c?'Ni.+ ~ PIS C E S Perea. I T~~". I .ooo~· I ! s~:o. I I Esox. I ! ~ot11S. I , I s:;~ ]- us. Ammocaetes. OF AN INCH. RED BLOOD-CORPUSCLES. Fran tispiece Reprinted from the Proceedings of the Zoological Society of London for 1875. EXPLANATIONS OF THE FIGURES ON PLATE LV. (Frontispiece) All the objecte are rod blood-wrpuscles done to one and the t*imeficaie,whieli is at the foot of the drawing. The whole length m* the eeak represents 7 ± π of an English inch, and each one of it« ten divisions j^'-j^ of an inch, as described at page 475. Only corpuscles of the average sizes and quite regular shapes are given; and they are all raagniilod to the same, or nearly the same, degree--to wit, about 800 diameters. VERTEBRATA ΑΓΥΒΒΝΛΜΑΤΑ. Homo. l. ; Corpuscle lying flat. 2. The same on edge. 3. Membranous base of the same, after removal by water of the co*ouring-matter. Quadrumane 4. Simia troglodytes. 6. Atelee ater. 6. Lemur anguanensis. Cheiroptera. 7. Cynonycteris collaris. 8. Vespertilio noctula. 9. Vespertilio pipistrellus. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. Fera. Sorex tetragonurus. Ureus labi at us. Bassaris astuta. Cercoleptes caudivolvulus. Trichechus rosmaru3. Canis dingo. Mustela zoriila. Felis Tigris. Paradoxurus pallasii. Paradoxurus bondar. Cetacea. 20. Bahena boops. 21. Dclphinus globic^pe. 22. Delphinus phocjena. 25. 26. 27. 28. 29. 30. 31. 32. .33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 61. Pachydermata. 23. Elephas indicus. 24. Rhinoceros indicus. Tapirua indicus. Equus cabalius. Dicotylcs torquatus. Hyrax capensis. Ruminantia. Tragulus javunicus. Tragulu3 meininna. Tragulus stanleyanus. Cervus nemurivagtis. Capra caucasica. Capra hircus. Bos urus. Camelopardalis giraffa. Auchenia vicugna. Auchenia paco. Auchenia glaina. Camel us droioed&riue. Camelus bactHanns, Cervus uiexicamie (see page 483) Rodent ia. Hydrochœi'us capybara. Castor fiber. Sciurus cinereus. Mus messori us. Edentata. Myrmecophsga jubata« Bradypus did:;cfyius. Dasypus villosud. Marsv.jAalia. Phascolomye wombat. lïypsipryunms setosus. Monotremata. 52. Echidna bystrix, VERTEBRATA P Y REN/EM ATA. Ave». i 59. Columba ruilna. 63. Struthio caraelus. 60. Columba migratoria. 54. The same, made round and de­ ! 01. Doiichonvx oryzivorus. prived of colour by water. j 62. Bueoros rlv.iioceroo. 65.rVanga destructor. 63. Phitt«icus auguri us. 60. Lari us excubi tor. 64. Phasianus 8u|>crbi:s. 65. PelecHiius onocrotalus. 67. Bubo virginiamie. 66. Trochilus, ep. 68. Syrnea nyctca. Rep'iiia er. Batrac&ia. Gymnotw wgyptiacus, Crocodilu« acuto». Lacerta viridis. Angui3 fragilis. Coluber berua. Python tigri»». Bufo vulgar is. Iissotriton vulgaris. Sieboldia maxima. Siren lacertina. Proteus angidnus. Amphiuma tridactylum. Pieces. Perca cermia, one corpuscle lying flat, the other on edge. Tinea vulgaris. Salmo fontinalis. Esox lucius. Gymnotus electricue. Squalus acanthiu5. Ammoc<ete8 branchialis. Lepidosiren annecttns. COMPARATIVE MAMMALIAN HAEMATOLOGY Cellular Components and Blood Coagulation of Captive Wild Animals C. M. HAWKEY Nujfield Institute of Comparative Medicine Zoological Society of London WILLIAM HEINEMANN MEDICAL BOOKS LTD LONDON First published 197 5 ©C. M. Hawkey, 1975 ISBNO 433 13390 2 Printed in Great Britain by The White friars Press Ltd., London and Tonbridge FOREWORD What is a normal animal and to what extent can the results obtained in this survey be considered to be of value either as a pure contribution to the collected data on physiological normality or as a guide in assisting clinical diagnosis of disease? Firstly, it is not possible to obtain blood samples from animals which are not affected by some influence, however subtle, at the time of bleeding. Secondly since disease processes represent a continuous change in a given animal before becoming detectable clinically, all subjects may be experiencing a degree of abnormality from disease. Thirdly, for all parameters, a range of values, sometimes wide, is used in interpreting a given result. This result will become narrower as more figures are obtained, but even a wide range is better than no range at all. In the animals from which the data presented in this book were derived a degree of abnormality may have existed, but from the point of view of the co-existence of clinical abnormality the following observations are relevant. With a few exceptions the animals formed part of a fairly stable collection; their clinical histories were known and clinical condition assessed in a veterinary hospital at the time of bleeding. This assessment was also based, in many cases, on radiological examination. The subsequent history of the animal was also known accurately and, where illness led to death, efficient necropsy examination was carried out in all cases. Consideration of this information has allowed a more than usually accurate selection of normal data. It is uncommon for such facilities to be available to a Zoological Collection and it is hoped therefore that the data presented is the best available at the time and may be relied upon in interpreting similar parameters in clinical cases. J. M. Hirne, M.R.C.V.S. Senior Veterinary Officer Zoological Society of London ACKNOWLEDGEMENTS This work would not have been possible with access to animals undergoing routine clinical examination in the Society's Veterinary Hospital. For this facility I should like to express my sincere thanks to the Veterinary Officer at Regent's Park, J. M. Hirne, M.R.C.V.S., D.V.R. for his continued cooperation in providing blood samples and clinical details since 1966 and to his predecessor, Mr. O. Graham-Jones, F.R.C.V.S. who helped to establish the study. Many blood samples have also been provided from animals at Whipsnade Park and for these I should like to thank the Curator, Mr. V. J. A. Manton, M.R.C.V.S. and the Veterinary Officer, Mr. D. M. Jones, M.R.C.V.S. I am also grateful to Mr. N. Bonnar, B.Sc. of the Seals Research Unit for blood samples for seals, to Dr. R. C. Jones, Ph.D. of the Wellcome Institute of Comparative Physiology for carrying out counts on African elephants and to my colleagues at the Nuffield Institute of Comparative Medicine and the Wellcome Institute of Comparative Physiology for permission to study normal laboratory animals in their care. It is a pleasure to acknowledge the help of various technicians who, over the years have carried out most of the laboratory tests, particularly Miss S. V. M. Hook for providing the general haematology results from 1965-1969 and Mrs. N. Ouna, Miss J. Cowley, Mrs. J. Henderson, Mrs. M. Laulicht and Mr. G. F. Nevill for their more than routine involvement in the work. Substrate plasma for clotting factor assays was kindly provided by Dr. K. M. Dormandy, Royal Free Hospital, London, Dr. N. Josso, Hôpital des Enfants Malades, Paris and Professor J. L. Stafford, St. George's Hospital, London and a generous supply of streptokinase by Mr. A. M. Nichols of Kabi Pharmaceutical Ltd. The study has been supported financially by the British Heart Foundation, the Medical Research Council and the Wellcome Trust. I also thank the Council of the Zoological Society of London for permission to reproduce the Frontispeice and Cambridge Scientific Instruments Limited for the Stereoscan photographs in Figures 1.1 and 1.3. I am grateful to Miss W. Churchill, Royal Free Hospital, Miss B. A. Blofield, Goldsmiths College, University of London and Miss P. Wright, Nuffield Institute of Comparative Medicine for much helpful discussion concerning the contents and preparation of the manuscript, and to Mr. R. N. T.-W.-Fiennes of the Nuffield Institute and Dr. R. K. Archer, Director of the Equine Research Station, Newmarket who have read the manuscript and made many valuable suggestions. I am also grateful to Mrs. Ethlyn Hazel and Mrs. Cosette Duncan for the many hours they have spent in typing the manuscript. Finally I should like to express my sincere appreciation to Dr. L. G. Goodwin, Director of the Nuffield Institute of Comparative Medicine, for constant encouragement during the past eight years. C.M.H. PREFACE The information presented in this manual has been collected over a period of eight years during a survey of the haematology of wild mammals in the Collection of the Zoological Society of London. The survey has resulted in the accumulation of a large amount of information about the blood constituents and haemostatic mechanism in a wide variety of mammals, much of which has not previously been available. Access to blood samples from exotic animals induces the temptation to superimpose on other people the interest and curiosity with which the tests were first carried out. There are however, many problems inherent in a comparative study involving a large number of different species but only a few individual representatives of each. It is evident nevertheless that the subject illustrates many important physiological principals and that much can be learnt by considering the blood picture of an animal in relation to its environmental demands, way of life and zoological relationships. The manual is presented therefore as a beginning and, hopefully, as a basis for expansion, confirmation and modification by physiologists and haematologists who have the opportunity of studying animals other than man. It is hoped that, as it stands, the material may be of use to veterinarians faced with the problem of diagnosis of pathological conditions in exotic mammals and to research workers in the selection of experimental animals for specific projects. More important is the hope that interest will be stimulated in the extending fields of comparative physiology and medicine. C.M.H. KEY TO ABBREVIATIONS Hb RBC PCV Retics MCV MCH MCHC MCD WBC N L M E B Pits ESR ELT Pg AF PT RW PTT RT TT I II V VII VIII IX X XI XII XIII AT CR TP No. Av. SD Haemoglobin g/100ml blood. Red cells x 10 6 /cmm blood. Packed cell volume %. Reticulocytes % of red cells. Mean cell volume/cu.mm. (fl) Mean cell haemoglobin^g. (pg) Mean cell haemoglobin concentration %. Mean cell diameter/μ. White cells xl0 3 /cmm blood. Neutrophilic polymorphs % of white cells. Lymphocytes % of white cells. Monocytes % of white cells. Eosinophilic polymorphs % of white cells. Basophilic polymorphs % of white cells. Platelets x 10 3 /cmm blood. Erythrocyte sedimentation rate, mm in 1 hour. Euglobulin lysis time/mins (unless otherwise stated). Plasminogen, units/ml plasma. Antifibrinolytic activity % of normal human value. Prothrombin time/sees. Stypven (Russel's viper venom) time/sees. Partial thromboplastin time/sees. Recalcification time/sees. Thrombin time/sees. Factor I (fibrinogen) mg/100ml plasma. Factor II (prothrombin) % of normal human value. Factor V (proaccelerin) % of normal human value. Factor VII (proconvertin) % of normal human value. Factor VIII (antihaemophilic factor) % of normal human value. Factor IX (Christmas factor) % of normal human value. Factor X (Stuart Prower factor) % of normal human value. Factor XI (Plasma thromboplastin antecedent) % of normal human value. Factor XII (Hageman factor) % normal human value. Factor XIII (fibrin stabilizing factor), present or absent. Plasma antithrombin activity units/ml. Clot retraction %. Total protein g/100ml plasma. Number of animals examined. Average result. Standard deviation. INTRODUCTION There are more than 4,200 living species of mammals and, of these the haematology of only one, man, has been fully studied. Some information is available for domesticated mammals and those species commonly used in laboratories but, although Haematology as a comparative subject was introduced by Gulliver in 1875 (see frontispiece), the vast majority of mammals have not yet been examined systematically. The reasons for this are both practical and technical in nature and the problems encountered in the present survey are worth stating since they illustrate many of the difficulties likely to apply generally to comparative physiological studies on wild animals. Collection of data Information has been collected from 1107 individual animals of 165 different species. Thus, although the total number of species is large compared with other studies, it falls far short of the whole. The number of individuals examined from each species is small and it is not possible at this stage to calculate statistically valid normal ranges. For non-human primates and a few other species, numbers have been supplemented by including normal laboratory animals in the survey. A small number of normal rabbits and rodents have also been included for purposes of comparison. Although in no instance has statistical respectability been reached, these figures should provide some guidance for research workers in selection of species suitable for specific projects. Throughout the survey, man has been used as the reference species. This approach cannot be validated from a zoological point of view but it has been used because the human species is the only one for which sufficient basic information is available for comparison. In addition, parallel tests carried out on normal human blood provide some means of quality control which is useful in a situation where day to day results on a variety of different species cannot be expected to give a normal distribution. What is a 'normal' animal? Apart from the difficulty in obtaining significant numbers of animals of the same species, other problems have become evident during the course of the study. First — what is a normal animal? Is a wild animal in captivity normal? The answer to the second question can only be an emphatic negative. The long-term effects of a captive environment on the general health of animals are impossible to evaluate at the present time and, in addition to these imposed conditions, it is probably true to say that no species of animal receives in captivity a diet exactly equivalent to that which it would select for itself in the wild. Although in many instances the balance may be in favour of the captive animal, unrecognised deficiencies may be present in apparently normal groups or individuals, the effects of which may alter haematological findings. It is also often difficult to assess the general health of individual animals. The survey has been carried out in collaboration with the Veterinary Officers of the Zoological Society and the majority of the animals have been examined clinically and radiologically at the time of obtaining the blood sample and all animals with a detectable abnormality have been excluded. Then there is the problem of age. Unless an animal has been born in captivity it is often not possible to do more than define its age as immature, mature or aged. Thus it has rarely been attempted to comment on variation of blood count with age. 1 2 Collection of blood samples Another major problem is in obtaining blood samples from wild animals without the use of tranquiUising or anaesthetizing drugs. In many instances it is not possible to approach a wild animal with (or without) a syringe without causing considerable stress to the animal and danger to the operator and handlers. Although this has been done with some species described - mainly members of the Artiodactyla - in most instances the animals have been prepared with a tranquiUising drug or anaesthetic. Animals receiving gaseous anaesthetics have been omitted from the survey since these are known to affect the blood picture and activity of the haemostatic mechanism. It should be noted however that the degree of stress and its effects on the blood cannot at present be assessed. In all cases the tests have been carried out on venous or, occasionally, on cardiac blood and throughout, meticulous standards have been imposed on preparation, storage and testing of the samples as the influence of these manipulations, particularly on coagulation, fibrinolytic and platelet tests cannot be overemphasised. The laboratory methods which have been used are mainly those in general employment in routine Haematology departments but it should be borne in mind that these are designed for use with human blood and the assump­ tion is made that they are valid for other species. In the present survey, carefully standardised established techniques have been used whenever possible, thus avoiding methodological variation and facilitating comparison of results within the survey and with those of other workers. In some clotting tests modifications are unavoidable because of the species specificity of factors involved in extrinsic prothrombin activation. In some other areas, particularly in the centrifugation time of the haematocrit, the reading time of the erythrocyte sedimentation rate and the conditions of precipitation used to obtain plasma euglobulin fractions, the advisability of restandardisation is indicated. Specific methods used and the modifications employed in the present survey are described in the appendix. Unfortunately it has not been possible to carry out every test on each animal. The incompleteness of the data is due occasionally to the small volume of blood available but more usually to the impracticability of undertaking more than a certain number of tests each day. Classification The plan of the book is based on Zoological classification, the animals being grouped according to their order. For this the classification of Simpson1 has been followed above the genus level and for genera and species we have referred to Morris2 for all except the primates which have been classified according to Napier and Napier3. In all cases, common names have been included for the convenience of the non-Zoologist. The results for each species are presented separately and an attempt has been made to comment briefly on any points of special interest. References Considerable attention has been given to providing a comprehensive list of references to mammalian haematology (excluding man) since the information which is available is widely scattered throughout the literature. Data abstracted from the literature have also been included for some domesticated and laboratory mammals and for those wild mammals which have been studied. The information on domestic and laboratory mammals is representative rather than exhaustive and has been included for the purpose of comparison with their wild relatives. It should be noted that the problems already described in association with carrying out blood tests on animals also apply to the vast majority of results appearing in the literature. References 1. Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Am. Nus. nat. Hist. 85, 1. 2. Morris, D. (1965). The mammals. Pub. Hodder and Stoughton, London. 3. Napier, J. R. and Napier, P. H. (1967). A handbook of living primates. Pub. Academic Press, London and New York. Chapter 1 COMPARATIVE HAEMATOLOGY O F THE VERTEBRATES All vertebrate animals have a closed system in which blood circulates under pressure. With the exception of ice fish (family Chaenithidae) in which red cells are absent [1], the blood comprises red cells, white cells and haemostatic cells suspended in plasma containing fibrinogen. Mammals are unique in that their red cells and haemostic cells do not contain nuclei. The following discussion summarises briefly information available on vertebrate blood cells and haemostasis. Red cells The red cells of fish, amphibians, reptiles and birds are oval in shape, each containing a centrally placed, spherical or oval nucleus. Amongst mammals, camels and their close relatives have oval cells but in all other groups red cells take the form of biconcave discs. In all mammals, including camels, the red cells are without nuclei. Loss of nuclei is associated with increased functional efficiency since extra space is available for haemoglobin molecules and oxygen utilization by the cells themselves is reduced [1]. The total red cell count is higher in mammals than in other vertebrates and the cells are smaller (Table 1.1). Thus both the oxygen-carrying capacity and the surface area available for gaseous exchange are increased and contribute to the greater efficiency of the mammalian cell. TABLE 1.1 COMPARISON OF RED CELL SIZE AND NUMBERS IN VERTEBRATE CLASSES Vertebrate class Red cell count X106/c.mm blood MCV/cuM Chondrichthyes (Cartilaginous fish) 0.07-0.39 952-1,010 Actinopterygii (Bony fish) 0.78-4.20 108-314 Amphibia (Amphibians) 0.02-0.04 MCD/μ Ref. 22.5 x 17.125.2x17.3 2 7.3 x 10.78.6x12.3 2 670-13,860 15.3 x 24.836.5 x 62.5 2 Reptilia (Reptiles) 0.7-1.1 171-465 8.7 x 16.412.1 x23.2 2 Ave s (Birds) 1.9-3.7 127-203 6.5x11.29.7 x 14.2 2 Mammalia (Mammals) 3.2-21.4 19-136 CMH-2 3 1.5-9.7 3 and present study 4 COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES Turkey X 1000 «*r^o Palm Civet XI250 *jEü l p | W C p 5 COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES Alpaca X 2000 (Stereoscan electron microscopy) Figure 1.1 Vertebrate red cells 6 COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES Red cells of all vertebrates contain haemoglobin. In mammals the haemoglobin content of the/^lood and the packed cell volume are relatively constant but the total number of red cells and mean cell size varies considerably. The inverse relationship between cell size and number was first pointed out by Wintrobe [2] and has been confirmed in the present survey (Figure 1.2). Numerous small red cells are often found in those species which inhabit high altitudes (e.g. sheep and goats) where the modification is thought to be an adaptation to conditions of low oxygen availability, providing an increased surface area for gaseous exchange. However, the mammal with the smallest red cells yet described, the Malay chevrotain or lesser mouse deer (Tragulus javanicus) [3] is not a mountain dweller but is found in the primary and secondary forests of the lowlands and foothills of Malaya and nearby islands. In the present series the largest red cells have been found in elephants, seals, dolphins and some rodents, confirming the observations of Gulliver, reported in 1875 [4]. The presence of large cells in elephants and large marine mammals suggests a direct relationship between red cell size and body mass but this idea is rapidly disproved for mammals in general. Gulliver [4] has pointed out that, within orders or families, the relationship may hold good. Figure 1.2 Relationship between red cell count and diameter in mammals 181 • • • • •· · X io 1 ·· ·· • • ·· ··· 1 · ·· · ·· · Ir * * * ■ 1 · 1 ■ • • 1 Mean Cell Diameter/cu.microns In seals and cetaceans where periodical exposure to anoxia occurs during diving the packed red cell volume is high and the red cells are relatively large. Calculation of absolute red cell values for these animals indicates an increased average red cell thickness. Thus the rate of diffusion into and out of the cells will be reduced, providing for a slow release of oxygen which may be advantageous during periods of submersion. Other physiological adaptations to diving found in these mammals include an increased blood volume, decreased sensitivity to accumulating carbon dioxide, tachycardia and peripheral vasoconstriction during diving [5,6]. COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES 7 Although it has not been studied in detail, red cell life span and rate of release of immature red cells from the marrow apparently varies in different mammals. Some species, particularly some Cebidae, rodents and cetaceans, normally have a much higher percentage of reticulocytes and polychromatic red cells in their circulating blood than man and in these species a small proportion of circulating nucleated red cells does not have any pathological significance. In other groups, including the Perissodactyla, reticulocytes and polychromatic red cells are rarely found, even after severe blood loss. Red cell inclusion bodies indistinguish­ able from Howell Jolly bodies occur normally in small numbers in marsupials, feline animals and prosimians and Heinz bodies are commonly found in up to 5% of red cells of felines [10]. These inclusions have also been found in apparently healthy bottlenosed dolphins (Tursiops truncatus) and white rhinoceroses (Diceros simus). Cabots rings are common in some camellidae. The erythrocyte sedimentation rate, which is a trusted indicator of chronic disorders and localised inflammatory diseases in man, is difficult to interpret in other mammals. Some groups, notably the Perissodactyla, have red cells which readily form rouleaux and sediment very rapidly. In others (e.g. most bovine animals), red cell sedimentation is negligible after several hours, even in grossly diseased animals. In man the sedimentation rate is raised in association with a low red count, macrocytosis and raised levels of fibrinogen and globulins, but in other mammals the factors affecting the test are not yet fully understood [7]. A detailed comparative study of erythrocyte sedimentation should be rewarding. Leucocytes Amongst white cells of all vertebrate animals lymphocytes and monocytes with fairly typical morphology can be identified but polymorphonuclear white cells of non-mammals vary considerably in morphology and staining characteristics [8, 36]. In all mammals the polymorphic granulocytes can be classified as neutrophils, eosinophils or basophils which are basically similar to those of man. Neutrophils vary slightly in types of granulation present; this variation is most marked in rabbits and some hystricomorph rodents where the cells equivalent to neutrophils show marked eosinophilic granulation and are termed 'heterophils' or pseudoeosinophils. The degree of nuclear lobulation is another variable factor throughout the Mammalia. Neutrophils of mice and some other rodents are often U-shapçd, doughnut-shaped or coiled without exhibiting true lobulation. At the other extreme, neutrophils of most non-human primates have nuclei which are hyperlobulated compared with man. The shape, size, concentration and staining characteristics of granules of the true eosinophils also varies in mammals and in some species, for example owl monkeys (Aotus trivirgatus) and bottle-nosed dolphins (Tursiops truncatus), a high eosinophil count in the absence of parasitic infestation or allergy seems to be the rule. Basophils are found frequently in rabbits but are extremely rare in some species (e.g. members of the Perisso­ dactyla and some Artiodactyla). It has been claimed that the circulating basophil count is inversely proportional to the number of tissue mast cells [9]. Reported total white cell counts in non-mammalian vertebrates indicate much variation but this estimation is difficult to carry out in the presence of nucleated red cells and thrombocytes and has not been widely used or carefully standardised. Amongst mammals the normal white cell count varies between less than 1 x 10 3 /mm 3 of blood in deer and 15 x 103 in some carnivores and non-human primates. The neutrophil/lymphocyte ratio is also variable. In man the ratio is less than one in children and greater than one in adults but in other mammalian species examples of all possible variations can be found. In domestic cats, dogs and horses, neutrophils predominate throughout life while in cattle and sheep and lymphocyte is usually the most numerous cell [10]. In pigs, neutrophils predominate at 8 COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES birth but are outnumbered by lymphocytes before the end of the suckling period [10]. Because of differences in total white count and neutrophil/lymphocyte ratio the most reliable index of disease may be cell morphology rather than cell count. The presence of immature cells, toxic granulation and Dohle bodies can be significant if the normal picture for the species is born in mind. Haemostatic cells Strictly speaking, all blood cells which play an active part in haemostasis are defined as thrombocytes. For the sake of clarity in the present monograph, the term thrombocyte has been applied to the nucleated haemostatic cells of non-mammalian vertebrates and the cell fragments involved in haemostasis in mammals have been referred to as 'platelets'. The relationship between thrombocytes and platelets is not clear. Although morphologically very different they are apparently functionally similar. Thrombocytes are well defined, nucleated cells, similar in size to small lymphocytes, each derived from a single mononuclear haematoblast whereas platelets are small, anuclear structures produced from megakaryocytes by cytoplasmic fragmentation, each megakaryocyte giving rise to several thousand platelets. Both are involved in clot retraction and in prothrombin activation and both aggregate to form haemostatic plugs (Fig. 1.3). Reactions with different types of foreign surface [11] and the mechanisms of aggregation [12] may be different. Amongst mammals there is considerable species variation in the number of platelets present in the circulating blood. Extremes are seen in dolphins and some equine animals where the count can be as low as 1 x 10 5 /mm 3 and elephants and rats where counts of greater than 1 x 10 6 /mm 3 are often recorded. Although platelet size has not been measured, observation suggests that, as with red cells, the total platelet mass may be relatively constant throughout the Mammalia and perhaps also in other vertebrates where thrombocytes are much fewer in number but considerably greater in size. The use of experimental animals for research on platelet aggregation has made available much specialised information about platelet constituents for individual species and wide variation at the species level is indicated for adenine nucleotides [13], 5-hydroxytryptamine [14] histamine [15] and platelet surface glycoprotein types [37]. Marked species differences in response of platelets to aggregating agents and inhibitors have also been identified [13]. Comparative studies on platelet constituents and behaviour could be useful in elucidating functional mechanisms but great caution should be exercised in extrapolating results obtained in animal experiments to the human situation. Blood coagulation The blood coagulation mechanism has been extensively studied in man, mostly in relation to cause and treatment of congenital and acquired haemorrhagic disorders. In view of the problems faced by human patients with disordered haemostasis it can safely be assumed that all other living species possess a haemostatic process compatible with their way of life, but little is known about the mechanisms involved in non-mammals. Comparative studies have shown that thrombin-clottable fibrinogen occurs in all vertebrates [16] and a prothrombinlike precursor, converted rapidly to thrombin by homologous tissue factor is also present (Table 1.2). In mammals this reaction requires the presence of plasma factors V, VII and Xbut in other vertebrates the part played by plasma cofactors — if any - is not known [17]. By observing the ability of blood to clot without addition of tissue factor, an intrinsic path­ way of pro thrombin activation has been identified in some bony fish [18] in amphibians [11] and in mammals but this mechanism is apparently poorly developed in reptiles [19] and birds [20] (Table 1.2). A potent circulating anticoagulant has been identified in the blood COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES Figure 1.3 Aggregated Thrombocytes and Platelets BABOON PLATELETS (x4500) TURKEY THROMBOCYTES (x4000) Baboon platelets aggregated by addition of ADP. Turkey thrombocytes obtained from clotted blood. Stereoscan electron microscopy. 9 10 COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES of some reptiles [19], possibly present to counteract the risk of intravascular coagulation in animals with a slow circulation and sluggish way of life. In birds, absence of factors XI and XII is suggested by the fact that the plasma clotting time is not shortened by contact with glass or other activating surfaces [20]. In mammals, apart from Cetaceans and possibly the greater Kudu (vide infra), both pathways of prothrombin activation are well developed. Congenital coagulation factor deficiencies have only been detected in domesticated animals existing in a protected environment. The main reason for lack of understanding of the comparative part played in the blood coagulation mechanism by plasma factors is the fact that these factors are often species specific and do not react optimally in heterologous protein mixtures. Consequently it is difficult to devise test systems in which their activity and identity can be assessed. Substrate plasmas used for this purpose in human haematology are derived either from patients with known deficiencies of individual factors or by subjecting mammalian plasma to various well tried fractionation procedures. Thus optimum substrates are not usually available for other species. Even with other mammals, low readings obtained in heterologous mixtures of this type are difficult to interpret because they may merely reflect lack of reactivity. When extended to other vertebrates, species specificity is exaggerated and negative results become meaningless although positive findings may be acceptable. Using this kind of test system it can be demonstrated that amphibian plasma contains a factor which will replace human factor V but tests for factors VII, VIII, IX and X are negative [21]. In some birds a factor equivalent to human factor VIII is present but factors V, VII and X have not been detected [21]. In mammals the clotting factors known to be affected by species specificity axe mainly those involved in the extrinsic pathway of prothrombin activation, particularly the reactions between tissue factor and factors VII and X [22, 23]. In practice this can influence the results of the one-stage prothrombin test and assay of factor VII. Factors II and X of TABLE 1.2 SPONTANEOUS CLOTTING AND ENHANCEMENT BY HOMOLOGOUS TISSUE FACTOR IN VERTEBRATES Class Whole Blood Clotting Time One-Stage Prothrombin Time With Homologous Tissue Factor Actinopterygii Less than 1 min. (Blackfish) [18] 11.0 sec. (Catfish) [35] Amphibia 6-12 mins. (Marine toad) [11] 11.5 sees. (Xenopus toad) [17] Reptilia Longer than 1 hour [19] 12.5 - 13.5 sees. (Lizard and tortoise) [34] Aves 5-180 mins. [20,32,33] 12 sees, (chickens) [17] Mammalia Less than 12 mins. 9-15 sees. mammals can be activated directly by Taipan snake venom [25] and Russell's viper venom [24] respectively, thus bypassing assay problems for these factors. There is no evidence of species specificity among factors taking part in intrinsic prothrombin activation of mammals and partial thromboplastin from those species which have been 11 COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES tested reacts equally well with plasma from all others. With the interesting exception that Cetaceans have no factor XII [26], and that factor XI is possibly missing in the Greater Kudu (Chapter 5) those clotting factors known to be present in human plasma can be found in all other mammals. Judged by human standards, the activity of these factors measured in conventional assay systems is often greatly increased, and confirmation that this is a true representation of clotting activity is obtained from parallel finding of short clotting times in direct tests not involving heterologous clotting mixtures, such as the whole blood clotting time, the recalcification time and thrombelastography (Figure 1.4). It can be suggested that wild animals may require a more efficient haemostatic mechanism than civilized man and it is interesting that there is no related increase in susceptibility to spontaneous thromboembolic cardiovascular diseases. These are in fact rare in animals other than man. [38] Fibrino lysis Amongst non-mammalian vertebrates spontaneous fibrinolytic activity has been recorded in some fish [18], amphibians [39, 27] and birds [28, 29] but not in reptiles. The difficulty in studying this mechanism in lower vertebrates is due mainly to lack of availability of artificial activators (Table 1.3) and the consequent inability to prove or disprove the presence of a plasminogen-like fibrinolytic precursor in any species except some amphibians which react with large doses of human urokinas [27], and birds in which activation can be produced by saliva from the vampire bat, Diaemus youngi [28, 30]. In mammals, plasminogen can be identified by its reaction with urokinase or streptokinase and quantitative tests show that the plasminogen level is high in most other mammals compared with man but levels of circulating plasminogen activator may be low. Activation by streptokinase requires the presence of a trace of normal human serum in some orders (Table 1.3); this finding has given TABLE 1.3 ACTIVATORS OF FIBRINOLYSIS IN VERTEBRATE GROUPS Activation of fibrinolysis by: SK + HS SK + + + + + + + + + + + + + + + + + + + + + + + + + +* + + + + 0 0 0 + 0 0 0 0 0 0 0 0 UK Mammalia: ! Primates Carnivora Insectivora Edentata Pinniped ia Lagomorpha Rodentia Artiodactyla Perissodactyla Proboscidea Hyracoidea Marsupialia Ave s Reptilia Amphibia Pisces * UK = SK = HS = ? Canidae require high concentrations. human urokinase streptokinase human serum 1/100 o 0 0 0 0 | i 1 12 COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES Figure 1.4 Thrombelastograph tracings on some normal mammals CARNIVORA COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES 13 rise to the theory that 'proactivator' is required for the reaction [31]. It should be borne in mind however that virtually all the streptokinase used in laboratory tests is derived from the same strain of ß haemolytic streptococcus and, using other strains, different patterns of species activation can be obtained. From the foregoing discussion it is apparent that there is much to be learnt about the blood picture and haemostatic processes at a comparative level, but that certain basic principles can be stated. In mammals, differences are quantitative rather than qualitative and, with the possible exception of platelet constituents and reactions, closely related animals generally show similar patterns. Within a zoological group, variations can often be explained by environmental adaptation and further comparative studies at this level should provide an interesting and rewarding exercise. 14 COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES References 1. Lehmann, H. and Huntsman, R. G. (1961). Why are red cells the shape they are? The evolution of the human red cell. In: Functions of the blood, (Eds. R. G. Macfarlane and A. H. T. Robb-Smith). Academic Press, London and New York. 2. Wintrobe, M. M. (1961). Clinical Haematology. Kimpton, London. 3. Duke, K. L. (1963). Erythrocyte diameter in Tragulus javanicus, the chevrotain or mouse aeer. Anat. Ree. 147, 239. 4. Gulliver, G. (1875). Observations on the sizes and shapes of the red corpuscles of the blood of vertebrates, with drawings of them to a uniform scale and extended and revised tables of measurements. Proc. zool. Soc. Lond. page 475. 5. Ridgway, S. H. (1972). Mammals of the Sea. Biology and Medicine. Thomas, Springfield, Illinois. 6. Andersen, S. (1966). Physiological adaptations in diving vertebrates. Physiol Rev. 46, 212. 7. Bottiger, L. E. (1967). Erythrocyte sedimentation rate and protein-bound carbohydrates in domestic animals. Acta vet. Scand. 8, 279. 8. Andrew, W. (1965). Comparative Haematology. Grune and Stratton, London and New York. 9. Fulton, G. P., Maynard, F. L., Rüey, J. F. and West, G. B. (1957). Humoral aspects of tissue mast cells. Physiol. Rev. 37, 221. 10. Schalm, O. W. (1967). Veterinary Haematology. Lea and Febiger, Philadelphia. 11. Hackett, E. and LePage, R. (1961). The clotting of the blood of an amphibian, Bufo marinus. 2. Blood thromboplastic activity. Aust. J. exp. Biol. med. Sci. 39, 67. 12. Belamarich, F. A., Shepro, D. and Kein, M. (1968). ADP is not involved in thrombininduced aggregation of non-mammalian vertebrates. Nature (Lond.) 220, 509. 13. Mills, D. C. B. (1970). Platelet aggregation and platelet nucleotide concentration in different species. Symp. zool. Soc. Lond. 27, 99. 14. Born, G. V. R. and Gillson, R. E. (1959). Studies on the uptake of 5-hydroxytryptamine by blood platelets. / . Physiol. 146, 472. 15. Humphrey, J. H. and Toh, C. C. (1954). Absorption of serotonin (5-hydroxytryptamine) and histamine by dog platelets. / . Physiol. 124, 300. 16. Doolittle, R. F., Onckly, J. L. and Surgenor, D. M. (1962). Species differences in the interaction of thrombin and fibrinogen. / . biol. Chem. 237, 3123. 17. Hawkey, C. M. (1970). The haemostatic mechanism in man and other animals. General summary and conclusions. Symp. zool. Soc. Lond. 27, 217. 18. Doolittle, R. F. and Surgenor, D. M. (1962). Blood coagulation in fish. Am. J. Physiol. 203, 964. 19. Hackett, E. and Hann, O. (1967). Slow clotting of reptile bloods. / . comp. Path. 11, 175. 20. Soulier, J. P., Wartelle, 0 . and Ménaché, D. (1959). Hageman trait and PTA deficiency; the role of contact of blood with glass. Brit. J. Haemat. 5, 121. 21. Hawkey, C. M. (1965). Investigation and comparison of clotting mechanisms in animals and man. Thesis M.Sc. University of London. 22. Mann, F. D. and Hum, M. M. (1952). Species specificity of thromboplastin: Role of the co-thromboplastin reaction. Proc. Soc. exp. Biol Med. 79, 19. 23. Hawkey, C. M. and Stafford, J. L. (1961). Influence of serum factors on the species specificity of tissue thromboplastin. Nature (Lond.). 191, 920. 24. Esnouf, M. P. and Williams, W. J. (1962). The isolation and purification of a bovine plasma protein which is a substrate for the coagulant factor of Russell's viper venom. Biochem. J. 84, 62. 25. Denson, K. W. E. (1969). Coagulant and anticoagulant action of snake venoms. Toxicon 7, 5. 26. Robinson, A. J., Kropatkin, M. and Aggeler, P. (1969). Hageman factor (factor XII) deficiency in marine mammals. Science, 166, 1420. 27. Blofield, B. A. (1965). A spontaneously active fibrinolytic system in Xenopus laevis which is further activated by human urokinase. Nature (Lond.) 206, 736. 28. Hawkey, C. M. (1970). Fibrinolysis in animals. Symp. zool. Soc. Lond. 27, 133. COMPARATIVE HAEMATOLOGY OF THE VERTEBRATES 15 29. Allen, B. V. (1972). Fibrinolysis in the domestic chicken (Gallus domesticus) . Thromb. Diath. haemorrh. XXVII, 644. 30. Cartwright, T. and Hawkey, C. M. (1969). Activation of the blood fibrinolytic mechanism in birds by saliva of the vampire bat (Diaemus youngi). J. Physiol. 201, 45P. 31. Mullertz, S. (1955). Formation and properties of the activator of plasminogen and of human and bovine plasmin. Biochem. J. 6 1 . 424. 32. Bigland, C. H. and Starr, R. M. (1965). Comparison of simple blood coagulation tests in birds. Can. vet. J. 6, 233. 33. Stopforth, A. (1970). A study of coagulation mechanisms in domestic chickens. /. comp. Path. 80, 525 34. Fantle, P. (1961). A comparative study of blood coagulation in vertebrates. A ust. J. exp. Biol. 39, 403. 35. Langdell, R. D., Bryan, F. T. and Gibson, W. S. (1965). Coagulation of catfish blood. Proc. Soc. exp. Biol. Med. 118, 439. 36. Shermer, S. (1967). The Blood Morphology of Laboratory Animals. F. A. Davis Co., Philadelphia. 37. Nurden, A. T. (1974). Observations on platelet macroglycopeptide. Nature. 251, 151. 38. Finlayson, R. (1965). Spontaneous arterial disease in exotic animals./, zool 147, 239. 39. Hackett, E. and Hann, C. (1964). Erythrocytes and the liquefying of clotted amphibian blood in vitro. Nature, Lond. 204, 590. Chapter 2 PRIMATES The order Primates is divided into two suborders, the Prosimii (tree shrews, lemurs, lorises and bushbabies) and the Anthropoidea. In the Anthropoidea, three superfamilies are distinguished; the Ceboidea (New World Monkeys), the Cercopithecoidea (Old World Monkeys) and the Hominoidea (gibbons, chimpanzees, orangutans, gorilla, man). There are approximately 200 living species of primates and much sub-speciation occurs, sometimes making classification difficult. Non-human primates are distributed widely throughout central areas of the world, and although most species are threatened to a greater or lesser degree by the activities of man, the group can be considered as successful at the present time. The haematology of non-human primates is of interest because of the close relationship of these animals with man, and laboratory data has become increasingly available since monkeys have gained popularity as experimental animals in medical research. Information is available from the literature on the blood picture of some prosimians [1-3], great apes [1,2,4-13, 113], old world [1, 2,4, 6, 11, 14-72, 104], and new world [1,2,4, 13,73-87] monkeys and the blood coagulation and related mechanisms have also been studied [88-112]. However, reported results are often difficult to interpret and compare because normal ranges are very wide and sometimes conflicting. There are a number of reasons for this variation including differences in sampling techniques and laboratory methods, problems with classification of the animals examined and failure to take into account the influence on the blood picture of variables such as diet [24, 75, 82, 89], the captive environment [114], diurnal and seasonal variation [31], experimental procedures [9, 11], anaesthetics, stress [13],age [5,39,50,58, 64, 71], sex [3, 5, 32, 51, 64] and pregnancy [25, 50, 52, 83]. Recently comparative primate haematology has been the subject of an excellent monograph in which results from relatively large groups of sixteen species have been analysed statistically and the influence of many variables assessed [1]. This publication does much to reduce the existing confusion. Red cells On the whole the blood picture of non-human primates is similar to that of man. Those minor differences which are present are more exaggerated in the less closely related types (Prosimii and Cebidae) and approach human levels in the Pongidae. Red cells are similar in appearance to those of man, anisocytosis and poikilocytosis being minimal in normal animals. Haemoglobin levels, packed cell volume and MCHC are relatively constant through­ out the order but the total red cell count is higher and the MCV and MCD lower in the more primitive types. Reticulocytes are found in the peripheral blood of monkeys; in Cercopithecidae and Pongidae the response to blood loss is apparently similar to that of man. In Prosimians and and Cebidae the reticulocyte count is normally high and Howell Jolly bodies, polychromatic red cells, and late normoblasts occur in small numbers in the peripheral blood. These animals often show an exaggerated reticulocyte response to red cell loss. Chronic iron deficiency anaemia resulting in hypochromia and lowered MCV has been described in some species of newly captured monkeys and in captive monkeys receiving 17 18 PRIMATES inadequate dietary iron [1]. Parasitic infestation and frequent blood sampling may augment this defect. Captive monkeys are also prone to folic acid deficiency unless the intake of this vitamin is controlled [1]. Experimentally-induced folate deficiency in monkeys is associated with megaloblastic marrow changes [1, 59], and peripheral macrocytosis [18], leucopenia [59], thrombocytopenia [59] and increased hyperlobulation of the neutrophils [18]. Baboons normally have low serum B i 2 levels [60] and a progressive fall in the level of this vitamin has been reported in captive animals [61]. There is no evidence that experimentally induced [59] or acquired [61] B i 2 deficiency is associated with megaloblastic marrow changes or an abnormal blood picture in non-human species. The erythrocyte sedimentation rate is generally slow in monkeys. It may be increased during pregnancy [26]. Occasionally raised values are encountered in apparently healthy animals. The clinical significance of the ESR in non-human primates requires further investigation. White cells Data available from the literature suggests that the average total white count for many monkey species is greater than that of man but in the present survey, where clinically abnormal animals have been excluded, this difference is not apparent although wide ranges are sometimes found. The white cell count of monkeys is increased by stress and is higher in females than males [1]. In adult animals, as in man, neutrophils usually outnumber lymphocytes but in rhesus monkeys and baboons a reversed neutrophil/lymphocyte ratio has been reported in immature animals [ 1 | . This finding may well be found to apply to other species when different age groups are examined. White cell morphology is similar to that of man apart from hyperlobulation of the neutrophil nuclei which occurs in most nonhuman species. An interesting species difference has been noted in owl monkeys (Aotus trivirgatus) in which the eosinophil count is usually high, even in the absence of detectable parasites, and circulating eosinophils have cigar-shaped eosinophilic granules. In immature eosinophils in the marrow, the granules are spherical. Because of the wide normal range in total white counts, evaluation of white cell morpho­ logy often gives a better indication of reaction to infection and increase in the proportion of immature neutrophils and the presence of toxic granulation or Dohle bodies are the most reliable signs of infection in monkeys. Chronic lymphatic leukaemia has been described in a small number of animals of this group [62, 108]. Platelets Platelets stain well with Leishman stain and the platelet count is similar to or greater than that of man. Monkey platelets are aggregated rapidly by ADP but in some species, dis­ aggregati on occurs almost immediately [98] (Fig. 2.1). This is due to the presence in the plasma of high levels of an ADP-inactivator. There is evidence that the activity of this inhibi­ tor decreases with increasing age [98]. Primary thrombocytopenia and functional platelet defects have not been found in monkeys. Progressive thrombocytopenia has been described in folate deficient baboons [59] and in rhesus (Macaca mulatta) [99] and owl monkeys (A. trivirgatus) [105] experimentally infected with malaria. Blood coagulation Clotting tests on non-human primates are relatively easy to carry out and to interpret as species specificity does not influence the reaction between monkey and human clotting proteins or tissues extract and standard human reagents and methods can be used (Table 2.1). PRIMATES 19 Figure 2.1. Patterns of ADP-induced platelet aggregation in primates. TIME IN MINUTES Aggregation of platelets in PRP produced by addition of ADP. Arrows denote addition of ADP. Curve A shows the effect of 1.2 mg ADP per ml PRP. Curve B shows the effect of 12 mg ADP per ml PRP. Platelets 400 x 1 0 3 / c m m PRP. CMH-3 PRIMATES 20 TABLE 2.1 CROSS REACTIVITY BETWEEN HUMAN AND MONKEY PLASMA AND BRAIN EXTRACT Pro thro mbin time (sees.) with brain extract from Plasma from M.mulatta M.maurus E.patas C.ascaneus Cebus sp. M. mulatta M. maurus E. patas C. ascaneus Cebus sp. 14.0 14.0 14.0 15.0 11.5 13.5 14.0 13.5 14.0 11.5 13.4 14.5 14.0 15.0 11.0 14.0 14.0 14.5 14.5 11.0 14.0 14.0 13.5 13.0 11.0 15.0 14.5 14.0 14.5 11.0 H. sapiens 14.5 14.0 14.0 14.0 14.0 14.0 H.sapiens Coagulation is rapid in the Cebidae and approaches the normal human picture in the Cercopithecidae and Pongidae. Comparative values for these groups are given in Table 2.2. Levels of factors II and X are generally within normal human range but factors V, VII, VIII, XI and XII are high. Low factor IX activity is often found in members of the Cercopithecidae but haemorrhagic symptoms are not encountered. These monkeys also have a prolonged clotting time with Russell's viper venom, due to an abnormal reaction between venom-activated factor X and monkey factors II and/or V [92]. TABLE 2.2 COMPARISON OF CLOTTING ACTIVITY IN PRIMATE GROUPS Test PT/secs. RVV/secs. PTT/secs. Thro mbin time Factor I mg/100ml II % V VII VIII IX X XI XII Antithrombin units CEBIDAE 10.3 9.8 42 8.2 379 90 680 585 508 230 221 487 460* CERCOPITHECIDAE 14.3 14.8 55 7.7 376 94 183 360 523 58 101 126 408 440 PONGIDAE 15.0 9.0 54 7.4 464 63 86 178 630 94 153 314 542 473 MAN 14.0 8.7 71 6.4 200-400 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 220-560 *Excluding very high results in Aotus trivirgatus (owl monkey). Congenital coagulation defects have not been described in monkeys; this is not surprising since severe haemorrhagic diseases would be rapidly lethal in animals in the wild habitat. It is possible that under conditions of interbreeding and protected environment offered by the large Primate Centres, these diseases will eventually appear. There is no justification at present in regarding those monkeys in which the levels of factors II, IX and X are below the normal human limits as being abnormal. These factors are reduced in liver disease and vitamin K deficiency but the monkeys concerned have normal liver function tests and do PRIMATES 21 not respond to injection of vitamin K. In the present survey, only in severe proven cases of vitamin K deficiency have haemorrhagic symptoms been encountered in monkeys. Fibrinolysis Plasminogen levels are generally higher in monkeys than in man. Circulating plasminogen activator is within the normal human range in most Cercopithecidae and Pongidae but is increased in some Cebidae. Since this group is also "hypercoagulable" compared with man, it provides some support for the theory that coagulation and fibrinolysis are normally present in a balanced equilibrium. Fibrinolytic inhibitors do not vary significantly in primates which have been examined [91]. Increased fibrinolysis has been encountered in monkeys in association with acute bacterial infections and anaphylactic shock, and can be induced experimentally by infusion of adrenaline. Plasminogen of all primates is rapidly converted to plasmin by human urokinase and by streptokinase. Additional proactivator is not required for the latter reaction. The amount of SK required for plasminogen activation is considerably higher in baboons than in other primate species possibly due to a basic difference in the structure of the plasminogen molecule [100]. PROSIMII TUP All DAE Tupaia glis Common tree shrew* Ref 1 Ref 2 A v. Ref 3 Av. 12.9 Range 11.7-13.8 RBC 6.8 6.5-7.3 7.4 2.7-9.4 6.4 4.1-9.0 1 PCV 40.8 38-42 47.4 34.5-55.0 43 30-52 Test 1 Hb 15.3 Range 5.7-20.7 Av. 13.9 Range 10.2-16.2 1 | Retics MCV 59.8 52-64 64.0 51-90 67.6 55-97 1 1 MCH 18.97 16.1-20.5 20.8 15.4-28.7 21.7 16.4-31.4 1 1 MCHC 32.0 31-34 32.3 23-41 32.0 27.1-40.5 1 0.85-6.1 1 MCD 3.2 2.0-5.4 3.3 4.4 1.4-11.3 1 N 58.5 49-70 24 5-62 15 0-52 1 L 26 15-34 73 13-84 80 3-100 ΓΜ 4.8 1-9 0.2 0-4 0.4 0-2 E 9.3 5-19 2.5 0-12 3.8 0-15 B 3.2 0-3 0.6 0-5 0.8 0-8 WBC Pits 1 ESR ELT Pg' AF 4 animals 21 males 45 females For blood coagulation see ref. 110. * The taxonomic status of tree shrews is at present uncertain but conventionally they are classified as prosimian primates. 1 1 PRIMATES 23 PROSIMII LEMURIDAE Lemur catta Ringtailed lemur Survey Results Survey Results 1 Test Av. Range Hb 14.6 13.4-16.4 8 | |RBC 6.5 5.5-7.2 8 | |PCV 49 45-53 8 1 1.3 0.6-2.6 8 |MCV 77.5 70-85 |MCH 22.6 |MCHC 29.5 Retics No. 1 \Test Av. Range \ PT 12.0 11.5-12.5 5 8.0 7-10 4 |PTT 29 23-37 7 |RT 45 35-47 7 8 1 |KRT 33 38-37 5 1 20-25 8 |TT 27-32 8 | RVV No. | 6.9 6.0-7.5 6 |I 342 293-407 3 8 1 111 101 1 8 |V 250 1 | |MCD 6.04 5.33-6.73 [WBC 9.3 6-15 |N 75 56-86 8 1 | VII |L 22 12-35 8 | VIII 790 |M 2 0.5-8.0 8 IX 250 1 E 1 0-5 8 |x 250 1 8 1 | XI + 3 350 1 I |B 0 1 Pits 240 |ESR 0.1 |ELT 8 XII 0-0.5 7 | XIII 9-20h 7 |AT 189-343 380-1000 3 |CR Pg |AF |TP A small number of red cells contain Howe 11 Jolly bodies. See also ref. 2. 5.9 5.0-6.35 See also ref. 89 3 | PROSIMII LORISIDAE Galago crassicaudatus Thick-tailed bushbaby Survey Results Test Hb Av. Range Survey Results No. 1 [Test Av. Range No. 1 14.2 12.9-16.3 6 RBC 8.0 7.3-8.6 6 RW 9.0 8-10 2 PCV 43.6 39-49 6 FIT 136 80-185 6 6 PT 1 Retics 0.8 0.1-1.5 6 1 RT 170 85-390 | MCV 55.0 46.0-58.4 6 1 KRT 98 85-108 2 MCH 17.9 14.6-19.7 6 1 TT 8.0 7-9 2 MCHC 32.6 30-35 6 17.5 12.1-24.0 6 57 33-75 6 VII 38 22-60 6 1 vin |M 4 2-7 6 I 3.7 1-8 6 0.3 0-1 6 314-662 6 | | MCD | WBC 1 II N E B 1 | Pits 427 | ESR ELT 24h+ 5 Pg | AF A small number of red cells normally contain HowellJolly bodies I 1V Π ιχ 190 1 1 1** 86 1 100 2 | XIII + 2 | 6.5 1 | X | XII | AT 1 CR | TP 25 PRIMATES PROSIMII LORISIDAE Galago senegelensis Lesser galago Ref. 88 . Test Ref. 88 Av. Range Av. Range Hb 17.2 13.6-20.4 15.8 13.2-17.6 | | RBC 7.3 3.4-8.4 6.6 5.9-7.4 1 PCV 51.5 44-58 45.8 40-51 1 IMCV 70.06 63.5-81.0 69.1 IMCH 23.4 19.0-27.5 23.8 19.2-27.3 |MCHC 33.7 30.4-37.3 34.5 34.5-40.0 1 1 1 Re tics 63.4-73.7 1 |MCD 8.4 3.6-16.5 9.0 4.8-13.4 |N 1.57* 0.3-3.3 1.7* 0.5-3.6 |L 6.5* 3.3-12.6 6.5* 4.0-10.6 1 |M 0.2* 0-0.5 0.3* E 0.9* 0-0.3 0.22* WBC I 0.06-0.6 0-0.7 |B [Pits 533 431-684 591 359-1027 ESR |ELT Pg |AF 9-11 males *X103/c.mm. 11-15 females | | 26 PRIMATES ANTHROPOIDEA CEBOIDEA CALLITRICHIDAE Calli thrix jaccus Common marmoset Survey 1 Test Av. 1 Hb 14.1 1 RBC 6.15 Results Range Ref. 73 No. | Av. 12.5-15.3 6 flO.8-18.7 5.8-6.3 4 4.8-7.4 B6.5-62.6 PCV 44 41-51 6 Retics 0.6 0.4-0.7 4 0.2-10.1 MCV 70.9 66-78 4 £8.7-90.7 MCH 23.6 21-26 4 20.3-27.7 MCHC 32.1 31-34 6 32.3-40.9 6.83-7.09 4 MCD 6.98 | WBC 6.5 2-11 5 1 76 72-83 5 L 19 12-22 5 M 4 3-5 5 N E 1 B Pits 0.5 0-2 5 0.5 0-2 5 1 3 1 375 290-430 4.1-20.3 81-866 ESR ELT Pg | AF A small number of red cells normally contain Howe 11 Jolly bodies. Immature animals have a reversed neutrophil/lymphocyte ratio. See also ref 2. 12-15 animals PRIMATES 27 ANTHROPOIDEA CEBOIDEA CALLITRICHIDAE Saguinus geffroyi (Geoffroy's tamarin) Réf. 77 Test SD Av. Hb Ref. 77 11.7 ± RBC 4.0 ± PCV 36.1 SD Av. 1.8 12.2 ± 1.9 0.76 4.1 ± 0.69 39.5 ± 7.0 ± 5.1 1 1 Retics MCV 91.6 ±10.5 95.8 ± 1.0 MCH 29.9 ± 1.4 29.7 ±0.4 MCHC 32.7 ± 4.4 31.0 ±0.8 | WBC 13.0 ± 3.8 11.8 N 75.5 ± 6.9 68 22 ± 7.2 29.5 ±13.7 1.5 ± 0.5 1.8 ± 1 1.0 ± 0.9 0.5 ± 1 1 MCD 1L | M 1 1 E B ± 4.9 1 ± 13.5 1 0 0 | Pits 1 ESR | ELT Pg 1 AF 7 females See also réf. 88. 6 maies 0.8 1 28 PRIMATES ANTHROPOIDEA CEBOIDEA CEBIDAE Aotus trivirgatus Owl monkey or Douroucouli Survey Results Ref. 84 Survey 1 Test Av. Range No. | Av. Hb 16.0 12.6-18.1 125 14.3 RBC 5.6 4.8-6.7 125 5.17 3.5-7.7 | PCV 47.5 38-56 125 1 42 31-56 | ΓΡΤΤ 5.9 2.2-10.3 125 2.4 0.1-10.6 | Retics Av. Range PT 11.6 10-12 No. 1 12 H RVV 11.7 11-14 12 48 43-53 12 1 RT 82 78-88 12 82.4 61.7-118.4| | KRT 62 48-90 12 7.5 6-10 12 Range \ \ 11.9-16.0 1 | MCV 85.5 70-100 125 | MCH 30.8 27.4-33.8 125 26.9 21.7-37.7 | MCHC 33.5 30-38 125 34.1 29.6-39.4 | | Test TT 1I 459 282-612 12 1nv 94 70-130 12 417 240-540 12 | 1 VII 1000+ 12 546 300-1000 12 513 500-540 12 180 110-230 12 XII 487 230-560 1 xiii + | MCD 7.27 7.16-7.41 6 WBC 9.7 5.0-14.3 125 | 12.7 48.5 16-64 125 | 55.4 13-91 35.5 16-44 125 35.5 5-80 1 VIII M 3 1-6 125 E 12 0-31 125 | 0-37 1 1ixχ 1 0-2 125 1 <o.i 0-1 260 145-558 99 397 204-734 0-1 15 322 243-480 10 AT 6.4 5.8-6.8 10 | CR 1LN 1 B 11 Pits 1 ESR ELT Pg 0.3 9.5 3.2-28.5 | AF Eosinophils have cigar-shaped granules Results | 1 1 1 ** | TP 60-157 animals Some red cells contain Howell Jolly bodies. See also ref. 2. For effect of diet on blood picture, see ref. 76 1426 6.64 4 12 1290-1610 12 5.39-8.26 12 | PRIMATES 29 ANTHROPOIDEA CEBOIDEA CEBIDAE Cebus capucinus White-throated capuchin Survey Results 1 Test 1 Hb Ref. 75 Av. 13.9 Range No. I Av. ±SD 1 13.3-15.6 4 1 16.6 ± 1.35 1 6.98 50 Survey Results ΝοΓ\ 5 1 Test PT Av. 10.5 Range 9-12 ±0.79 1 | RW 12.5 9.5-18.5 5 ± 3.23 1 1 PTT 41 37-46 5 Retics 0.4 0.2-0.6 4 1 4 1 4 1 1 0.45 ± 0.34 1 RT 85 80-89 2 1 MCV 85.9 79-98 4 | 72.2 ±7.31 1 KRT 36 32-42 3 MCH 27.6 27-29 4 23.8 ±1.83 10.5 9.0-12.0 2 1 MCHC 31.8 29.0-33.5 4 1 33.0 ± 1.74 1 TT I 404 301-468 3 7.0 6.91-7.09 2 5.4 4.2-6.4 4 1 7.5 ± 2.29 45 31-70 4 23.9 ±4.45 11 vVII 46 22-58 4 1 66.1 ±11.0 1 VIII 7 1.5-10 4 2.6 ±2.79 2 0-3 4 1 RBC PCV | MCD WBC 1 NL 5.0 4.6-5.8 43 40-46 II 1 1M 1 EB 1 | Pits 166 108-229 3 XII | ESR 0.1 0-0.5 3 1 XIII | ELT 38 20-60 3 1 AT 0 4 Pg | AF | 6.8 ±1.16 0.6 ± 0.95 1 1IxX 1XI + CR [ TP 20-25 C.apella PF3 release 61 and C. capucinus Range 54-65 (4 animals) Classification discussed. PF3 total 96 Range 93-98 (4 animals) Contact activation index 47 Range 41-56 (4 animals) See also ref 85. Species not given. 3 PRIMATES 30 ANTHROPOIDEA CEBOIDEA CEBIDAE Cebus apella Tufted capuchin Survey Results \ Test Hb Av. 13.2 Test 1 PT Av. 11.0 4.4-4.8 21 5.1 | RW 11.0 43-45 3 Range 11.9-14.0 RBC 4.6 1 PCV 44 1 0.6 | MCV 95.5 95-96 2 1 MCH 30.0 29.5-30.5 2 | MCHC Survey Results No. 1 3 | Av. 13.0 Retics Ref. 2 PTT | RT | | TT 7.1 1 I 240 1000+ + 27-31 3 | 1 MCD 6.51 6.18-6.74 3 | 1 WBC 4.3 2.6-5.8 3 10.4 |N 62 47-72 3 68 1 VM 1 | VII 32 23-43 31 21 1 vin 4 3-7 3 1 0-2 3 1 0-3 3 1M L 29.2 6.8 | Pits 147 i 1 1xix 1M 1 1 xii |ESR 0.5 1 1 XIII |ELT 35 1 1 AT I E IB 1 CR Pg |AF 1 TP No. not given See also ref. 75. 35 | KRT No. 1 50 34 94 800 420 70 80 i 1 31 PRIMATES ANTHROPOIDEA CEBOIDEA CEBIDAE Cebus albifrons White-fronted capuchin Survey Results | Test \ Hb 14.4 Range 12.8-16.0 1 RBC 5.7 4.1-5.9 | PCV Av. Ref. 1 | No.l 23 23 | 1 23 1 Survey Results Av. Range 14.2 11.3-16.4 5.4 48 39-52 Retics 1.0 0.1-2.8 MCV 84.2 72-93 23 23 | | MCH 25.2 24-33 23 | 1 28.6 1 MCHC 30.0 27.8-36.0 23 1 1 33.5 40.4 73.5 Test FT 5.3-5.5 1 | RVV 40-41 1 1 FIT | RT 72-75 1 KRT 26.4-30.8 1 | IT 26-41 1 1 MCD 6.68 6.13-7.07 23 1 1 WBC 6.8 3.2-9.8 23 1 48 42-57 23 1 1 28.3 16-40 43 33-47 23 1 1 65.3 59-74 1 1 NL 1 | M 1BE 11 Pits 1 ESR | ELT 17.5 12-22 6-13 8 12 1 40 35-48 12 1 54 34 46-69 31-41 12 1 12 12 7.0 6.5-7.5 176-425 7 | II 80 42-125 5 750 230-1000 5 545 530-560 2 320-1000+ 4 v 1 1 VII VIII 5-8 23 1 IX 0-4 23 1 1 0-2 23 220 131-328 20 1 11*XII* 0.1 0-2 42 10-95 x 1 XIII | 9.5 No. 1 327 7 5 Range 9.0-13.5 11 2 12 1 Av. 10.5 60 30-81 95 50-300 + 4 11 1 7 1 AT CR Pg j AF |TP 2-4 animals 6.58 6.25-7.15 5 J 32 PRIMATES ANTHROPOIDEA CEBOIDEA CEBIDAE Cebus nigrìvittatus Weeper Capuchin Survey Results Test Hb Av. 12.5 RBC 4.8 PCV 42 1 Ret ics 0.4 Survey No. | Results | Test Av. IPT 11.0 IRVV 11.5 PTT 43 IRT 59 39 IMCV 88.0 IKRT IMCH 26.2 ITT 8.0 |MCHC 29.2 I 217 |MCD 7.26 111 90 WBC 5.0 |v 800 |N 35.5 1 VII |L 59 4 | VIII |M 1 IX E 1 |x B 0.5 |xi |pits 210 |XII |ESR 0.2 |xm |ELT 51 |AT Pg AF 1000+ No. |CR [TP + 1 PRIMATES 33 ANTHROPOIDEA CEBOIDEA CEBIDAE Ateles paniscus Black spider monkey Survey Results No. 1 Av. Range 13.8 12.1-15.8 3 | RBC 5.2 4.9-5.5 3 | PCV 41 36-44 3 | Retics 0.5 0-1 3 | MCV 78.8 69-89 3 | |MCH 26.5 25-28 3 |MCHC 32.5 25-37 3 1 3 1 Test Hb 7.0 6.9-7.1 |WBC 5.5 4.3-6.7 2 |N 41 33-48 2 |L 56 49-64 |MCD M 1.5 1-3 IE 1.5 1-3 |B 0 1 Pits 287 |ESR 1.2 ELT 10 2 1 2 2 1 2 229-393 0-2.5 | 3 2 1 Pg |AF For blood picture of other Ateles sp. seerefs 1, 2 & 85. 34 PRIMATES ANTHROPOIDEA CEBOIDEA CEBIDAE Alouatta caraya Howler monkey Ref87 | Av. ±SD Hb 12.6 ±2.5 1 |RBC 4.4 ±1.3 |WBC 8.5 ±40 |N 54 L 42 Test |PCV Retics |MCV |MCH MCHC MCD |M 2.6 E 1.0 |B 1.0 | Pits |ESR ELT Pg |AF 5-11 animais 35 PRIMATES ANTHROPOIDEA CEB01DEA CEB1DAE Lagothnx lagothrica Humboldt's woolly monkey Survey R esuIts Test Hb RBC | PCV Survey R esu Its ΜΓΊ Av. Range 13.1 12.6-15.5 4.8 4.0-5.7 9 39 35-46 9 9 1 RVV | | MCV 81.2 72.2-92.0 9 1 9 1 MCH 27.3 22.0-30.5 9 | MCHC 33.7 Retics 1.2 0.4-3.0 Test VT | Range No. 12.5-15.0 2 8-10 4 9.4 1 PTT 54 52-56 89 75-105 | KRT 54 53-56 3 | TT 9.7 9-10 3 9 1 I 480 II 105 9 1 V 760 26-74 9 1 VII 210 19-66 9 VIII 180 6 3-10 9 E 4 0.5-11 9 6.98 6.72-7.31 WBC 5.0 3.8-6.6 N 57 L 33 |M 1B 0 | Pits 274 191-543 9 |ESR 0.4 0-1 9 ELT 210 150-270 2 | ix 1 X 9 | 3 1 3 1 | RT 9 27-36 MCD 376-631 4 500-900 i 1 3 1 1 1 120 100-140 2 390 180-800 4 XI XII | | XIII AT Pg |cR |AF |TP CMH-4 Av. 13.7 + 4 1 1 460 7.08 6.43-7.82 4 1 36 PRIMATES ANTHROPOIDEA CEBOIDEA CEBIDAE Saimiri sciureus Squirrel Monkey Survey Results Range Ref. 1 Test Av. Hb 13.2 12.0-15.2 4.7-6.8 35-43 0.5-3.0 9 Ref 86 Ref. 78 No. Av. Range 9 13.2 12.4-14.3 9 6.5 6.0-7.6 6.8 9 41.7 37-47 41.1 Av. 13.7 Av. Range 12.9 8.2-15.4 5.7-8.2 7.3 5.5-9.5 35.5-51.5 38.6 25-45 Range 11.6-17.1 RBC 5.6 PCV 40 Retics 1.5 MCV 74 70-78 9 64.9 57-76 MCH 24.1 22-27 9 20.2 18.9-22.9 MCHC 32.6 30-35 9 31.2 29-34 33.4 31.4-37.3 WBC 5.6 4.3-6.8 9 10.4 4.0-20.7 11.2 N 36 16-50 9 58.5 26-89 53 L 57 39-83 9 35.9 9-68 3.4 1.1 0.2-4.1 0-3.5 0.97 53.1 43.9-69.5 17.8 14.6-22.4 33.6 30.9-37.4 5.7-23.6 10.4 4.5-23.8 23-80 40.7 8-76 39 18-69 48.6 18-81 0-11 2 0-7 3.4 0-15 59.9 48.6-66.7 MCD I M 4 1-7 9 E 2.5 0-6 9 1.9 0-18 6.2 0-21 6.2 0-40 B 0.5 0-1 9 0.3 0-2 0.1 0-1 0.2 0-3 Pits 396 230-534 9 1.4 0-12 448 ESR 378-561 1.3 0.5-4.0 ELT Pg AF 11-25 animals See also ref s. 2, 75-83, 107. \ 31 animals 59 animals 37 PRIMATES Squirrel Monkey Result Survey Test Av. Range PT 7.5 7-8 IRVV 7.2 IPTT 35 [RT 55 Ref. 78 No. Ref. 89 Av. Range Av. ±SD Av. Range 3 1 7.7* 6.5-8.6 8.6 ±0.2 8.3 8.1-8.4 1 6.5-8.0 2 11.3 10.6-12.0 31-40 3 40.3 ±0.7 45-65 3 KRT 42 35-51 3 TT 8.2 7.5-9.0 3 I 228 194-281 3 157 ±6 268 ±15 III 1v Ref. 103 82 70-100 3 810 640-1000 3 10.8 7.8-12.6 8.3 8.0-8.5 378 370-385 81 70-88 264 220-384 1 VII | VIII 311 256-376 | IX 91 88-95 Ix 108 I XI 68 64-70 XII 388 276-536 200 118-256 1 χιιι + 3 |AT CR |TP 5.55 5.33-5.88 3 10 animals *rabbit brain extract 11 animals 3 animals 38 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Macaca nemes trina Pig-tailed macaque Survey Results Test Hb A v. Range 12.5 10.3-15.5 RBC 5.3 4.3-7.0 PCV 42 Retics 0.5 35-47 0-1.4 Ref. 1 No.l 8 1 8 1 Ref. 21 Ref. 21 Range Av. Range Av. Range \ 13.1 12.3-14.3 11.3 8.5-14.2 11.5 9.8-12.2 5.9 5.4-6.6 Av. 8 42.5 8 1 8 1 5.95 4.75-7.01 38-48 41.8 31-47 5.62 5.I3-6.33I 41.2 38.0-42.6l 66.2-79.51 MCV 79.3 74-82 71.5 63-81 70.4 60.8-85.4 71.9 MCH 23.6 19.2-25.7 8 22.1 19.0-24.8 19.0 16.3-24.4 20.4 17.l-22.9l MCHC 30.0 28.1-32.1 8 31.0 29-34 27.1 22.1-30.5 27.8 25.8-28.1 6.94-7.09 8 1 MCD 7.04 WBC 7.6 3.9-15.0 8 11.5 N 69 60-82 8 41 L 24.5 17-34 8 42 M 5 0-8 8 E 1 0-2 8 0.5 0-1 8 1 Pits 190 149-309 7 1B 1 2.5 1 3.4 1 0.1 7.2 6.6-7.6 7.1 7.0-7.3 11.78 8.5-16.7 12.1 8.5-17.6 19-73 50.1 44-58 48.8 42.0-55.8 19-76 44.9 37-51 48.5 41.2-54.2 7.6-16.5 1-5 2.3 0.5-8.0 1.0 0.5-2.6 Ί 0-16 2.0 0-5 1.4 0.5-2.0 0-1 0.7 0-3 0.3 0.2-1.0 5 Ί | ESR 8 0-13 | ELT 390* 240-600 6 Pg 6.35 5.9-6.75 4 | AF *One animal gave an ELT of 24 hours. See also ref. 63. 9 animals 26 males 4 females PRIMATES 39 Pig-tailed macaque Ref. 89 Survey Results Av. Range PT 15.0 13-17 RW 22.4 19-28 6 PTT 55 50-60 6 RT 81 60-103 6 1 KRT 48 35-57 6 Test TT No. | 6 8.9 6.0-10.5 6 I 447 355-512 5 II 80 74-86 2 v 1| VII 79 70-89 1 vin ix 1X 1XIIM Ref. 103 Av. ±SD Av. Range 12.6 ±0.3 13.5 10.8-22.8 15.9 14.0-17.5 46.8 ±1.3 24.2 20.3-31.3 18.0 13.8-21.8 338 ±26 387 228-656 | 140 114-160 5 157 124-184 500 1 1 190 122-260 29 1 52 29-77 115 1 130 100-160 82 56-100 120 + 1 426 292-512 5 88 61-116 AT CR 539 1 | TP 6.16 1 xiii 5.47-7.13 5 11 animals 10 animals PRIMATES 40 ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Macaca fascicularis = M. irus Cynomologous or crab-eating macaque Survey Results Test Hb RBC 1 PCV Retics Av. Ref. 1 Ref. 38 No. Av. Range Av. 12.7 9.2-14.7 5 11.5 9.4-13.2 11.3 6.0 4.8-7.3 5 5.9 5.3-7.4 5.2 36-49 5 40 33.0-47.5 32.3 61.6 42 1.2 Range 0.5-2.2 4 MCV 70.0 59-91 5 66.0 61-74 MCH 21.2 11.2-27.5 5 18.2 17-21 21.6 MCHC 30.2 26.5-32.1 5 28.6 26-32 35.0 ±SD Ref. 63 Av. 5.6 41 31.0 MCD 7.12 6.78-7.85 4 WBC 7.9 6.8-8.8 5 12.7 6.2-23.2 N 84 74-96 5 52 31-79 8.7* L 13.5 4-22 5 42 19-63 4.4* 0.7* 14.8 M 2 0-4 5 3 0-9 E 0.5 0-1 5 3 0-16 0.4* 5 0.5 0-3 0.01* 393 268-445 1 B 0 | Pits 338 242-498 4 1 ESR 1 0.5-2.0 4 ELT 960 Range \ 12.7 412 1.3 191-890 ±0.6 1 Pg | AF 7-24 animals 200 animals 60 animals *X103/c.mm See also refs. 2, 36, 37 PRIMATES 41 Cynomologous (crab eating) macaque Survey Results Ref. 96 Ref. 103 Test Av. Range No. | Av. Range Av. Range PT 18.5 15-22 2 10.9 9.5-12.5 12.1 10.8-13.3l RW 15.0 14.5-16.0 67 48-85 44.2 30-55 21.7 18.8-25.81 RT 100 2 1 2 1 2 1 15.1 PTT KRT 53 50-55 2 9.5-10.0 2 14.0 12.3-14.δ| 388-448 2 274 200-450 320 178-641 1 1 116 90-130 146 100-176 70 44-118 153 122-196 53-170 180 102-272 | IT 9.75 I 418 n 80 1V 1 VII 1 VIII 1 120 ix 1X 1XIIM | XIII 1 44 59 + 45-72 2 30-60 59 40-76 | 120 66-180 90 78-100 1 115 100-130 106 72-128 447 320-576 116 80-164 2 | AT CR | TP 61 1 6.64 1 4-21 animals 12 animals 42 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Macaca mulatta Rhesus monkey Survey Results \ Test Hb Refi Av. Range No. Av. 12.1 9.4-14.0 20 12.3 4.2-5.6 20 1 1 RBC 5.2 PCV 40 Retics 1.25 33-48 20 0.2-2.8 20 76.9 67-104 20 MCH 23.3 17.7-28.0 20 MCHC 30.2 25-35 20 MCV 5.6 42 Ref. 40 Range Av. Range Av. 8.1-16.4 12.2 10.2-14.2 11.7 4.5-7.2 5.5 3.1-8.6 37-49 37 12-51 4.1-7.8 24-52 22 15-33 22.8 18.8-28.8 21-36 28.9 25.3-35.3 2.6-31.4 10.95 4.3-20.0 15.1 7-95 41.1 13-70 36 55.7 25-86 60.5 6.62-7.17 17 7.6 3.5-16.9 20 10.9 N 67 55-84 20 40 L 26.9 13-42 20 55 4-90 2-9 20 1.1 0-10 E 1 0-4 20 3.3 0-24 B 0.1 0-1 20 0.25 0-3 295 134-385 20 ESR 3 0.5-24 20 ELT 105* Pg 6.4 | AF 123 60-210 5 4.7-7.5 6 *A further 12 animals had ELT's of 24 hours +. 0.4 29 6.75 Pits 0-2.8 78.6 MCD 4 42.1 56-106 WBC M 5.38 1.15 76 Ref. 72 417 120-940 No. of animals 750 2.7 0-12 228-760 200 animals For influence on blood count of stress see refs. 13, 30 sex see refs. 13, 32, 41 age see refs. 39, 50, 71 diet see ref. 24 pregnancy see refs. 25, 26, 51 For general haematology, see refs. 2, 14, 32, 36, 42-48, 52, 63, 70, 104 7.0-16.5 0.06-2.6 67.7-91.2 12-43 1 4-91 7-95 0.7 0-8 2.6 0-16 0.2 454 Range 0-4 1 344 250-750 1 0.9 0-28 1 538 animals PRIMATES 43 Rhesus monkey Ref. 101 Survey Results Ref. 103 Ref. Ill \ Test Av. Range No. 1 Av. Range Av. Range \ PT 13.6 12-16 12 12.4 11.4-13.3 12.3 10.4-14.4 1 RW 14.2 11-24 11 15.5 13.5-18.0 26 15-38 PTT 59 43-78 13 24 18-34 45 29-97 | RT 112 84-138 10 | KRT 56 37-71 12 230 100-400 Av. Range 124 | TT 6.7 4-8 15 15.1 12.1-26.3 I 395 282-518 8 | 259 180-440 347 224-509 n 64 51-80 9 1 94 60-110 134 86-172 238 56-1000 15 146 118-192 828 640-1000 4 237 162-340 51 34-67 110 40-250 6 129 112-184 100 75-118 1 527 440-616 15 117 100-136 1V VII | VIII IX 1X XI 1 XII 1 XIII 66 + AT CR | TP 57 6.86 50-63 2 6.55-6.96 7 PF3 release 66 Range 62-71 (5 animals) PF3 total 103 Range 80-120 (5 animals) Contact activation index 58 Range 55-61 (2 animals) See also refs. 72, 89, 102. 10 animals 10 animals 77 animals 44 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Macaca sylvana Barbary ape Survey R esults Test Survey R esults Av. Range 13.0 10.5-14.6 1 RBC 5.0 4.3-5.7 1 PCV 40.5 35-45 1.3 Hb [Retics No~^\ \ Test No. 1 Av. Range 14.2 13-15 5 1 RW 14.2 13.5-15.0 5 1 1 PTT 50 49-53 5 0-1.8 5 1 RT 100 85-114 5 \ PT MCV 81.5 75-90 7 1 KRT 49 42-55 5 MCH 26.2 21.2-31.5 7 Ιττ 8.5 7.5-10.5 5 MCHC 31.7 29.5-34.4 7 1I 294 233-384 4 6.92 6.73-7.34 7 86 44-115 4 |WBC 7.0 4.8-10.4 7 1πV IN |L IM E 78 45-93 7 1 1 VII 225 210-240 2 18 7-48 7 1 VIII 3 0-7 7 1 IX 14 1 1 0-2 7 |x 110 1 B 0 + 4 |MCD I XI 1 Pits 303 220-398 7 IESR 0.4 0-1 5 IELT 191 100-330 5 IAT 389 4.3-5.2 2 |CR 66 1 |TP 6.35 Pg |AF 4.73 112 \ For haematology see Ref. 55 1 XII | XIII 325-414 3 6.1-6.72 3 1 | ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Macaca assamensis Assamese macaque Survey R esu Its Test |Hb RBC |PCV Retics Survey R esu Its Av. Range 11.6 11.2-12.0 2 5.1 5.0-5.2 2 39.5 38-41 2 0.7 0-1.4 2 No.,\ 1 Test Av. Range PT 13.0 12-14 2 RW 18.5 18-19 2 IPTT 50 49-51 \ IRT 82 55-109 | IKRT 63 52-75 8.25 7.5-9.0 2 2 2 2 475-520 2 \ |MCV 75.5 72-79 2 |MCH 22.9 22.0-23.8 2 |TT |MCHC 29.3 29.0-29.6 2 I 7.17-7.19 2 II V |MCD |WBC 7.18 13.7 12.4-15.1 2 |N 80 77-83 2 VII L 14 11-17 2 [Vili M 5 4-6 2 IX E 0.25 0-0.5 2 X |B 0.75 |χι 0.5-1.0 2 |pits 211 178-245 2 XII |ESR 2 1-3 2 |XIII |ELT 720 700-740 2 AT Pg |CR |AF |TP 497 No. Ί 1 1 140 2 1 + 625 6.58 1 1 1 1 590-660 2 5.92-7.25 2 1 Contact activation index 51 Range 48-54 (2 animals) 46 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Macaca speciosa Stump-tailed macaque Survey Results Ref. 53 1 Test Av. Range Hb 11.3 10.4-12.0 RBC 4.9 4.7-5.2 5 PCV 37.5 34-39 5 Re tics 0.2 0-0.8 5 MCV 76 70-80 5 77.7 77-88 MCH 22.9 21.5-23.8 5 26.2 23-30 MCHC 29.5 28.5-30.5 5 33.7 31-36 6.79-7.5 5 MCD 7.0 No. I 5 1 Ref. 112 Av. Range Av. 12.7 10.5-14.1 12.2 4.86 37.8 1 L9 Ref. 112 Range Av. Range 6.9-14.9 12.0 6.3-19.2 14-47 40 4.2-5.6 30-43 0-8 39 1.38 0.1-5.8 1.2 24-56 0.1-2.9 WBC 7.8 4.5-12.0 5 14.9 3.9-37.8 14.1 N 65 48-77 5 28 1-82 31 4-88 30 18-47 5 67 29-98 61 11-93 3.4 2-6 5 0.5 E 1.5 0-5 5 3.6 B 0.1 0-0.5 5 0.2 194-372 5 169 2.1 L 1 | M 1 Pits 1 ESR ELT Pg | AF 268 2 1-7 5 394* 210-720 4 6.33 6.15-6.5 92 * A further 2 animals had ELT of 24 hours. See also refs. 1, 54. 0-11 5.2-36.6 0.5 0-12 0-31 5.1 0-40 0-0.5 0.2 0-3 130-230 193 120-270 0-14 4 0-45 2 _J 36 animals 77 males 79 females PRIMATES 47 Stump-tailed macaque Ref. 89 Survey Results Ref. 103 Ref. 112 Test Av. Range No. | Av. ± SD Av. Range Av. Range PT 13.5 12-14 5 1 1 10.9 ±0.4 12.8 10.8-17.3 15.3 7.5-50.51 15.2 14.0-16.5 1 44.7 ±1.1 21.9 19.3-27.2 26.5 11-46 15.9 11.8-21.3 1 325 ± 72 311 224-477 152 124-172 124 68-164 1 RW 16.1 12.5-20.0 1 PTT 50 39-64 5 1 1 RT 87 80-97 5 47 43-51 8.8 8-10 443 417-485 133 110-155 5 5 4 2 KRT 1 TT 1 I 1πV 5 | 1 1 1 1 1 1 VII 100 1 115 1 1 VIII 1IxX 1XI 490 1 193 140-276 70 1 52 35-80 100 78-148 1 XII 1 XIII 270 + 1 AT 496 1 430-575 77 70-89 1 483 368-606 4 134 90-174 3 1 CR | TP 6.81 6.73-6.90 _3 Contact activation index 55 Range 51-57 (3 animais) No. = 3 No. =10 No. = 72+ 48 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Macaca maurus Moor monkey Survey Results 1 Test Av. Range \ Hb 11.6 9.8-13.0 | RBC 5.5 4.7-6.2 | PCV 41.5 37-46 Ref. 1 No7\ Γ Av. 1 12.2 1 5.5 7 40 Retics 0.8 0.4-2.0 7 MCV 76.1 65-89 7 1 MCH 21.4 17.7-24.5 7 22.5 1 MCHC 27.7 24.4-29.8 7 1 30.8 1 75.3 Range Survey Results Test 1 RW 21.8 18-24 5 37-43 1 PTT 43 40-49 6\ 75-76 21.8-23.8 1 [ RT 93 80-110 3 | KRT 52 43-65 3 TT 29-33 1 1 I 9.0 7-10 5 364 214-539 4 187 160-200 3 Ί 59 45-72 [ II 7.14 7.0-7.28 6 3.3-12.9 7 1 1 1M 1 BE 1Pits 57.5 34-75 7 36 18-62 7 5 2-10 7 1 1 4.5 1 0-3 7 1 7 0.5 0-2 7 1 0.5 195 130-274 5 XII | ESR 2.8 0.5-8.0 5 1 XIII | ELT 135 15-300 5 AT 4.85-6.25 3 12.2 43 45 11.2-14.6 1V 21-66 1 1 VII 32-73 VIII 1-7 IX 0-17 0-1 1 X | 2 XI 80 + 1 | 4 CR [AF | TP No. = 34 See also ref. 2. 6 1 5.1-5.8 8.4 Pg No. 1 14.0-17.5 | WBC 5.62 Range 15.1 | MCD N L Av. 1 PT 12.0-12.6 6.99 6.52-7.30 3 | PRIMATES 49 ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Macaca silenus Lion-tailed monkey Survey R esu Its Survey R esu Its | Test Av. Range Hb 11.7 10.4-13.0 2 VT 15.5 1 1 RBC 5.4 4.6-6.2 2 1 RW 20.0 1 1 PCV 42.5 38-47 1 PTT 40 1 1 0.3 0-0.6 2 1 2 1 211 1 1 42 1 + 1 63 1 1 Retics No. I Test 78.7 73-84 2 1 KRT MCH 21.6 21-23 2 | TT | MCHC 27.5 27-28 2 | 7.22 7.0-7.45 2 | 8.6 7.8-9.5 2 1nι 1V |N 77 69-85 2 1 VII |L 24.5 23-26 2 | VIII IM 2 1-3 2 IX 0.5 0-1 2 WBC I E |x 0 2 XI 1 Pits 380 1 1 XII |ESR 10 1 ίχιιι ELT 35 1 IAT |B No. 1 RT 1 MCV |MCD Av. Pg |CR |AF |TP | 50 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Macaca sinica Toque monkey Ref. 27 Test Hb Ref. 27 Av. 14.1 Range 11.1-19.0 | RBC 6.3 4.6-8.0 | PCV 43.7 32-51 49.7 70.5 46.8-85.8 87.7 Av. 14.1 5.69 Range 11.3-19.4 | 4.7-7.4 | 45-56 1 Retics | MCV 67.2-107.0 | 1 MCH 21.1 20.08-25.0 24.7 16.6-29.8 | MCHC 32.5 25.7-42.9 27.9 22.5-38.8 | 6.4-6.8 | | MCD 6.78 6.4-7.04 | WBC 16.6 1L 32 11-64 62 33-86 M 2.7 0-6 1 1 Pits 3.2 0-20 0.2 0-1 N 1 BE 6.55 10.0-26.5 | ESR | ELT Pg | AF No. = 13 12 mon ths at 6000ft above sea level No. =26 Newly arrived from plains. PRIMATES 51 ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cynopithecus niger Black ape Survey Results Ref. 1 | Test Av. Range No. | | Hb 11.5 10.5-12.0 4 Ί | RBC 5.6 5.5-5.9 41 PCV 44.5 40-50 4 0.3 0.2-0.4 2 79.3 73-85 4 1 MCH 20.8 19.4-22.0 4 25.8 23.4-27.2 4 7.17 7.11-7.24 41 Retics | MCV | MCHC MCD | RW 20.7 19.0-22.5 2 1 39-45 1 PTT 53 46-60 | RT 72 64-77 1 KRT 38 1 19.2 17.8-20.4 TT 8.25 2 28.4 27-30 67.9 1 7.0-9.5 464 1 29 1 1 VII 54 40-75 1 VIII 4 | L9 4 | 1 4.9 0-4 0-2 1 0-3 4 1 0.2 0-1 159 152-164 2 XII 1.7 1.5-2.0 2 XIII + 2 203 200-205 2 | AT 360 1 1 | CR 15-38 4 9 4-13 E 1 B 1 1 Pits 1 ESR 4.6 1-9 | 1 1xix 1XI [ TP JO animals CMH-5 | I 2 19-53 20 Pg [_ AF 5.1-7.0 6.3 42.3 11.1-20.4 4 | ELT No. 1 2 1 39 4 48-84 1 M Range 18.5-19.0 10.4-13.2 15.5 6.5-10.8 1L Av. 18.8 12.0 | 8.3 N Range | \ Test PT ^R 1vn 69 WBC Survey Results | | ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Papio anubis Olive baboon Survey Results Ref 15 No.~] Range Av. ±SD Av. 8.9-16.7 14.0 ± 2.09 11.8 4.9 ± 1.13 18 42 37-49 18 0.6 Range 13.8 12.4-16.3 1 RBC 1 PCV 4.7 4.2-6.0 18 42 37-49 0-1.8 Retics 1.0 Av. 18 | MCV 89.4 80-94 18 MCH 29.4 26.7-31.2 18 MCHC 32.8 30.5-35.0 18 1 MCD 70.6 6.74-7.18 6 1 WBC 6.4 3.0-7.8 18 41 16-76 18 53 23-76 18 1 50 5 1-8 18 0 0.5 0-1 18 3 0.5 0-1 18 0 291 143-451 18 360 N L 1 | M E B 1 | Pits Ref 17 12.8 Av. \ Hb 1 Test Ref 19 1 ESR 0.8 0.5-1.5 15 | ELT 214 100-330 13 Pg | AF 4.7 4.3-5.2 4 42 ±SD 35.8 ± 8.7 0-1.2 32 26-34 7.2 3.9-16.0 10.2 ± 4.38 10.0 ± 4.2 28-72 64 ±17.9 56 ±19.5 28-78 31 ±15.5 32 ±16.7 0.7 ± 0.96 2.4 ± 2.7 1.0 ± 1.12 1.7 ± 1.9 0.2 ± 0.44 0.02 ±0.13 0.3 ± 0.8 47 1-12 260-480 1 No. = 70 No. = 86 P. anubis and P. cynocephalus See also refs. 6, 18. For effect of age on blood picture of P. anubis see ref. 39. For effect of age on blood picture of Papio sp. see ref. 58. For sex differences in Papio sp. see ref. 13. | ± 1.16 1 4.45 ± 0.5 1 No. = 100 P. anubis and P. cynocephalus | Olive baboon Survey Results \ Test 1 Av. Range Ref. 103 No7\ io 1 13.7 11.5-16.0 1 RW 15.0 9-20 1 PTT 51 1 RT 1 KRT TT I 7.7 5-10 314 144-462 50 47-52 1 1 VII 122 76-160 347 325-370 51 1 VIII 470 450-500 8 85 50-120 73 43-100 FT 1πV 1IxX 1M 1XII 16.2 Range 1 14.0-19.9 10 1 17.1 16-19 1 38-58 10 1 1 36.5 31.5-44.θ| 92 55-130 10 68 35-91 10 8 1 11.8 10.9-13.51 10 1 326 277-461 1 6 1 105 85-124 1 9 139 89-164 1 1 147 80-224 1 5 89 53-120 1 9 1 98 1 33 1 XIII 260 + AT 462 365-540 4 CR 68 66-70 2 4.57-6.09 5 [JT 1 Av. 5.45 23-38 1 300 252-352 10 1 89 68-112 PF3 release 66 Range (3 animals) 56- 78 PF3 total 99 Range (3 animals) 86-116 Contact activation index 48 Range 23-60 (3 animals) For coagulation studies on Papio sp. Seerefs. 17, 95, 97 84-114 No. =8 P. anubis and P. papio ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Papio cynocephalus Yellow baboon Survey Results 1 Test Av. Range Hb 12.9 10.3-14.8 Ref. 2 No. 1 Av. Av. 12.7 12.7 12.3-13.7 13.6 10.9-16.3 6.9 38 36.5-40.5 44 37-51 31.9 29.9-33.9 RBC 4.8 4.0-5.7 17 42 36-50 23 Retics 0.9 0.2-2.4 16 17 MCV 87.5 78-96 MCH 26.9 23-33 17 MCHC 30.7 27-34 17 7.15 6.99-7.53 14 7.7 4.5 WBC Ref 20 23 PCV MCD Ref 16 Range Av. 3.0-6.8 17 10.4 8.0 4-12 13.0 IN 43 17-68 17 65 45 36-60 31 40-65 65 L 49 27-77 17 29 50 M 5.8 1-10 17 2 1.5 1-3 E 2 0-9 17 2 4 2-7 B 0.2 0-1.5 17 1 5.8-20.21 2.75 1 0.25 22 Pits 238 135-349 ESR 0.5 0-1 ELT 269 100-585 10 5.9 4.2-6.8 5 100 88-116 3 Pg AF Range 16 1 No. not No. not stated stated See also under P. anubis For haematology of neonates and infant yellow baboons see ref. 64. No. = 37 55 PRIMATES Yellow baboon Survey Results Av. Range ~ No. ~| 1 PT 13.9 13.0-15.5 18 1 RVV 12.4 9-17 18 1 PTT 49 45-60 18 1 RT 67 65-104 18 | KRT 53 49-56 18 \ Test TT 6.6 5.5-8.0 18 | i 396 272-475 18 1 vH 1 | VII 70 60-79 7 125 62-160 5 310 260-370 5 1 vin 460 400-500 5 1xix 42 35-50 4 94 70-125 7 2 1M 1 1 XII 17 14-20 237 130-245 | xiii + 1 AT 143 305-400 2 1 CR 69 68-70 2 | TP 6.41 6.1-6.63 3 2 8 J PF3 release 68 (one animal) PF3 total 111 (one animal) Contact activation index 42, range 28-56 (2 animals) For coagulation studies on Papio sp. see refs. 17, 95, 97. PRI ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Papio papio Guinea baboon Survey R esu Its Survey R esults No. 1 Av. Range 13.0 11.2-15.0 8 RBC 4.7 4.2-5.4 PCV 43 Test Hb 1 Test Av. Range PT 14.0 10-17 5 8 RVV 14.6 10-20 5 39-48 8 1 FIT 77 62-90 5 0-1.8 8 1 RT 76 48-105 5 | No. [Retics 0.8 MCV 91.4 76.5-98.0 8 | KRT 60 57-65 5 MCH 27.6 24.3-32.5 8 | TT 6.8 6-7 5 MCHC 30.2 28.8-34.0 8 |I 411 306-517 5 1" 87 62-99 4 V 180 110-270 4 MCD 7.11 6.81-7.63 6 WBC 8.1 6.4-11.4 8 N 68 28-87 8 VII 490 L 24 7-43 8 VIII 210 1 M 7 1-11 8 IX 55 1 1 0-2 8 120 1 8 1x 8 1 XII 1E 0 1 Pits 203 B 148-236 1 XI IESR 1.5 1-2.5 5 1 XIII + IELT 164 75-250 4 1 AT 387 365-430 2 Pg 5.1 4.8-6.2 4 1 |CR 65 62-67 2 i 1 |TP 6.76 [AF 85 | 5 6.42-7.11 PF3 release 79 Range 77-81 (2 animals) PF3 total 102 Range 91-114 (2 animals) Contact activation index 65 Range 55- 73 (5 animals) See also under P. anubis 2 J PRIMATES 57 ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Papio hamadryas Sacred baboon Survey Results Ref. 32 Test PT Av. 16.2 No. 1 Range 13.5.-20.0 3 1 1 RVV 16.3 13.5-20.0 3 PTT 52 47-64 2 | RT 87 80-94 2 4 1 KRT 60.5 59-62 2 23.3-31.4 4 1 TT | I No. 1 Av. 13.8 Range 11.7-15.8 | RBC 4.9 4.6-5.1 4 PCV 43.5 40-45 4 1.5 1.2-1.8 2 1 MCV 1 MCH 91.1 85.9-99.0 28.1 | MCHC 31.2 Test \ Hb Retics 41 29.0-34.6 4 | MCD 7.03 6.96-7.17 4 1 WBC 7.0 4.4-8.0 4 73 66-80 21 4 1 NL 1M 1BE 1| Pits | ESR ELT Pg | AF Survey Results A v. 11.5 5.8 SD/range\ ±0.9 1 ±0.04 1 VΠ ±9.85 4 1 13.4 1 55.5 ±1.42 1 | VII 16-28 4 | 32.8 ±0.89 1 VIII 2-6 4 4-8 IX 0.5-2 4 1-6 0.5 0-2 4 0-1 212 205-218 2 0-0.5 2 90-240 3 1.5 0.25 173 3.77 3.45-4.1 1XIX 21 397 365-446 3 82 1 160 1 270 160-380 2 90 1 XIII 175 + 3 AT 330 | XII 2-5 2 7.0 1 300-360 2 5.42-5.80 3 | CR TP No. =187 5.56 Contact activation index 69 Range 66-72 (2 animals) PRIMATES 58 ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Mandrillus sphinx Mandrill Survey R e suits Test Survey R esu Its No. | Av. Range 10.9 9.0-12.7 5 RBC 4.2 3.5-5.0 5 PCV 37 33-39 1.2 0.2-2.0 5 1 5 1 5 1 Hb | Test Range 14.0 13-15 RVV 19.0 17-20 5 62 53-73 5 95 80-117 56 50-59 IPTT 5 87.8 78-93 MCH 25.8 22.3-28.5 5 TT 5.4 6.8-8.0 5 1 5 1 5 1 MCHC 28.8 27-32 5 I 395 312-524 3 6.89-7.96 5 II 96 39-150 3 V 405 90-720 2 Retics MCV MCD 7.42 IRT KRT WBC 6.1 4.3-9.6 5 N 67 49-83 5 1 VII L 27.5 14-43 5 1VIII M 5.0 1-10 5 E 0.4 0-1 5 0.1 0-0.5 5 I No. 1 Av. PT B Pits 183 134-292 ESR 3 0.5-12 5 1 5 1 ELT 249 240-260 4 5.2-5.5 2 Pg |AF 5.35 210 1 120 1 IX |x XI XII IXIII + AT 440 CR 52 |TP 6.03 3 1 365-516 4 5.35-7.20 1 1 4 _] PRIMATES 59 ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Mandrìllus leucophaeus Drill Survey Results 1 Test Av. \ Hb 12.0 Ref. 1 No7\ [ Av. \ 12.6 \ Test Av. 11.7-13.2 PT 12.0 | RW | RBC 4.5 | 4.8 4.3-5.5 PCV 40 | 41.2 38-44 Retics 0.3 1 MCV 88.5 | 85.6 1 MCH 26.6 26.4 1 MCHC 30 | MCD 7.25 WBC 4.8 | 10.1 48 1 53.6 1 LN 1 | M 1 BE 1 | Pits | 30.6 46 41 5 3.6 1 0 iA 1\ 0.4 Survey Results Range 79-95 PTT 97 1 1 KRT 53 23.8-30.7 29-33 Pg IAF | TT | |I 6.0 Π 1 V 5.4-14.6 | 1 35-70 | | VII 510 1 vin 800 26-59 | 0-7 | 1 IXX 0-3 1 1 xi 0-1 | 64 170 70 100 1 1 xii 240 | XIII + 720 AT 550 8.0 CR 71 | ESR | ELT 49 | RT ITP 5 animals 5.54 Range No. | 1 46-52 2 2 1 60 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cercopithecus pygerethrus Vervet monkey Survey R esu Its Test Survey R esu Its Av. Range No. | Hb 14.0 11.9-17.0 14 1 | RBC 5.1 4.3-5.9 | PCV 46 36-52 14 1 0.8 0.2-1.5 Retics Test No. I Av. Range 12.0 11.5-12.5 3 11.0 10-12 3 1 PTT 60 56-63 14 | RT 123 71-175 2 2 2 2 2 14 \ PT RW | MCV 84.0 78-90 14 1 KRT 51 38-64 | MCH 26.8 24-30 14 1 1 TT 7.75 7.0-8.5 | MCHC 31.5 11 30-33 14 | | MCD 6.95 6.5-7.42 7 | 1 WBC 6.3 5.2-7.9 14 1V 50 42-59 14 1 VII 44 29-55 14 1 1 VIII 415 4 1-7 14 IX 130 1 1.5 0-3 14 | x + 2 6.24 1 1 NL 230 370 1M 1 BE 1Pits 0.5 0-1 14 1XI 326 213-468 14 1 xii | ESR 0.5 0-2 11 1 XIII ELT 287 275-300 5 1 AT Pg | AF 227-233 n 1 230-600 2 1 CR 75 1 |TP Contact activation index 32 Range 28-35 (2 animals) 1 1 1 1 1 61 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cercopithecus sabaeus Green monkey Survey Results Ref. 2 Survey Results Av. Range Μλ] Av. \ Test Av. Range 12.4 10.3-15.1 3 1 12.7 1 PT 16.5 16-17 1 RBC 5.3 4.4-6.0 3 1 RVV 12.0 1 pcv 44.5 43-48 3 1 PTT 54 0.7 0.6-0.8 2 1 RT 139 87.6 76-97 3 | KRT 60 1 Test 1 Hb Re tic s | MCV 6.4 No. 1 2 1 1 1 i 1 1 53-68 2 | MCH 23.6 21.4-26.0 3 | TT 10.25 8.5-12.0 2 | MCHC 27.7 23.7-31.8 3 1 I 375 360-390 2 7.37 7.26-7.49 2 7.8 4.9 4.1-6.0 3 12.6 68 59-79 3 58 27 16-36 3 31 4 3-5 3 1 0-2 3 307 270-343 | ESR 5.0 0.5-9.5 ELT 240 1 MCD I WBC 1 NL 1 1 M 1BE 1| Pits 0 1V Π 160 1 1 vu 1 Vili 1 XIX 1Μ 240 1 1 1 χιι 120 1 2 2 1 XIII + 2 1 1 AT 6.29 1 3 | CR Pg | AF |TP No. not given See also refs. 34 & 66 for Cercopithecus Sp. | 62 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cercopithecus aethiops Grass monkey Ref. 33 Ref. 103 Test Hb Av. ±SD RBC 5.64 ±0.6 | Test PT Av. 13.5 Range \ 11.9-17.0 1 RW 13.5 12.0-14.5 PCV PTT 24.2 21.9-26.9 1 Retics RT |ττ 12.0 10.9-14.0 1 MCHC I 224 176-266 1 MCD II 126 104-162 1 105 57-156 1 | vin 236 156-320 1 IX 48 MCV KRT MCH 16.5 ±3.4 V N 15 12-17 VII |WBC |L 68 65-70 |M 15 13-16 E 1.4 ±0.5 1.4 ±0.5 466 ±0.6 B |pits 1 | | |x 217 38-68 116-328 | |XI 85 56-108 |xn 392 300-560 ESR XIII |ELT AT Pg |AF |CR 127 79-180 | |TP No = 5 No = 11 For blood picture see also refs. 34, 68, 69 63 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cercopithecus mona Mona monkey Survey Results Test Survey Results A v. Range No. | \ Test 13.6 12.4-15.6 3 1 \ PT 20.0 RBC 5.7 5.3-6.2 3 1 RVV 13.0 | PCV 50 Hb Av. Range No. 1 12-14 2 1 2 1 1 44.5 37-54 3 1 1 PTT Retics 1.6 1.3-1.9 2 1 RT 80 70-99 2 MCV 77.0 69-88 3 1 KRT 51 48-54 2 MCH 23.4 21.2-27.0 3 1 TT 13.5 12-15 2 |MCHC 30.2 30.0-30.5 3 324 266-383 2 6.46 6.34-6.62 3 85 78-92 2 83 77-90 2 |MCD I 1vΠ 8.8 5.2-12.6 3 |N 67 45-76 3 11 VII |L 29 14-51 3 | VIII |M 3 1-6 3 IX E 1 0-2 3 |B 0 1x WBC I 1 140 1 + 2 1 x* 1 Pits 288 184-400 3 |ESR 0.6 0-1 3 | XIII |ELT 180 2 AT Pg |AF 1000+ XII |cR |TP 64 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cercopithecus talapoin Talapoin monkey Survey R esu Its Survey R esu Its No. I No. I \ Test Av. Range Hb 14.2 12.1-16.3 6 PT 14.8 14.5-15.0 3 1 RBC 5.4 4.7-6.0 6 1 RW 18.8 17.5-20.0 2 1 PCV 45 40-52 6 1 PTT 58 55-62 3 1 Retics 1.5 0.6-2.6 6 1 RT 75 1 MCV 84.5 79-87 6 1 KRT 66 1 MCH 26.5 25.5-27.2 6 1 MCHC 30.8 | Test TT I 29.2-33.0 6 6.97 6.76-7.25 7 1 WBC 7.3 4.3-12.0 10 IN 70 56-84 10 1Hv 11 VII 1 MCD L 36 12-38 10 1 VIII IM 3 1-7 10 1 IX E 0.5 0-1 10 11 BPits 0.5 0-1 10 1XIx 188 135-248 10 1 XII ESR 0.3 0-0.5 10 XIII IELT 150 120-180 2 1 AT Pg |AF 1 CR | TP Av. 9.0 Range 1 1 8-10 2 PRIMATES 65 ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cercopithecus schieri Sclater's spotnosed monkey Survey R esu Its Test Hb Av. 15.0 No. | Survey R e suit s 1 Test Av. PT 15.0 RBC 5.5 RW 13.5 PCV 47.5 1 PTT 40 1 RT 74 86.0 | KRT 55 MCH 27.0 1 ir MCHC 31.0 Retics 0.8 MCV MVICD 7.23 WBC 11.4 N 75 L 17 M 8 IE B Pits 0 0 625 ESR 1 ELT 480 Pg AF I No. | 9 324 [ ΠV 1 | VII 1 ιχ vin 1x 1M 1 XII | XIII AT CR TP + 1 | 66 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cercopithecus albigularis Syke's monkey Survey Results 1 Test Av. Survey Results No. | 1 Hb 1 Test RBC Av. RW 45 |RT 103 |MCV 1 KRT 44 |MCH |TT 7.5 Retics I |MCHC |MCD 7.17 1 ii |WBC 6.6 |V N |L I 1 vu 1 vin 41 52 M 1 E 5 B 1 IX |x XI 1 Pits 468 XII IESR 0.5 1 XIII ELT 170 IAT ICR Pg |AF No. ~| 13.5 |PTT |PCV Range 13.5 |PT 74 1 |TP 160 6.0 1 5.7-6.3 Contact activation index 55 Range 54-56 (2 animals) 2 1 ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cercopithecus diana Diana monkey Survey R esults | Test Av. \ Hb 11.9 | 1 Test Av. PT 14.0 5.1 RW 12.0 IPCV 40 1 PTT 85 1 Retics 0.2 1 RT 127 67 RBC IMCV 79.0 1 KRT IMCH 23.7 | [MCHC 29.2 7.23 |MCD |WBC 4.4 |N 69 |L 24 |M 6 IE 1 |B 0 1 Pits |ESR ELT Pg |AF CMH-6 No. Survey R esu Its IT I 1 ΠV 1 Range No. 1 8 461 | VII | VIII 1ιχ 1M X | XII [ 1 1 xiii 105 AT |CR | TP + 65 1 63-67 3 68 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cercopithecus Vhoesti L'hoest's monkey Survey R esu Its Test Hb RBC Av. 12.5 Survey R esu Its No. | | Test Av. PT 11.0 RW 10.0 PCV 4.9 42 1 PTT 54 | Re tics 0.5 1 RT 132 90 MCV 86.1 1 KRT MCH 25.5 , 1 TT MCHC 29.9 1I 481 WBC 5.3 270 N 66 1 ΠV 1 1 vu L 23 | VIII 1000+ M 5 E 4 B 2 MCD Pits No. 1 5.5 270 1 IX 1X 1XII** ESR 0.5 | xiii ELT 480 AT Pg AF 5.8 | CR | TP + 1 6.14 _ j | ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Erythrocebus patas Patas monkey Survey R esu Its Survey R e su Its Av. Range No. 1 Test Av. Range 12.6 11.0-13.6 24 PT 16.0 14.5-18.0 23 RBC 5.0 4.4-5.5 24 RW 12.5 8-16 22 1 PCV Test 1 Hb No. 1 42 40-45 24 47-89 26 0.4 0-1 24 | PIT 1 RT 63 Re tics 97 83-120 23 MCV 83.9 76.5-94.0 24 KRT 60 44-80 19 | MCH 25.5 20.5-28.8 24 TT 8.3 6.5-10.0 26 1 MCHC 29.6 25.4-32.0 24 295 182-410 17 58 28-123 12 23 | MCD 1 I 1V U 6.92 6.47-7.39 10 5.3 3.5-10.2 24 240 110-400 39 24-60 24 VII 180 110-230 7 1M 1B E 53 23-75 24 VIII 400 210-640 19 WBC 1 NL 6.5 2-10 24 IX 45 20-64 7 1 0-4 24 X 93 62-170 18 0.5 0-2 24 XI 215 + 180-260 Pits 303 205-445 24 XII 1 ESR 0.3 0-0.5 19 XIII ELT 135 Pg | AF 85-355 28 AT 5.15 3.4-6.4 5 CR 67 26-92 6 | | TP 3 18 1 1 68 5.6 4.88-6.3 PF3 release 71 Range (7 animals) 63-85 PF3 total 110 Range (7 animals) 92-117 Contact activation index 43 Range 28-51 (8 animals) 8 | 70 PRIMATES ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Theropithecus gelada Gelada baboon Survey R esults Survey R esu Its Av. Range No. | 11.75 11.1-12.4 4 1 | RBC 4.2 3.9-4.6 4 RW | pcv 36 34-38 4 1 PTT 95 1.4 0.2-3.5 4 1 1 RT 171 75 Test \ Hb Retics \ fest \ VT Av. 12.0 | MCV 85.7 81.5-91.0 4 1 KRT 1 MCH 27.9 25.2-30.5 4 1 TT 10 | MCHC 32.6 30.9-33.5 4 11 1nv 624 | MCD | 5.5 3.3-8.4 6 68 56-84 6 1vu 1 IM E 1 |B 27 10-42 6 | VIII 3 1-6 6 IX 1 0-2 6 1 0-2 6 | Pits 243 153-394 5 1xM 1XII JESR 3 1-5 3 | XIII WBC 1 NL |ELT No. 1 12.5 + 1 AT Pg | CR |AF 1 TP 6.14 ì 1 PRIMATES 71 ANTHROPOIDEA CERCOPITHECOIDEA CERCOPITHECIDAE Cercocebus torquatus White-collared mangabey Survey Results 1 Test Hb RBC Av. Range Survey Results No. 1 \ Test Av. Range No. 13.4 12.6-14.2 2 PT 13.8 13.5-14.0 3 1 4.8 4.5-5.1 2 RW 16.0 15-18 3 1 49-52 3 1 IPCV 43 1 IPTT 51 1 Retics 0.1 1 1 IRT 90 1 1 1 1 KRT 59 1 1 IMCV 90.0 IMCH 27.8 |MCHC 33.0 27.6-28.0 2 IT 1 1 i 1 I |ll 40 1 |V 120 1 900 1 8.5 7-10 2 1 408 388-428 3 1 |MCD 7.35 |wBC 4.9 4.4-5.2 3 |N 56 41-75 3 | vu |L 36 23-48 3 1 | νπι |M 7.5 4-10 3 1 ix 38 1 E 0.5 0-1 |x 221 1 |B 0 I 3 | | 3 1 | XI Pits 300 |ESR 0.5 0-1 2 + 1 ELT 304 90-600 3 AT 550 1 1 |CR 71 i |TP 5.54 Pg |AF 1 4.65 See also refs 66, 67 I XII | | XIII _1 1 1 PRIMATES ANTHROPOIDEA HOMINOIDEA HYLOBATIDAE Hylobates lar Lar gibbon Survey Results | | | Av. \ 13.9 Survey Results 1 Test Range No. Range No. 9.7-14.2 6 5.2-6.4 6 5.7 3.8-6.9 IRW 7.0 34-43 6 45 33-54 IPTT 56 52-60 0.8 0-1.5 6 |RT 80 75-85 2 | MCV 67.4 62-74 6 78.5 66-100 |KRT 54 50-57 2 MCH 20.3 18-22 6 24.2 18.9-33.1 6-9 2 | MCHC 29.7 28-32 6 30.9 27-38 Test Hb Av. Ref. 1 11.7 | RBC 5.6 1 pcv 40 Retics | MCD WBC 1L N 1M E B 6.7 2.8-9.7 2 1 6 1 1 7.8 50 30-70 6 47 36-52 6 5 0-10 6 1 2 0-5 6 6 6.66 1 1 1 Pits 1 0-2 283 266-320 | ESR 2 0-5 | ELT 260 | | Range 9.2-17.1 | 62-70 2 57 37-78 2 14-98 210 120-250 5 1 2 66 48 0-21 | | VIII 700 1 | IX 150 2 |x 200 2 | 2 | 1 xii XIII Pg |CR | AF TP No. = 64 180-220 | | XI AT | 2 11 |v 0-3 1 2 417-800 | | VII 0.5 7.5 | 1 608 2-82 0-14 Av. 10.0 I 2.9-19.2 1 2.1 6 1 |TT | 46 2.7 | | PT + PRIMATES 73 ANTHROPOIDEA HOMINOIDEA HYLOBATIDAE Hylobates hoolock Hoolock gibbon Survey Results Test Hb Av. 12.3 Range 10.5-14.1 Survey Results No. 1 2 | Test \ PT Av. 22.0 RW 10.5 1 Range No. 1 RBC 5.3 5.2-5.4 2 PCV 44 39-49 49 i 0.4 2 1 i 1 1 PTT Re tics 1 RT 88 1 | MCV 82.2 2 | | KRT 46 1 | 7.5 1 | MCH MCHC 72.0-92.3 23.4 19.8-26.9 2 | | TT 27.8 27.2-28.4 2 | 11 7.17-7.23 2 | WBC 12.3 11.9-12.7 2 | IN 78 74.0-82.5 2 | 1 V" 1 | VII 12 11-13 2 | | VIII 7 4.5-10.0 2 | MCD 1 L |M E |B 7.20 2.5 0-5 2 0.5 0-1 2 1X IX 1XIIM | Pits 278 1 |ESR 0.5 1 | xiii |ELT 105 1 AT Pg |AF | CR |TP 419 1 57 1 1 78 1 | 240 1 | 50 1 180 1 325 +. 61 5.24 230-420 2 1 1 _j I PRIMATES ANTHROPOIDEA HOMINOIDEA PONGIDAE Pan troglodytes Chimpanzee Survey Results Ref. 1 Ref. 5 Ref. 5 \ Test Av. Range No. I Av. Range Av. SD Av. Hb 13.4 9.7-18.2 23 12.5 7.2-19.0 13.6 1.4 13.9 1 RBC 5.1 3.8-6.8 23 1 1 4.6 2.8-7.0 1 pcv 23 1 39.7 22-59 5.34 0.49 SD 1.3 0.58 5.37 42.4 3.7 42.8 3.4 1 71-123 79.6 5.4 80.1 5.7 1 21-40 25.4 2.0 26.0 2.4 1 26-38 32.1 2.1 32.5 2.2 44.5 38-58 1 Retics 0.8 0^2.4 1 MCV 87.8 81-98 23 1 1 86 | MCH 26.6 23.8-29.0 23 1 27 29.7 25.2-34.3 23 1 31.2 | MCD 7.2 6.86-7.51 12 WBC 8.3 3.1-13.1 23 12.5 1.8-30.0 12.0 4.8 12.1 4.3 N 55 42-81 12 63 19-92 42.3 14.4 41.8 14.4 1 38 10-54 12 31 7-78 50.1 13.4 53.0 14.3 5 1-12 12 1 1 0-7 1.5 2.6 0.9 2.1 1Pits 1.5 0-6 12 2.6 0-16 3.6 4.2 2.7 2.7 0.5 0-2 12 1 0.2 0-3 0.2 0.4 0.2 0.4 222 129-302 16 349 120-650 363 115 339 116 1 ESR 6 0.5-20.0 15 | ELT 107 25-240 22 Pg | AF 2.75-5.18 5 131 110-152 2 MCHC L 1 | M E B 3.95 14 1 18.0 No. = 138+ See also refs. 2, 6, 7,10,11, 66, 93, 113. 15.3 Males Females 399 tests on 115 animals 75 PRIMATES Chimp Ref. 103 Survey Results I Test Av. Range No. | \ 1 PT 15.7 13-20 13 1 14.7 RW 10.6 7-16 1 PTT 1 RT 1 KRT 52 39-73 73 47-99 47 Range 35-70 6.7 4-8 20 1 13.5 447 198-843 19 416 367-481 1V U 68 14 70 64-75 96 37-170 58-140 12 87 70-100 VII 120 45-240 9 1 VIII 538 IX 1X 1 XI 1 xn | XIII 1 AT CR 1 TP 270-1000 14 1 7.6 30.5 7-8 49 ± 0.3 80 ± 2.5 11-17 164 146-180 63-300 9 113 100-130 97 49-250 17 97 400 380-420 2 1 130 108-144 247 + 180-370 3 423 328-520 14 1 206 130-288 67 5.25 390-725 66-68 5.04-6.68 PF3 release 66.3 Range (3 animals) 66-67 PF3 total 114 Range (3 animals) 94-133 Contact activation index 52 Range 37-60 (5 animals) ± SD 1 27-34 90 542 Av. 14-19 20 22 20 18 TT I 1 1 1 1 Av. Ref. 94 67-112 6 2 91 5 animals 6 animals 76 PRIMATES ANTHROPOIDEA HOMINOIDEA PONGIDAE Gorilla gorilla Gorilla Survey Results Ref. 1 Ref. 7 Ref. 8 1 Test Av. Range No. Λν. Range Av. Range Av. Hb 12.0 10.4-12.9 4 11.7 9.4-15.1 12.25 12.0-12.5 16.6 15.3-19.5 RBC 4.3 3.8-4.8 4 | 4.1 3.6-5.1 4.5 4.3-4.7 4.6 3.1-5.4 PCV 36.3 34-38 4 | 39.1 31.5-47.0 42 41-43 0.82 0.4-1.2 Retics 0.6 0.2-1.5 4 | MCV 87.7 83-90 4 | 86.2 71-104 86.8 86.5-87.3 MCH 29.0 25-33 22.8-30.2 25.4 25.3-25.4 32.6 29-36 4 1 4 1 25.7 MCHC 30.1 26-37 29.2 29.1-29.3 WBC 6.1 4-12 4 1 10.7 3.7-26.2 N MCD 7.73 56 50-68 4 59 33-89 L 29 25-37 4 1 30 9-65 |M 7 4-12 4 1.9 0-7 E B 1 0-3 4 2.4 0-10 1 0 4 0.1 0-2 Pits 206 1 ESR 1 ELT Pg 155-286 4 9 0-17 4 100 90-110 2 5.15 Range | 36.1 7.64-7.82 1 | AF No. = 37-59 For blood picture see also refs. 2, 113 No. =2 No. =10 Gorilla Survey Results 1 Test 1 No. 1 3 1 Av. Range 16.8 12-20 RW 9.0 7-11 2 PTT 52 41-64 3 RT 71 58-78 3 KRT 44 40-47 3 1 PT IT I 8.0 5-13 307 124-434 3 | | | 3 1 II 49 47-51 2 V 64 51-80 3 VII 125 110-140 3 | VIII 925 850-1000 2 | IX 93 80-100 3 1xxi 1XII 130 90-200 3 230 1 150 + 3 5.85 i 1 XIII 1 AT CR TP j 78 PRIMATES ANTHROPOIDEA HOMINOIDEA PONGIDAE Pongo pygmaeus Orang utan Survey Results Ref. 1 No. | |~~ Av. 1 Test A v. Range \ Hb 11.2 10.0-12.2 5 | RBC 4.8 4.0-5.5 5 PCV 38.5 Retics 1 MCV 0.18 80.6 36-42 6 0.1-0.2 6 76-93 | \ 10.8 | 1 4.2 | 5 1 85.6 | 25.5 22.9 21-25 5 28.9 27-30 5 1 1 1 1 WBC 1NL 8.4-11.1 6 46-78 6 1 11 M 1BE 11 Pits 261 230-307 1 ESR 0 0-1 1 ELT 170 60-300 Pg | AF 4.3 2.7-5.4 29.7 13.6 9.8 59 | 33 21-49 6 3 1-5 6 | 3 0-8 6 | 0 92 -6 1 5 1 6 1 3 1 3 1 i 6.4-15.01 |PT 2.3-5.6 24-46 1 |RW PTT | 72-104 | | K R T 19.3-30.5 | [ TT 24-39 | 4.6-26.81 Av. Range No. | 12.3 10.0-16.8 9.7 6-13 51 51 63 50-71 5 104 60-160 5 62 45-70 5 5 8.1 5-13 I 550 343-722 5 III 80 47-120 5 136 60-230 6 14-91 1 VII 240 110-380 3 7-82 1 VIII 427 155-1000 7 0-11 1 1 IX 85 27-140 6 2.6 0-16 Ix 160 100-220 5 0.1 0-2 I XI 136 52-220 2 120-150 I XIII 135 + I AT 405 |CR 64 2 5 1 1 |TP 6.44 55.5 40 1.8 416 V 175-750 1 I XII | No. = 100-145 See also refs. 2, 7, 113 1 Test |RT | MCH 7.01 Range | 1 MCHC 1 MCD 36.7 Survey Results 5.98-7.0 1 1 1 1 3 | PF3 release 6 7 (1) PF3 total 120(1) Contact activation index 43 (1) ANTHROPOIDEA HOMINOIDEA HOMINIDAE Homo sapiens Man Survey R esults Survey R esults | Test Av. Range No. | \ Test Hb 14.4 12.3-17.3 69 1 \ PT RBC 4.8 4.1-6.1 1 PCV 43.9 37-51 69 Retics 0.7 0-1.8 69 91.0 70-99 69 |MCV Av. Range No. ~~| 14.0 12-15 102 RW 8.7 7-10 102 PTT 71 48-90 102 | RT 122 74-144 102 | KRT 67 48-78 102 | 69 | |MCH 30.0 26-35 69 1 |MCHC 32.8 27-37 69 | | 6.4 4.5-8.0 102 | 1vn 302 194-408 45 1 94 70-125 35 107 83-140 33 IT I |MCD 7.21 6.92-7.75 14 | |WBC 6.6 4.1-12.0 69 | |N 56.5 38-79 69 1 11 VII 112 70-180 25 |L 35 16-55 69 | VIII 102 64-160 45 | |M 5 1-12 69 IE 3 0-7 69 |B 0.5 0-1 69 Pits 210 140-342 |ESR 5.7 1-22 ELT 145 2.8 100 84-117 25 Pg |AF 11 ixX 1M 96 60-150 30 101 54-200 34 | 100 50-150 10 165 XII 100 50-150 48 | XIII + 60-240 90 1 AT 329 220-560 37 1.9-4.0 42 CR 63 57-68 75 1 10 45 1 |TP Contact activation index 39 Range 31-50 (20 subjects) PF3 release 79 Range 71-90 (20 subjects) PF3 total 104 Range 100-120 (20 subjects) 80 PRIMATES References 1. Huser, H-J. (1970). Atlas of Comparative Primate Haematology. Academic Press, New York and London. 2. Ponder, E., Yeager, J. F. and Charipper, H. A. (1928-1933). Haematology of the primates. Zoologica, XI, 9. 3. Hunt, R. D. and Chalifoux, L. (1967). The hemogram of the tree shrew (Tupaia glis). Folia Primat. 7, 34. 4. Burns, K. F., Ferguson, F. G. and Hampton, S. H. (1967). Compendium of normal blood values for baboons, chimpanzees and marmosets. Am. J. clin. Path. 48, 484. 5. Hodson, H. H., Lee, B. D., Wisecup, W. G. and Fineg, J. (1967). Baseline blood values of the chimpanzee. I. The relationship of age and sex and haematological values. Folia Primat. 7, 1. 6. Parer, J. T. and Moore, C. P. (1968). Respiratory characteristics of the blood of the baboon, gibbon and chimpanzee. Folia Primat. 9, 154. 7. Riegel, K., Bartels, H., Kleihauer, E. and Lang, E. M. (1966). Comparative studies of the respiratory function of mammalian blood. L Gorilla, chimpanzee and orang utan. Resp. Physiol. 1, 138. 8. Oye, E. van and Chardome, M. (1953). Etudes hematologiques chez des singes. II. Note sur le sang et la moelle osseuse chez le jeune gorille. Ann. Soc. belge Med. trop. 33,737. 9. Miller, L.G., Desowitz, R. S., Yuthasastrkosol, V., Buchanana, R. D. and Permpanich, B. (1967). Comparative studies on the pathology and host physiology of malarias. II. Gibbon malaria. Ann. trop. Med. Parasit. 6 1 , 375. 10. Godfrey, D. G. and Killick-Kendrick, R. (1967). Cyclically transmitted infections of Trypanosoma brucei, T. rhodesiense, and T. gambiense in chimpanzees. Trans. R. Soc. trop. Med. Hyg. 6 1 , 7 8 1 . 11. Wisecup, W. G., Hodson, H. H., Lovett, R. L., Prine, J. R. and Hanly, W. C. (1968). Anaemia in chimpanzees {Pan troglodytes) resulting from serial collection of blood. Am. J. vet. Res. 29, 1823. 12. Gardner, M. B. (1947). The blood picture of normal laboratory animals. A review of the literature 1936-1946. Biochem. Res. Foundation Notes. 244, 155. 13. Lapin, B. and Cherkovich, G. M. (1972). Biological Normals. In. Pathology of Simian Primates I, p.78 (Ed. R.N.T-W-Fiennes). Karger, Basel. 14. Bilimoria, H. S. ( 1931 ). Blood findings in normal monkeys. Indian J. med. Res. XIX, 431. 15. Foy, H., Kondi, A. and Mbaya, K. (1965). Haematologic and biochemical indices in the East African Baboon. Blood, 26, 682. 16. Howard, A. N. and Gresham, G. A. (1966). The care and use of baboons in the laboratory. Symp. zool. Soc. Lond. No. 17, p.75. Academic Press, New York and London. 17. De La Pena, A. and Goldzieher, J. W. (1967). Clinical parameters of the normal baboon. In. The Baboon in Medical Research (Ed. H. Vagtborg). University of Texas Press, Austin, Texas. 2, 379. 18. Huser, H.-J., Rieber, E. E., Sheehy, T. W. and Berman, A. R. (1967). Erythrokinetic studies in the baboon under normal and experimental conditions. In. The Baboon in Medical Research (Ed. H. Vagtborg). University of Texas Press, Austin, Texas. 2, 391. 19. Vice, T. E. and Rodriguez, A. R. (1967). Clinical and Physiological observations in the baboon. In. The Baboon in Medical Research (Ed. H. Vagtborg). University of Texas Press, Austin, Texas. 1, 141. 20. Moor-Jankowski, J., Huser, H-J., Weiner, A. S., Kalter, S. S., Pallotta, A. J. and Guthrie, C. B. (1967). Haematology, blood groups, serum isoantigens and preservation of blood in the baboon. In. The Baboon in Medical Research (Ed. H. Vagtborg). University of Texas Press, Austin, Texas. 1, 364. 21. Rahlmann, D. F., Pace, N. and Barnstein, N. J. (1967). Haematology of the pig-tailed monkey (Macaca nemestrina). Folia Primat. 5, 280. 22. Kuksova, M. I. (1960). Seasonal and diurnal fluctuations in the red blood cells of monkeys. In. Theoretical and Practical Problems of Medicine and Biology in Experiments on Monkeys (Ed. I. A. Utkin). Pergamon Press, Oxford. PRIMATES 81 23. Lai Kalra, S. (1947). Leucocytes in normal rhesus monkeys. Indian, med. Gaz. 82, 383. 24. Seymour Jones, E., McCall, K. B., Elvehjem, C. A. and Clark, P. F. (1947). The effect of diet on the haemoglobin, erythrocyte and leucocyte content of the blood of the rhesus monkey (Macaca mulatta). Blood, 2, 154. 25. Spicer, E. J. F. and Oxnard, C. E. (1967). Some haematological changes during pregnancy in the rhesus monkey (Macaca mulatta). Folia Primat. 6, 236. 26. Allen, J. R. and Seigfried, L. M. (1966). Haematologic alterations in pregnant rhesus monkeys. Lab. Anim. Care, 16, 465. 27. Rao, M. V. R., and Rao, M. N. (1940). Normal haematological standards in the monkey (Macacus sinicus). Indian J. med. Res. 27, 1101. 28. Inoue, M., Itakura, C. and Takemura, N. (1964). Peripheral blood of wild Japanese monkeys (Macaca fuscata fuscata and M.f.yakui). Primates 5 , 7 5 . 29. Nigi, H., Tanaka, T. and Naguchi, Y. (1967). Haematological analyses of the Japanese monkey (Macaca fuscata). Primates, 8, 107. 30. Ives, M. and Dack, G. M. (1956). 'Alarm reaction' and normal blood picture in Macaca mulatta. J. Lab. clin. Med. 47, 723. 31. Krise, G. M. (1958). Normal blood picture of the Macaca mulatta monkey. / . appi. Physiol. 12,482. 32. Lapin, B. A., Norkina, L. N., Cherkovich, G. M., Yakovleva, L. A., Kuksova, M. I., Alekseeva, L. V., Fufacheva, A. A. and Stratsev, V. G. (1963). The monkey as an object of biomedicai experiments (Sukhumi 1963). 33. Wilber, C. G. and Setzier, E. (1968). Blood cells in the African green monkey. /. Mammal. 49, 547. 34. Pridgen, W. A. (1967). Values for blood constituents of the African green monkey (Cercopithecus aethiops). Lab. Anim. Care 1 7 , 4 6 3 . 35. Edington, G. M., Ward, A. H., Judd, J. M. and Mole, R. H. (1956). The acute lethal effects in monkeys of radiostrontium. / . Path. Bact. 7 1 , 277. 36. Tuttle, A. H., Newsome, F. E., Jackson, C. H. and Overman, R. R. (1961). Haemoglobin types of Macaca irus and M. mulatta monkeys. Science 133, 578. 37. Sauer, R. M. and Fegley, H. C. (1960). The roles of infectious diseases in monkey health. Ann. N. Y. Acad. Sci. 85, 866. 38. Honjo, S., Takasaka, M., Fujiwara, T., Nakagawa, M., Andoo, K., Ogawa, H., Takahashi; R. and Imaizumi, K. (1964). Shigellosis in cynomologus monkeys (Macaca irus). II. Experimental infection with Shignella flexneri with special reference to clinical and bacteriological findings. Jap. J. med. Sci. Biol. 17, 307. 39. Dillingham, L. A., Morrow, A. C. and Bronsdon, A. A comparison of the haemograms of Macaca mulatta, Macaca nemestrina and Papio anubis. Folia Primat. 14, 241. 40. Melville, G. S., Whitcomb, W. H. and Martinez, R. S. (1967). Haematology of the Macaca mulatta monkey. Lab. Anim. Care 17, 189. 4 1 . Robinson, F. R. and Ziegler, R. F. (1968). Clinical laboratory data derived from 102 Macaca mulatta. Lab. Anim. Care 18, 50. 42. Switzer, J. W. (1967). Bone marrow composition in the adult rhesus monkey (Macaca mulatta). J. Am. vet. med. Ass. 151, 823. 43. Banerjee, S. and Bal, H. (1959). Studies on changes in bone marrow and blood picture in monkeys during progressive stages of scurvy. Indian J. med. Res. 47, 646. 44. Banerjee, S. and Chakrabarty, A. S. (1965). Anaemia and its relation with iron metabolism in scorbutic monkeys. Indian J. med. Res. 53, 835. 45. Poppen, K. J., Greenberg, L. D. and Rinehart, J. F. (1952). The blood picture of pyridoxine deficiency in the monkey. Blood, 7, 436. 46. Shukers, C. F., Langston, W. C. and Day, P. L. (1938). The normal blood picture of the young rhesus monkey. Folia haemat. 60, 416. 47. Ray, A. P. (1957). Haematological studies in simian malaria. I. Blood picture in normal M. mulatta mulatta and those infected with P. knowlesi infection. Indian J. Malar. 11,355. 48. King, T. O. and Gargus, J. L. (1967). Normal blood values of the adult female monkey (Macaca mulatta). Lab. Anim. Care 17, 391. 49. Lucey, J. F., Behrman, R. E. and Warshaw, A. L. (1963). 'Physiologic' jaundice in newborn rhesus monkeys. Am. J. Dis. Child. 106, 350. 82 PRIMATES 50. Creager, J. G., and Switzer, J. W. (1967). Some factors relating to growth and development of primate infants with special reference to the baboon. In. The Baboon in Medical Research (Ed. H. Vagtborg). University of Texas Press, Austin Texas. 2, 85. 51. Allen, J. R. and Ahlgren, S. A. (1968). A comparative study of the haematologic changes in pregnancy in the Macaca mulatta monkey and the human female. Am. J. Obstet. Gynec. 100,894. 52. Majumder, D. N. and Das Gupta, C. R. (1944). Haematological studies in Silenus (Macacus) rhesus. Part 1. The blood picture of the normal monkey. Indian J. Med. Res. 32, 1. 53. Vondruska, J. F. (1970). Certain haematologic and blood chemical values in adult stump-tailed macaques (Macaca arctoides). Lab. Anim. Care, 20, 97. 54. Hensley, J. C. and Langham, W. H. (1964). Comparative fundamental physiological parameters of Macaca mulatta and M. speciosa. Lab. Anim. Care, 14, 105. 55. Girod, C. ( 1961 ). Recherches sur la cytologie du sang et de la moelle osseuse hematogene chez le magot d'Algerie (Macaca sylvanus L.) Données numériques et morphologiques. Arch. A na t. (Strasbourg) 44, 149. 56. Yang, C-S., Kuo, C-C, Del Favero, J. E. and Alexander, E. R. (1968). Care and raising of newborn Taiwan monkeys (Macaca cyclopis) for virus studies. Lab. Anim. Care, 18,536. 57. Srikantia, S. G. and Gropalan, C. (1963). Some biochemical and physiological features of normal monkeys (Macaca radiata). J. appi Physiol. 18, 1233. 58. Melnick, J. L., Benyesh-Melnick, M., Fernbach, D. J., Phillips, C. F. and Mircovic, R. R. (1967). The newborn baboon as a test animal for human leukemia and for surveying human viruses for oncogenicity. In. The Baboon in Medical Research (Ed. H. Vagtborg). University of Texas Press, Austin Texas. 2, 669. 59. Siddons, R. Personal communication. 60. Foy, H., Kondi, A. and Mbaya, V. (1966). Serum vitamin B i 2 and folate levels in normal and riboflavine-deficient baboons Papio anubis). Brit. J. Haemat. 12, 239. 61. Oxnard, C. E., Smith, W. T. and Torres, L. N. (1968). Peripheral neutropathy and hypovitaminosis B i 2 in captive monkeys. Proc. 2nd Int. Congr. Primatol. Atlanta Ga, Karger, New York, 1969. 3, 162. 62. Lapin, B. A. (1956). A case of lymphogranuloma in a green monkey. In. Theoretical and Practical Problems of Medicine and Biology in Experimentation on Monkeys (Ed. L. A. Utkin) Pergamon Press, Oxford. 63. Bushby, S. R. M. (1970). In. Methods in Toxicology (Ed. G. E. Paget). Blackwell Scientific Publications, Oxford. 64. Berchelmann, M. L., Vice, T. E. and Kalter, S. S. (1971). The hemogram of the maternally reared neonatal and infant baboon (Papio cynocephalus). Lab. Anim. Sci. 21, 564. 65. Myers, J. H. and Blackwell, L. G. (1969). Cardiovascular physiology and fluid volume studies in the baboon. Proc. 2nd Int. Congr. Primatol. Atlanta Ga, 3, 102. (Karger, Basel and New York, 1968). 66. Berghe, L. van den and Blitslein, I. (1953). Composition cytologique du sang. Ann. Soc. belge Méd. trop. 33, 709. 67. Smith, P. K. (1940). Prolonged administration of large doses of acetanilid in monkeys with special reference to blood changes. /. Pharmacol, exp. Ther. 68, 1. 68. Einheber, A. and Cerilli, G. J. (1962). Haemorrhagic shock in the monkey. Am. J. Physiol. 202, 1183. 69. Cerilli, G. J., Geever, E. F. and Gagnon, J. (1962). The effects of suprarenal aortic occlusion and haemorrhagic hypotension on the renal function of primates. / . surg. Res. 2, 233. 70. Krumbhaar, E. B. and Musser, J. H. (1921). Studies of the blood of normal monkeys. / . med. Res. 42, 105. 71. Suârez, R. M., Diâs Rivera, R. S. and Hernândes Morales, F. (1942). Haematological studies in normal rhesus monkeys (Macaca mulatta). Puerto Rico J. pubi. Hith. trop. Med. 18, 212. 72. Krise, G. M. (1960). Haematology of the normal monkey. Ann. N.Y. Acad. Sci. 85, 803. PRIMATES 83 73. Anderson, E. T., Lewis, J. P., Passovoy, M. and Trobaugh, F. E. (1967). Marmosets as laboratory animals. II. The haematology of laboratory kept marmosets. Lab. Anim. Care 17, 30. 74. Beischer, D. E. and Furry, D. E. (1964). Saimiri sciureus as an experimental animal. Anat.Rec. 148,615. 75. Mann, G. V., Watson, P. L. and Adams, L. (1952). Primate nutrition. I, The cebus monkey — Normal values. / . Nutr. 47, 213. 76. Porter, J. A. (1969). Haematology of the night monkey (Aotus trivirgatus). Lab. Anim. Care 19, 470. 77. Porter, J. A. (1970). Haematologic values of the Panamanian marmoset (Saguinus geffroyi). Am. J. vet. Res. 3 1 , 379. 78. Capel-Edwards, K. and Hall, D. E. (1970). Haematological observations on the squirrel monkey. Folia Primat. 12, 142. 79. Peoples, A., Cranmer, M. and Miller, M. (1969). Determination of baseline blood values of the squirrel monkey (Saimiri sciureus). Lab. Primate Newsletter 8, 1. 80. New, A. E. (1968). Appendix: Base-line blood determinations of the squirrel monkey (Saimiri sciureus). In. The Squirrel Monkey, p.417, (Eds. L. A. Rosenblum & R. W. Cooper). Academic Press, New York. 81. Manning, P. J., Lehner,, N.. D., Feldner, M. A., and Bullock, B.. C (1969). Selected haematologic, serum chemical and arterial blood gas characteristics of squirrel monkeys (Saimiri sciureus) Lab. Anim. Care 19, 831. 82. De La Iglesia, F. A., Porta, E. A. and Hartroft, W. S. (1967). Effect of dietary protein levels on the Saimiri sciureus. Exp. molec. Path. 7, 182. 83. Rosenblum, L. A. (1968). Some aspects of female reproductive physiology in the squirrel monkey. In. The Squirrel Monkey, Chap. 5, (Eds. L. A. Rosenblum & R. W. Cooper). Academic Press, New York. 84. Wellde, B. T., Johnson, A. J., Williams, J. S., Langbehn, H. R. and Sadun, E. H. (1971). Haematologic, biochemical and parasitologic parameters of the night monkey (Aotus trivirgatus). Lab. Anim. Sci. 2 1 , 575. 85. Taliaferro, W. H. and Klüver, C. (1940). The haematology of malaria (Plasn\odium brasilianum) in Panamanian monkeys. I. Numerical changes in leucocytes. /. infect. Dis. 67, 162. 86. Garcia, F . G. and Hunt, R. D. (1966). The haematogram of the squirrel monkey (Saimiri sciureus). Lab. Anim. Care 16, 50. 87. Malinow, M. R., Pope, B. L., Depaoli, J. R. and Katz, S. (1968). Laboratory observations on living howlers. Bibl. Primat. 7, 224. 88. Haines, D. E., Holmes, K. R. and Brett, I. J. (1971). The haemogram of the colonised lesser bushbaby (Galago senegalensis). Folia. Primat. 14, 95. 89. Seaman, A. J. and Malinow, M. R. (1968). Blood clotting in non-human primates. Lab. Anim. Care 18, 80. 90. Hawkey, C. and Symons, C. (1968). A comparative study of blood coagulation in human and non-human primates. Proc. 2nd. Int. Congr. Primat. Atlanta, Ga, 2, 87. (Karger, Basel, 1969). 91. Hawkey, C. (1971). Coagulation, fibrinolysis and platelet function. In. Pathology of Simian Primates, Vol. 1, (Ed. R. N. T.-W-Fiennes) Karger, Basel. 92. Hawkey, C. and Symons, C. (1966). Coagulation of primate blood by Russell's viper venom. Nature (Lond.) 210, 141. 93. Wintrobe, M. M. (1934). Variation in size and haemoglobin content of erythrocytes in the blood of various vertebrates. Folia, haemat. 5 1 , 32. 94. Mason, R. G. and Read, M. S. (1971). Some species differences in fibrinolysis and blood coagulation./. Biomed. Mater. Res. 5, 121. 95. Hampton, J. W. and Matthews, C. (1967). Observations on the clotting mechanism in the baboon. In. The Baboon in Medical Research (Ed. H. Vagtborg). University of Texas Press, Austin, Texas. 2, 659. 96. Birndorf, N. I., Pearson, J. D. and Wredman, A. (1971). The clotting system of monkeys: A comparison of coagulation factors and tests between cynomologus monkeys (Macaca irus) and humans. Comp. Biochem. Physiol. 38A, 157. 97. Hampton, J. W. and Matthews, C. (1966). Similarities between baboon and human blood clotting./. Appi. Physiol. 21, 1713. CMH-7 84 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. PRIMATES Hawkey, C. and Symons, C. (1968). Variation in ADP-induced platelet aggregation in vitro in primates as a result of differences in plasma ADP-inhibitor levels. Thromb. Diath. haemorrh. XIX, 29. Dennis, L. H., Eichelberger, J. W., von Doenhoff, A. and Conrad, M. (1966). A coagulation defect and its treatment with heparin. In. Plasmodium knowlsei malaria in rhesus monkeys. Military Medicine Supplement. Hampton, J. W. (1969). The phylogeny of baboon fibrin-fibrinolysin. Zoologica et Pathologica 48, 59. Chernigovskaya, (1969). Unpublished. Quoted in Ref. 13. Uvarova, (1969). Unpublished. Quoted in Ref. 13. Abildgaard, C. F., Harrison, J. and Johnson, C. A. (1971). Comparative study of blood coagulation in non-human primates. J. Appi. Physiol 30, 400. Schermer, S. (1967). The Blood Morphology of Laboratory Animals. F. A. Davis Co., Philadelphia. Voller, A., Richards, W. H. G., Hawkey, C. and Ridley, D. (1969). Human malaria (Plasmodium falciparum) in owl monkeys (Aotus trivirgatus). J. trop. Med. Hyg. 72, 153. Allen, J. R. and Carstens, L. A. (1965). Haematologic alterations observed in newly acquired monkeys during a period of their isolation. Lab. Anim. Care 15, 103. Chaffee, R. R., Horvath, S. M., Smith, R. E. and Welsch, R. S. (1966). Cellular bio­ chemistry and organ mass of cold- and heat-acclimated monkeys. Fed. Proc. 25, 1177. Hill, W. C. Osman (1953). Report of the Society's Prosector of the year 1952. Proc. zool. Soc. Lond. 123(2), 239. Kordich, L., Katz, S. and Malinow, M. (1968). Blood clotting in the howler monkey (Alouatta caraya). Lab. Anim. Care 18, 371. Cooper, R. G. and Sorenson, M. W. (1969). Blood coagulation in the tree shrew, Tupia chinensis. Lab. Anim. Care 19, 513. Rao, G. N., Yasukawa, J. J. and Shipley, E. G. (1970). Plasma clotting of adult female rhesus monkeys (Macaca mulatta). Lab. Anim. Care 20, 88. Oser, F., Lang, R. E. and Vogin, E. E. (1970). Blood values in stump-tailed macaques (Macaca arctoides) under laboratory conditions. Lab. Anim. Care 20, 462. Clevenger, A. B., Marsh, W. L. and Peery, T. M. (1971). Clinical laboratory studies of the gorilla, chimpanzee and orang utan. Am. J. clin. Path. 55, 479. De La Pena, A., Matthijssen, C. and Goldzieher, J. (1970). Normal values for blood constituents of the baboon (Papio species). Lab. Anim. Care 20, 251. Chapter 3 THE CARNIVORA The Carnivora comprise a highly successful group of flesh-eating mammals in which the main characteristics are associated with the predatory way of life. Animals belonging to this order are generally fast moving and intelligent, with highly developed teeth and claws for offensive purposes, and are therefore well equipped for hunting, killing and devouring their prey. The success of the order is demonstrated by the fact that there are 252 living species which are widely distributed over most of the land surfaces of the earth. The order is divided into two superfamilies, the Canoidea and the Feloidea. The Canoidea comprises four families, the Canidae (Dogs, Foxes, Wolves), the Ursidae (Bears), the Procyonidae (Racoons, Coatis) and the Mustelidae (Weasels, Martens, Badgers, Skunks etc.). The Feloidea contains three families, the Viverridae (Genets, Civets, Mongooses), the Hyaenidae (Hyaenas) and the Felidae (Cats, Lions etc.). In the present survey, most of the carnivores examined have been Canidae or Felidae; the following remarks apply mainly to these two families. In the past, haematological examinations of carnivores have been confined mainly to domestic cats [1-13] and dogs [1-3, 14-24]. Wild carnivores studied include arctic and silver foxes [25-27], dingos [27], coyotes [27], wolves [27] and jackals [28], some bears [29-37], racoons [29, 38] and a kinkajou [28], mink [39-41] and some other mustelids [27, 28, 30] and the African lion [1, 36, 42, 43]. Normal ranges for blood counts on cats and dogs reported in the literature are extremely wide. One major reason for this is probably that both species react violently to stress which causes an instantaneous increase in red and white cell counts [1, 3, 21]. It has been stated that the red count is raised as much as fifty percent in a dog barking at the sight of a cat and a similar response occurs in the cat on hearing the bark [1]. Other variables which may influence results are diet [16], feeding [14, 21], age [3, 14-16, 22] pregnancy and oestrus [14, 15], exercise [3, 14], altitude [23], anaesthetics [44] and breed [1, 3, 14]. Seasonal [24] and diurnal [15, 18] variation have also been noted. Red cells Domestic cats and dogs represent two different families of the order Carnivora and the physiological variables which influence their blood picture probably operate in other members of the order. Nevertheless it is possible to define a basic difference in the haematology of cats and dogs which can be extended to other members of the Felidae and Canidae. Compared with dogs, cats have smaller erythrocytes and although the total red count is higher, the degree of compensation is not complete, and consequently in cats the packed cell volume and total haemoglobin are consistently lower than in dogs. This difference is also present in other representatives of the two families which have been examined and, as a general rule, felids are anaemic by canine standards (Table 3.1). The relatively high haemoglobin content of the blood of canine animals may be related to the fact that in their wild environment these animals often run for long distances at fast rates in search and pursuit of their prey whereas felids, although capable of short bursts of very high speed, generally rely on stealth and cunning when hunting for food. It has been estimated that a hunting wolf 85 CARNIVORA 86 pack covers on an average 40 miles a day whereas a cheetah, reputed to be the fastest mammal on earth and capable of reaching 70 miles per hour over short distances, rarely continues the chase if it fails to overtake its prey in the first burst of speed. Table 3.1 RED CELLS OF CARNIVORES Family Hb RBC PCV MCV MCH MCHC MCD CANIDAE URSIDAE PROCYONIDAE MUSTELIDAE VIVERRIDAE FELIDAE 13.8 13.0 13.7 13.8 13.8 12.1 6.1 6.9 6.9 8.2 10.5 6.7 44 41 44 49 44 36.5 72.5 61.6 63.9 55.7 35.7 54.0 23.3 20.1 20.0 17.8 13.3 17.9 31.4 31.2 31.0 30.5 31.5 32.6 6.58 6.25 6.07 6.05 4.68 5.32 Reticulocytes can be demonstrated in carnivore blood by the usual method and the response of the bone marrow to red cell loss is apparently similar to that of man. Inclusion bodies indistinguishable from Howell Jolly bodies have been reported in a significant proportion of the red cells of normal cats [4, 45], and this has proved to be a common finding in most species of Felidae which have been examined. In man, Howell Jolly bodies are usually indicative of some abnormal condition, but in Felidae they are apparently without pathological significance. In normal domestic cats, up to 4% of the erythrocytes may contain refractile bodies similar to Heinz bodies and the number may be increased in sick cats [1]. In the present survey, Heinz bodies have been found in two normal lions and a cheetah, but not in any canine species examined. In blood samples collected by normal methods, red cells of carnivores often show some degree of crenation. A tendency for red cells to sickle has been found in one species, the slender mongoose (Herpestes sanguineus) [48]. Sickle-shaped red cells, similar to those seen in human sickle-cell anaemia and in some normal deer (chapter 5) are found in blood films allowed to dry slowly in air and can be induced by raising the ionic concentration of the surrounding medium (Figure 3.1). This trait is apparently v/ithout clinical significance in the mongoose [48]. Animals suffering from anaemias resulting from haemorrhage or parasitic infestation have been excluded from the present series. Nevertheless, the blood picture of some apparently healthy captive wild carnivores is suggestive of low grade anaemia when compared with that of other related animals and of man, although this cannot be proved in the absence of statistically significant normal values. Nutritional anaemia, characterised by a fall in haemo­ globin and red count, has been reported in mink (Mustela vison) [46]. This condition is reversed by feeding the animals on liver and has been compared with pernicious anaemia in man [46]. The red cells of carnivores form rouleaux and sometimes show an increased rate of sedimentation. Normal values for erythrocyte sedimentation rates in cats and dogs have been worked out by Irfan who considers values of more than 8mm in one hour for dogs and 18mm in one hour for cats to be indicative of some underlying pathological condition [47]. Some of the animals examined in the present series have had high sedimentation rates in the absence of definable clinical abnormalities; the significance of these findings is at present not known. 87 CARNIVORA White cells As has been pointed out the total white count in animals of this order can be greatly influenced by stress and other physiological variables. In many instances high white counts have been recorded in the absence of obvious pathological cause and it is difficult to use this parameter alone as an index of infection or marrow hyperplasia. Reliance must, therefore, be placed on examination of the stained blood film in which the presence of a high proportion of immature cells has the same significance as in man. In kittens [3] and puppies [1] and in adult cats and dogs, neutrophils outnumber lymphocytes and this picture is also seen in mature wild carnivores. Apart from the presence of an unusually high proportion of large lymphocytes in kittens [101 and minor differences in the eosinophils, the morphology of the white cells of carnivores is similar to that of man. Basophils are rare. High eosinophil counts are found in animals with parasitic infestations but in dogs [1, 14] and in wild carnivores eosinophilia apparently occurs with some frequency in normal animals, possibly as an allergic response or an individual idiosyncrasy. The granules of carnivoran eosinophils vary considerably in size and shape and may be spherical, bacilliform, cylindroidal or ovoid [3]. In the Canidae, eosinophil granules are only weakly acidophilic [1] and consequently do not show up well with Romanowsky stains. Figure 3.1. Sickled red cells of the slender mongoose (Herpestes sanguineus). 88 CARNIVORA IADP CANIDAE Coyote 60 70 80 C/> u D ri Ó70 80 ♦ADP FELIDAE Jaguar H. V \ 0 »■» ■ ì ~2 3 4 5 6 7 8 MINUTES Figure 3.2. Typical patterns of platelet aggregation induced by ADP in Candidae and Felidae. Platelets The platelet count in carnivores is usually within the normal human range. The number of circulating platelets is increased by stress in cats [49]. In stained films the platelets are similar in size and structure to those of man. Clot retraction is rapid and complete. The platelets of all species of Carnivora tested are rapidly aggregated by ADP but the level of ADP-inhibitor is consistently higher in canine than in feline plasma and consequently ADPinduced platelet aggregation is more rapidly reversed in the former (Figure 3.2). In dogs but not in cats, ADP-induced aggregation is inhibited by adenosine [50]. Dog and cat platelets are aggregated by 5 hydroxytryptamine; in cats the aggregation is biphasic and is inhibited by high concentrations [50, 51]. Adrenaline does not produce aggregation in vitro in PRP of these species [50, 51]. Blood coagulation The main point of interest in the blood coagulation mechanism of carnivores is that it is "hyperactive" when compared with that of man. Prothrombin (factor II) and fibrinogen levels and the rate of conversion of fibrinogen to fibrin by thrombin are generally within the normal human range but, as judged by the one-stage prothrombin time and the partial thromboplastin time, both extrinsic and intrinsic prothrombin activator are generated at an increased rate. This is apparently a function of the high levels of plasma coagulation factors present, particularly factors V, VIII, IX, XI and XII. Some Felidae have low levels of factor X, occasionally low enough to be classed as pathological if they occurred in man although haemorrhagic symptoms have not been noted in the animals concerned. Other than this, congenital deficiencies of coagulation factors have not been found in wild carnivores. Haemophilia [53-58], Christmas Disease [59, 60], factor VII deficiency [61-65], factor XI deficiency [66], congenital hypofibrinogenaemia [67] and von Willebrand's Disease [68] have been described in domestic dogs and factor XII deficiency in cats [73], probably revealed by domestication and interbreeding. It would in fact be surprising if such hazardous congenital pathological conditions could survive the process of natural selection in wild animals. CARNIVORA 89 Fibrinolysìs Levels of plasminogen activator and fibrinolytic inhibitors in the blood of carnivores are within the normal human range but the amount of plasminogen in dogs [69] and wild species is significantly greater, indicating a higher fibrinolytic potential. Plasminogen is directly activated by human urokinase and by streptokinase without the addition of extrinsic proactivator. The amount of streptokinase required is greater in Canidae than in Felidae. It has not been possible to activate the fibrinolytic mechanism of carnivores by injection of adrenaline or nicotinic acid or by physical exercise suggesting that the mechanism of spontaneous fìbrinolysis may differ from that of man. Pharmacological activation of fibrinolysis in dogs has been studied by Rahn and von Kaulla [70]. Carnivores provide an example of animals in which the coagulation mechanism is "hyper­ active" and platelets aggregate readily but which apparently have no balancing increase in naturally occurring anti-coagulants or circulating fibrinolytic activity although potential fibrinolytic activity (plasminogen) is high. These animals are therefore well prepared to deal with traumatic haemorrhage, the risk of which is likely to be high in their natural environment. There is no evidence that the "hypercoagulability" is associated with spontaneous atherosclerosis and thrombosis in carnivores; in fact these conditions are rare [71]. 90 CARNIVORA CANOIDEA CANIDAE Canis lupus Wolf Survey Results Ref. 27 No. 1 Av. 15.0 Range 14.0-15.5 1 RBC 5.8 4.9-6.3 3 Av. 12.0 5.3 | PCV 42 39-48 3 35 \ Test 1 Hb 3 Survey Results Test No. 1 4 1 1 PT Av. 9.5 Range 7.0-11.5 | RW 7.0 5.5-9.0 4 PTT 30 23-35 4 57 44-69 3 31 30-34 4 |RT Retics 0.4 0-0.8 3 MCV 71.5 70-72 3 65 1 MCH 26.0 25.2-27.5 3 | MCHC 35.0 31-37 3 23 35 6.95 6.93-7.17 3 7.6 6.8-8.1 3 13.9 75 65-85 3 61 1nv 11 VII 33 1 VIII 1000+ IX 470 260-640 270 55-560 4 1 1 1 1 | | MCD WBC 1LN 1| M 18 9-26 3 [ TT 5.0 4-6 4 1I 482 185-952 4 100 90-110 3 600-1000+ 4 1 88 4 1 3 1 3 1X 11 Xxii1 0.5-2.0 3 1 XIII 370 + 1 AT 509 460-580 1 1 4 3 5.01 4.56-5.34 3 4 2-5 3 E 3 1-6 3 B 0 1 Pits 244 115-338 1.0 1 ESR KRT 3 | ELT 273 260-285 2 1 Pg | AF 5.2 4.75-6.1 3 1000+ CR |TP 5 counts on 1 animal Contact activation index 70 Range 61-78(2) PF3 release 50(1) PF3 total 74 (1) CARNIVORA 91 CANOIDEA CANIDAE Canis la trans Coyote Survey Results Range \~Test Av. 1 Hb 15.4 11-20 | RBC 6.1 4.5-7.1 Ref. 27 ΝοΓ\ 14 Av. 15.7 14 | 7.8 56 Survey Results Range \ ï~Test PT 15.0-16.5 | RW 6.7-9.7 PTT PCV 48 37-58 14 Retics 0.6 0.1-1.2 14 1 MCV 78.6 62-89 14 72 59-90 | MCH 24.9 20-28 14 20 17-23 | TT | MCHC 31.3 29-33 14 29 26-31 11 Π 1V 48-60 | RT KRT | MCD 6.91 6.64-7.08 8 1 WBC 7.5 4.4-11.2 9 12.5 7.1-15.3 62.9 43-92 9 66 52-79 [VII 20 5-35 9 25 20-37 1 vin 1 ix 1 1 | M N L 6 1-14 9 0 E 11 1-25 9 7 B 0.1 0-0.5 9 1° 240 162-420 14 1-11 1 1χM 1XII Range 10.0 9.5-10.5 6.0 5.0-8.5 13 32 21-52 13 30-80 13 32 24-38 13 J 7.4 5-9 13 316 149-544 12 126 78-160 12 10(KH 12 1000+ 11 | 700-1000+ 4 | 82-450 12 330-450 2 516-650 300 ESR 1.5 0-8 14 | XIII 213 150-330 12 | AT 563 3.75-6.1 5 1 CR 65 |_TP 5.25 Pg | AF 4.88 1-4 6 counts on 2 animals 1 1000+ | ELT 2 5 1 52 390 + Pits No. | Av. j 12 | 5 | 54-71 6 | 4.05-6.16 11 | PF3 release 54.5 Range 50-60(8) PF3 total 80 Range 60-100(8) Contact activation index 73 Range 60-86(9) 92 CARNIVORA CANOIDEA CANIDAE Canis familaris Domestic dog Survey Results Ref. 2 Ref. 2 Ref. 14 1 Test Av. Range No. I Av. Range Av. Range Av. Range/SDÌ Hb 14.4 12.4-16.9 14 1 15.2 10.8-21.3 15.1 11.1-21.1 17.2 13.3-20.0 6.2 4.3-8.9 6.0 4.1-8.8 6.1 4.6-7.8 46 34-63 46 35-63 50.5 47-57 0.14 0.1-1.1 1 RBC 1 PCV 5.8 5.4-7.3 14 43 40-48 | Retics 0.3 6.85 6.63-7.13 WBC 8.7 4.3-14.9 N 78 62-90 L 12 5-23 14 14 14 14 14 10 14 14 14 1 M 5 3-8 14 4 0-9 14 147-500 14 0-0.7 MCV 75.2 70-83 MCH 25.0 22-28 MCHC 32.2 MCD E 1B 30-34 14 0 1 Pits 333 1 ESR 1 0-4 14 1 ELT 120 93-240 12 Pg | AF 6.55 5.3-7.8 12 Breeds: Whippet I Labrador 4 Beagle 5 Dalmatian 1 Poodle 1 Great dane 1 Border terrieri See also refs 1,3,15, 19,20 1 1 1 1 1 1 1 1 1 0.13 0.02-1.0 83.9 69-98 28.9 23.5-35.5 33 30-36 32 29-25 34.0 27.5-38.0 11.6 5.0-27.2 12.8 6.2-14.0 5.3-30.8 10.06 7.5* 3.0-18.7 8.7* 3.3-23.1 6.6* ± 1.0 2.8* 0.8-9.0 2.4* 0.5-10.9 1.9* ± 0.79 0.53* 0.2-1.42 0.57* 0.18-1.83 0.4* ± 0.52* 0.12-2.25 0.51* 0.03-1.16 0.58* ± 0.01* 0 0.01* I 323 106-986 357 0.26 0.5 153-833 0.8 40 Beagles 51 mongrels *Cells XI03/c.mm blood. 41 animals CARNIVORA 93 Domestic dog Survey Results [ Test Ref 52 No. | Av. Range PT 9.5 8.0-10.5 7 RW 5.3 5-6 7 PTT 35 28-45 7 RT 65 44-92 7 KRT 33 30-39 7 TT 6.3 4.5-7.5 7 I 305 269-340 7 II 115 105-125 V 100G> VII 175 VIII 1000+ 50-300 | Av. Ref 73 SD 6.7 ±0.7 24 ± 5 ; Av. 1 ] 210 7 1 139 1 6 1370 4 1140 1 6 1 46 120 1 IX 120 98-170 3 X 375 250-500 8 1 XI XII 60 XIII + AT 300 14 240-520 5 4.9-6.0 7J | CR TP 5.16 33 animals See also refs. 69, 79. For review of blood coagulation and its disorders, see ref. 72. For blood coagulation factors in newborn pups, see ref. 74. 6 animals 94 CARNIVORA CANOIDEA CANIDAE Canis aureus (Asiatic jackal) and C. adustus (Side-striped jackal) C. aureus Survey Results Test \ Hb Av. Range C. adustus Survey Results No. | 13.7 13.2-14.2 2 | Test Av. Range No7\ \ PT 1 RBC 1 pcv 5.2 4.2-6.2 2 | RW 6.0 40.5 35-46 2 | 33 1 Retics 1.6 1 | RT 77 1 i 1 PIT 1 | | MCV 77.8 73.5-82.0 2 1 KRT 30 | MCH 28.4 25.5-31.2 2 1 TT 7.0 1 | MCHC 34.0 30.5-37.5 2 I II 268 1 140 1 950 1 1 1 1xi 450 1 + 1 | 5.77 1 | MCD 6.55 | WBC 9.4 8.3-10.5 2 84 80-88 2 10 8-12 2 1 NL 1 1 1M 3 2-5 2 E 2.5 0-5 2 0.5 0-1 2 B 1 | Pits 175 1 | ESR 1 1 | ELT v 1 vu [vin ιχ X | XII 1 xiii 1 AT | CR [ TP Pg [AF PF3 release 80 (1) PF3 total 88 (1) See also ref 28 EL T 200 mins. (1) 95 CARNIVORA CANOIDEA CANIDAE Canis familaris dingo Dingo Survey ResuIts Ref. 27 1 Test Av. Range No.l 1 Av. 1 Hb 14.3 11.2-20.0 10 1 14.9 RBC 5.5 1 PCV 42.5 4.3-6.3 35-55 10 1 | Range 1 \ Test 13.2-17.0 1 1 PT Av. 9.2 Range 7-14 No. | 10 1 5.5-8.9 1 RVV 6.5 4-10 11 1 46 33-54 1 PTT 32 21-65 12 1 IRT 67 33-128 11 1 52-83 | KRT 32 24-38 13 | 6.8 10 1 Survey ResuIts 0.4-1.4 10 1 1 MCV 77.5 69-87 10 68 1 MCH 26.6 20.9-30.5 10 22 18-25 6.8 5-9 11 1 MCHC 33.2 29.5-36.6 10 33 22-38 1 I 415 266-761 11 162 110-390 8 8.6-17.9 1nv 400-1000+ 8 | Retics MCD 1 WBC 1NL 0.65 6.52-6.93 10 10.4 7.8-12.7 10 69 57-78 10 19 14-25 10 6.72 11 M 1BE 1 1 Pits 225 147-341 10 1 ESR 18 0-41 10 1 ELT 162* 75-295 4 Pg 4.98 4.82-5.15 [ 107-108 | AF 5 3-6 10 7.9 5-15 10 0.1 0-0.5 10 107.5 * A further 3 animals had EL T's of 5-16 hours 13.7 51 34 1 11 11 130.3 1 10 TT 32-72 11 VII 25-47 | 1 Vili 1-5 1 3-32 | 1-2 | 1-29 1xix 1M 1XII 1 1 XIII 330 390 190 2 6 1000+ 1 45-480 10 1000+ 1 450 1 + | AT 513 2 1 CR 55 2 | TP 5.27 14 tests on 5 animals 300-360 10 460-618 4 1 4.61-5.74 PF3 release 71 (1) PF3 total 88 (1) Contact activation index 70 range 69-71 (2) 7J CARNIVORA CANOIDEA CANIDAE Alopex lagopus Arctic fox Survey Results Ref. 27 No7\ 1 Av. Survey Results Test Av. Range Hb 14.6 12.9-16.8 1 15.6 8.1 6.9-9.8 1 7.9 5.6-9.5 ] 48 41-52 7 48 64 RBC 1 PCV 9.5 RW 5.6 5-6 4 44-50 1 PTT 37 30-58 4 | RT 68 51-97 4 51-90 | KRT 29 19-43 4 4 0.2-0.4 57-64 7 1 MCH 18.1 16.0-20.7 7 21 16-28 1 MCHC 29.9 26-34 7 33 31-36 6.31 6.22-6.41 4 5.4 3.6-9.2 7 4.9 3.5-5.9 56 38-73 7 48 24 7-43 7 45 9 5-14 7 1 1 VII 34-66 25-63 1 1 Vili IX 1-3 11 3-34 7 3 4-6 X 7 0.7 0-2 XI 0.5 0-1 XIII 1 MCD WBC N 0.33 1L 1| M 1 EB 1 1 Pits 247 179-405 7 1 ESR 0.6 0.5-1.0 3 0 TT 1 I 1V Π 1 7.0 5-9 320 188-547 4 187 125-270 4 760-1000+ 4 4 1000+ 172 86-220 4 XII | ELT Pg No. ] 1 PT 59.6 Retics Range \ Test 7 | MCV Av. Range 15.6-15.8 + 4 AT 6.45 6.1-6.8 CR 5 1 AF TP 3 counts on 1 animal 6.33 5.6-6.8 3 | CARNIVORA 97 CANOIDEA CANIDAE Vulpes vulpes Red fox Survey Results Test Hb Av. Range Survey Results No. ~| 11.5 7.3-15.7 2 | 1 Test Av. RBC 5.9 3.3-8.4 2 RW PCV 33 20-46 2 1 PTT 24 Retics 0.5 0-1 2 1 RT 52 MCV 57.0 54-60 2 KRT 20 MCH 20.0 18-22 2 TT 10 MCHC 34.9 33.7-36.1 2 I 1 II MCD 6.32 WBC 7.4 4.3-10.5 2 V 50.75 37-64 2 VII 18-28 2 VIII N L 23 M 8 E 17 8-27 2 0.25 0-0.5 2 IX [ Pits 205 130-279 2 1 ESR 25 0-50 2 | xiii 1B No. 7.0 950 1 M 1 1 xii 2 Range PT X | ELT | AT Pg | CR 1 AF | TP 2 1000+ 250 1 180-320 2 | 98 CARNIVORA CANOIDEA CANIDAE Urocyon cinereoargenteus Grey fox Survey Results Test Hb Av. 11.0 Survey No. | 1 Test Av. 6.7 1 RVV PCV 39 | PTT 42 Retics 0.2 | RT 90 1 MCV 58 | KRT 32 MCH 16.4 1 TT 9.0 MCHC 27.9 | I | WBC 1 NL 52 1 ΠV 1 15 | VIII 7 IX 6.04 4.4 150 1xM 1XII ESR 6 1 XIII | ELT 0 6.0 | VII 1M 1 EB 1 1 Pits 26 yVo7| \ PT RBC MCD Results AT Pg | CR 1 AF | TP 1000+ 1 99 CARNIVORA CANOIDEA CANIDAE Vulpes fulva Silver fox Ref. 27 Ref. 26 Ref. 26 Av. 15.0 Range 14.5-15.5 Av. 11.0 Range 8.3-14.2 RBC 9.1 7.8-9.8 8.8 6-12 PCV 50 46-55 59 1 MCV 57 47-71 74.8 MCH 17 15-19 1 MCHC 30 27-34 1 WBC 5.7 4.6-7.1 9.3 1NL 31 21-38 4.5* 1 1 BE 1 1 Pits 58 49-69 3.8* 2.2-8.5 |M 0 0.2* 0-0.4 | ELT Test \ Hb Av. 15.0 8.0 1 Retics 1 MCD 9 4-16 0 1 1-2 0.9* 1 1-2 4.2-15.8 2-18.5 0-2 Pg AF 3 tests on l animal animal CMH-8 7 animals *X103/c .mm No. not given CARNIVORA 100 CANOIDEA CANIDAE Speothos venaticus Bush dog Survey R esuIts Test Hb Av. 13.8 RBC 5.63 PCV 48 Retics 1.2 Range Survey R esults No. Ί 1 Test Av. Range No. 13.3 13.0-13.5 2 2 5 1 \ PT 4.9-6.1 5 1 RVV 6.0 39-57 5 | PTT 24 21-26 12.7-14.6 2 0.4-3.0 5 | RT 40 35-45 2 85.2 79-94 5 1 KRT 26 23-29 2 MCH 24.5 23.1-26.0 5 1 TT 6-8 2 MCHC 28.7 27-32 5 I 211-260 2 6.7-6.8 3 II MCV MCD 6.74 WBC 10.8 9.6-12.5 5 V N 69 53-80 5 | VII L 22 15-25 5 1 Vili M 4 1-7 5 E 5 0-8 5 B 0 | Pits 276 246-321 5 1 XII |ESR 4 0-10 5 1 XIII 2 1 AT ELT 300 5 7.0 235 ix 1 1M X Pg |CR |AF |TP 1000+ 1 1000+ 2 190 2 + 2 CARNIVORA 101 CANOIDEA CANIDAE Lycaon pictus Hunting dog Survey Results Test Hb RBC | PCV Retics Survey Results Av. Range 15.8 14.9-16.8 2 1 \ PT 7.5 11 6.74-7.60 2 | RW 5.5 2 7.17 48.5 0.85 No. Test Av. Range No. 48-49 2 | PTT 26 24-28 2 0.8-0.9 2 1 RT 49 45-53 2 |MCV 68.2 65.0-71.5 2 | KRT 25 24-26 2 |MCH 22.2 19.5-24.9 2 | TT 8 7-9 2 |MCHC 32.2 29.5-35.0 2 |I 278 252-304 2 89 78-100 2 |MCD 5.62 1vΠ |WBC 4.1 2 76 11 VII 1000+ |N L 15 1 vin 1000+ 2 M 5.5 ιχ E 3.5 B 0 | Pits 257 |ESR |ELT 1.75 149-366 2 1X 1HIM 0.5-3.0 2 | XIII 450 400-500 + 2 2 AT Pg |cR |AF |TP 6.19 6.05-6.34 2 | CANOIDEA CANIDAE Otocyon mégalo tis Bat-eared fox Survey Results Test Survey Results Av. Range No. | 1 Test Av. Range 13.0 11.8-14.2 \ PT 9.0 8.5-9.5 3 RBC 6.6 5.7-7.4 2 1 2 1 RW 8.5 7.0-10.5 3 1 PCV 46 42-50 2 | PTT 57 40-85 Retics 0.6 0.4-0.8 2 1 | RT 73 65-81 1 MCV 70.7 67.4-74.0 2 | | KRT 44 39-49 | MCH 19.9 19.0-20.8 2 | 9.0 7-11 |MCHC 27.8 1 IT 11 3 2 2 3 Hb | |MCD 6.38 6.31-6.47 |WBC 6.2 6.0-6.3 2 1 2 1 2 1 |N 67 65-69 2 |L 22 20-24 2 |M 10 5-14 2 E 1 I IB 0.5-2 | 1| VII 2 1ix X 312-356 2 |ESR 5 0.5-10 2 50-180 2 1 1 AT 1 |cR 118 5.4 |AF 1 1000+ 3 1 1000+ 260-310 3 1| XII ™ 334 Pg 1 140 293 1 Pits |ELT 380 1 vin | 2 0 1nv No. | XIII TP + 1 6.15 1 PF3 release 71 (1) Total PF3 89(1) 1 1 1 1 103 CARNIVORA CANOIDEA URSIDAE Tremare tos orna tus Spectacled bear Survey R esults Survey Re su Its Av. Range No. | | Test 11.0 8.7-13.0 7 | \ PT RBC 7.7 6.4-9.6 PCV 38 29-42 7 1 7 1 Test Hb 1 Retics 0.3 0-0.6 IMCV 47.9 30-58 IMCH 14.6 11-19 |MCHC 29.0 22-35 Av. Range No. 1 11.5 9.0-16.5 3 1 RW 7.3 6.5-8.5 3 1 PTT 41 36-45 2 4 1 RT 76 51-96 3 7 1 7 1 7 1 1 KRT 34 27-41 2 1 TT 6.0 5-7 3 500-806 2 1 I 664 1uV 90 IMCD 5.78 5.09-6.25 7 |WBC 6.4 4.3-10.2 7 IN 71.9 61-82 7 1 1 VII |L 22 12-37 7 1 Vili IM 3.5 2-7 7 IX 680 E 2.5 0-7 7 x B 0.1 0-1 7 1XI 457 1 Pits 438 328-526 4 1 XII 950 1 IESR 16 1-34 5 1 XIII + 2 IELT 150 1 1 AT 500 1 Pg |AF 5.8 1 |CR I 50 JL |TP 6.39 1 400-1000+ 2 480-1000+ 2 115-800 2 1 6.22-6.8 _3 Contact activation index 69 (1) For variation of blood picture with age, pregnancy and season see Ref. 34. 104 CARNIVORA CANOIDEA URSIDAE Selenarctos thibetanus Asiatic black bear Survey R esu Its Test 1 Hb RBC | PCV Retics | MCV Av. Range Survey R esu Its No. ] 4 1 15.2 10.7-19 6.1 3.9-7.9 4 44 29-56 4 0-0.2 0.1 Test \ PT Range 8.5-9.5 3 RW 8.5 7-10 3 | PTT 41 39-43 2 3 | RT 81 76-85 3 34-43 3 | 75.7 72.0-80.3 4 | KRT 37 MCH 25.7 24-27 4 | MCHC 33.5 32-36 4 1 TT 1 I 845 1 MCD 6.75 6.69-6.92 4 4 1 1nv 4 | Vili 800 1-8 4 IX 0-7 4 82 72-93 1ML 10 4 IE 4 1XIx B 0 | Pits 333 214-454 3 XII |ESR 4 1-8 3 1 XIII |ELT 256 182-330 3 122 1 4-16 N 4 1 1 2 1 1VII 6.3-19.6 3 787-902 390 4 12.3 Pg | AF 6.0 1000+ WBC No. | Av. 9.0 600-1000 2 258 i | 540 + 2 1 1 AT | CR 60 | TP 6.8 1 1 6.6-6.9 2 1 Contact activation index 55 (1) For variation of blood picture with age, pregnancy and season see Ref. 34. 105 CARNIVORA CANOIDEA URSIDAE Thalarctos maritimus (Polar bear) and Ursus arctos (Brown bear) Polar bear Survey Results Test Hb Av. 21.7 Range Brown bear Survey Results No. | | Test \ Hb RBC 8.7 1 RBC PCV Av. Range 17.1 16-18 6.93 No. 1 3 1 6.6-7.4 3 45-50 3 60 1 PCV 47.3 1 Retics 0.6 | Retics 0.1 1 MCV 68.9 1 MCV 68.3 67.5-70.0 3 1 MCH 24.9 1 MCH 24.7 24.1-26.0 3 | MCHC 35.8 1 MCHC 36.1 35.5-37.0 3 7.8 4.2-10.2 3 79 76-84 3 15.5 10-22 3 | MCD WBC 1 NL | MCD 10.0 15 5 |M 4.5 1-8 3 I EB 1 0-2 3 0 185-475 2 72 Pits 379 |ESR 0 |ELT | WBC 1 NL 1 1 EB 1 | M 3 8 0 1 1 1 Pits 1 ESR 1 ELT Pg Pg | AF 1 AF 328 3 0 For variation in blood picture with age, pregnancy and season, see Ref. 34. 3 106 CARNIVORA CANOIDEA URSIDAE Ursus americanus American black bear Ref. 27 Test Av. Ref. 32 Range Av. Range Ref. 33 Av. Hb 15.3 14-17 15.9 10.2-21.6 1 RBC 8.7 6.8-10.3 7.5 5.3-8.9 7.7 1 PCV 49 43-55 49 44-59 37.9 1 MCV 56 53-63 1 MCH 18 17-21 1 MCHC 31 29-33 WBC N 14.5 49 11.7-20.7 29-63 19.0 11.5-26.7 26-56 Range \ 11.6 7.0-8.1 1 Retics MCD L 40 M 1 0-2 E 11 10-13 B 0.5 0-2 Pits ESR 9.4 6 ELT Pg L^VF 4 tests on 2 animals See also refs. 29, 30, 31, 34, 35, 37. 16 animals 4 animals For variation in blood picture with species, age, pregnancy and season in Helarctos malayanus (sun bear) and Melurus ursinus (sloth bear) see ref 34. 107 CARNIVORA CANOIDEA PROCYONIDAE Nasua nasua Coati Survey Results Survey Results No. ] Range No. | 11.9 9-14 7 | RBC 6.7 5-9 7 | PCV 39.5 29-46 7 | 40-46 6 0.2-3.8 7 | 1 PIT 1 RT 44 0.9 75 42-110 6 | MCV 59.4 45-67 7 1 | KRT 45 39-53 6 | MCH 18.1 12-20 7 | 8.7 6-11 6 27-31 7 | 475 339-725 6 5.27-6.47 7 | 1 IT 11 1uv 73 47-90 6 6 Test Hb Retics A v. 1 MCHC 29.3 1 MCD 6.27 Tesi | PT RVV 7 1 Range 12.5-14.5 6 7.7 6-10 6 11 VII 290 190-380 7 5-44 7 1 VIII 359 160-540 6 0-8 7 IX 168 36-400 6 1XIx 175 100-300 5 |WBC 13.7 6.6-23.0 IN 63 39-87 1ML 26 3 IE 7 1-13 7 B 1 0-2 7 Pits 634 434-770 7 XII IESR 17 5-46 7 1 XIII ELT 187 140-240 3 5.35 4.5-7.0 3 1 AT 1 CR Pg |AF A v. 13.2 [TP + 6 7.17 j 5.5-7.9 6 j CARNIVORA 108 CANOIDEA PROCYONIDAE Procyon lo tor North American racoon Survey Results Ref. 29 No. 1 1 Av. Ref. 38 Av. Range Av. Range. 2 9.1 6.0-11.5 8.7 2 10.3 8.4-11.8 9.7 5.5-10.5 8.0-H.l 9.5-28.1 18.2 40 \ Test Hb Av. 12.6 Range 11.5-13.7 RBC 7.0 6-8 1 PCV 41.5 39-44 2 1 Retics 0.4 0.2-0.6 2 1 MCV 60.0 55-65 2 MCH 18.2 17.1-19.3 2 MCHC 29.9 34.5 29.2-30.5 2 MCD 5.88 5.86-5.91 2 WBC 5.9 5.4-6.4 2 N 61 57-65 2 67 17.9 37.6 7.0 L 26.5 21-32 2 29 58.6 28-44 51-67 M 5 4-6 2 3 1.2 0.3-2.4 E 7.5 6-9 2 0 2.7 B 0 2 1 0.1 Pits Ref. 38 181 173-189 2 ELT 523 172-1410 3 Pg AF 3.7 12.9-26.6 30-46 49-67 56 0.4-2.2 | 1.4-4.1 3.3 2.4-4.3 0-0.2 0.14 0-0.3 1 ESR 1 1 animal | 1.3 21 maies 23 females CARNIVORA 109 CANOIDEA PROCYONIDAE Procyon lo tor North American racoon Survey Results \ Test A v. Range 1 PT 9.5 8-12 RW 7.6 5-10 No. 1 3 3 3 3 1 1 1 1 IPTT 33 31-38 |RT 53 46-60 |KRT 27 12-40 |TT 9.0 6.0-13.5 3 I 291 196-458 3 1 II 470 |v 880 500-1000 3 3 1 1 | 1 VII [ VIII 597 330-1000 3 |ix 850 700-1000 3 X 420 340-540 3 [xi 1 xii 310 1 IXIH + 3 IAT |CR |TP 68.5 7.16 68-69 6.58-7.85 2 3 1 HO CARNIVORA CANOIDEA PROCYONIDAE Po tos flavus Kinkajou Survey Results Test Av. Hb 16.8 No. 1 Ref. 28 \ Test 1 Hb ~Av. 1 10.9 RBC 7.1 1 RBC 6.5 PCV 51 1 PCV 36 Retics 1.0 | Retics 1 MCV 72.4 IMCV MCH 23.8 IMCH 17 1 MCHC 33.9 [MCHC 30 1 MCD 1 WBC 1 NL 1 1 M 1B E 11 Pits 55 IMCD 9.8 WBC 41 32 N 53 |L 53 4 15 2 IM E I 0 0 |B 0 242 1 Pits 1 ESR 1 ESR 1 ELT |ELT Pg | AF 1 AF Pg 1 animal 1 CARNIVORA 111 CANOIDEA MUSTELIDAE Mustela putorìus furo Domestic ferret Ref. 28 Test Hb RBC | PCV A v. 15.2 9.98 51 Survey Results No. | 3 | 3 1 3 1 Retics Test Av. Range No. 16.0 14-18 7 RW 7.6 6-10 7 PTT 42 35-50 7 RT 75 52-101 7 36 31-45 7 7.8 6-9 7 PT MCV 48 3 KRT | MCH 16 3 1 TT 1 MCHC 30 3 MCD I 285 II 148 115-180 2 642 400-800 5 173 120-200 3 | WBC V 1 NL 1 1M 1 EB vu VIII IX 1Pits 1xxi 1XII |ESR 1 XIII ELT Pg | AF 1 510 + 1 5 1 AT CR 30 [ TP 5.47 20-40 2 1 | CARNIVORA 112 CANOIDEA MUSTELIDAE Mustela vison American mink Refs. 39, 40. \ Test Av. Refs. 39, 40. Ref. 41 Range Av. 11.4-17.3 14.7 13.5-17.5 7.5-11.3 7.5 5.7-9.3 48 41-57 68 62-82 Hb 11.9 9.5-15.6 15.0 1 RBC 9.7 8.9-10.4 9.7 Range 1 PCV Av. Range Retics 1 MCV 1 MCH MCHC MCD 7.8 6.0-9.5 7.8 6.0-9.5 WBC 6.4 3.8-10.2 7.6 5.2-12.2 6.0 3.2-11.2 N 47 18-69 46 26-65 66 45-88 1 L 43 22-57 47 30-68 32 14-50 1 M 1.1 (V5 1 0-3 0-3 0-5 1.5 E 7.2 2.5-16.0 4.0 0-13 1 B 0.8 0-2.5 0.8 0-1.5 0 10 ma les 9 fema les For influence of age on blood picture see ref. 40 15 an imals 113 CARNIVORA CANOIDEA MUSTELIDAE Marten americana (Pine marten) Mephitis mephitis (Striped skunk) Mustek ermina (Richardson's weazel) Pine marten Striped skunk Weazel Ref. 27 Ref. 28 Ref. 30 1 Test Av. Range A v. Hb 18.4 17.2-20.0 15.1 RBC 14.9 14.4-15.8 10.0 64 63-65 51.4 43 40-45 54 1 PCV Range Av. Range \ 1 Retics 1 MCV 1 MCH 12.2 12-13 16 1 MCHC 29.9 29-32 30 5.9 5.4-6.7 16.0 6.35 1 MCD WBC 1L N M 1BE 11 Pits 1 ESR 24 20-31 48 44 65 59-72 42 40 0.3 0-1 7 2.1 11 9-15 0 4.2 0.3 0-1 3 5.7 540 1 3 tests on 1 animal 2 animals 2 animals CARNIVORA 114 CANOIDEA MUSTELIDAE Eira barbara Tayra Survey R esults Test Hb Av. Survey R esu Its No. | Test PT 12.5 Av. 6.0 310 1 1 RBC 6.4 1 RVV 6.0 1 PCV 40.5 1 PTT 34 1 Re tics 0.5 1 RT 63 1 MCV 63.5 1 KRT 39 MCH 19.6 1 ir | MCHC 30.9 1i | MCD 6.05 No. | 1 1 1 1 1 i 10.0 1nv 30 1 1 | WBC 10.0 70 11 VII 1000+ 1 NL 1 | M 11 EB 21 | Vili 1000+ 1 7 IX 120 1 150 1 Pits 536 + 1 5.62 1 1 XXI 1XII 1 1 1 XIII |ESR ELT Pg |AF 180 1 1 AT 1 CR [TP 1 1 1 1 1 1 CARNIVORA 115 FELOIDEA VIVERRIDAE Paradoxurus hermaphroditus Common palm civet Survey Results Survey Results 1 Test Av. Range No. Hb 12.3 11.2-13.5 3 PT RBC 10.3 10.040.9 3 RW 8.0 1 PCV 40 39-41 3 PTT 39 27-51 2 0-1 3 RT 43 40-45 2 1 Retics MCV 0.75 39.5 1 MCH 12.0 1 MCHC 32.6 Test KRT 42 TT 8.5 6-11 2 32.0-33.2 3 I 265 256-273 2 1 II 96 1 74 1 1000 1 140 1 + 1 5.1 1 J 4.6-8.1 3 V |N 58 54-63 3 VII 37 32-41 3 VIII 2 1-3 3 IX 2-4 3 X 3 XI 3 XII 3 | Pits 366 238-430 |ESR |ELT Pg |AF CMH-9 1 3 6.4 0 2 1 3 | WBC E No. | 36-42 4.24 B Range 12.5-17.5 11.3-13.6 | MCD 1ML Av. 15.0 XIII 150-21h 3 1 AT CR TP 116 CARNIVORA FELOIDEA VIVERRIDAE Herpes tes sanguineus Slender mongoose Survey Results Test Hb RBC |PCV Av. Range 14.0 13.0-15.4 Survey Results No. | 5 1 9.8 Test \ PT RVV 43 Retics Av. Range No. 14.0-16.5 2 1 11.3 10.0-12.5 2 IPTT 53 1 RT 83 1 1 i 1 43.4 KRT |MCH 13.3 TT |MCHC 30.0 I 238 213-264 2 | II 77 76-78 2 900-1000 2 |MCV |MCD 1v IN 62 1 VII 52 |L 37 950 M 1 | vin 1 ix E 0 |x B 0 Ipits 272 IESR 1 I ELT 400 i 5.0 5.4 WBC 1 1 XI 238-306 397-403 2 1 XII 1 | XIII 2 1 AT Pg |AF Red cells of 5 animals became sickle-shaped when exposed to hypertonic solutions. This condition is apparently nonpathological. |CR |TP | 15.3 + 2 1 CARNIVORA 117 FELOIDEA VIVERRIDAE Herpestes auropunctatus (small Indian mongoose) H. urva (Crab-eating mongoose) Crab-eating mongoose Survey R esu Its Small Indian mongoose Survey R es u It s No. ] | Test Av. Range 1 Hb 15.3 14.4-16.2 2 RBC 11.6 11.2-12.1 2 1 PCV 48.5 45-52 Test Av. No. | 1 PT 17.0 1 1 RW 14.5 1 2 1 1 FIT 46 1 2 1 1 RT | 1 Retics 0 1 MCV 41.5 40.1-42.9 2 1 KRT 27 1 1 MCH 13.3 12.9-13.7 2 1 | IT 5.0 1 31-32 2 11 5.13 5.0-5.65 2 II 4.2 4.0-4.4 2 41 35-47 2 1 11 vVII 51 47-55 2 | 1 VIII 6 5-7 2 E 2 0-4 2 | B 0 2 1 1IxX 1XI 1 xii 1 MCHC 31.5 IMCD WBC IN 1 IM I L 1 Pits 272 238-306 2 IESR IELT 400 397-403 2 Pg | AF | 1 XIII AT 1 CR [ TP 118 CARNIVORA FELOIDEA HYAENIDAE Hyaena brunnea Brown hyaena Survey Results Test Hb Av. 13.2 Survey Results No. 1 Test PT Av. 10.0 No. | i | RBC 7.0 RW 6.0 1 PCV 40 PTT 52 1 1 1 Retics 0.5 | RT 77 MCV 57.0 1 KRT 27 1 MCH 18.8 1 6.0 1 MCHC 33.0 11n 443 1 70 1 MCD WBC 13.4 IT 1v 1 IN 83 L 12 | VIII 1000+ 1 M 2 IX 1000+ 1 [E 3 21 1 B 0 | Pits 278 330 + 1 Ί |ESR | VII 1XIx XII XIII ELT 180 1 AT Pg 5.4 |CR |AF |TP 6.4 1 1 | FELOIDEA HYAENIDAE Hyaena hyaena Striped hyaena Survey Results A v. Range No. 1 1 Hb 13.4 12.5-15.1 3 1 | RBC 7.4 6.8-8.5 3 1 PCV 45 42-49 3 Retics 0.4 0.3-0.5 3 1 | MCV 60.8 58-63 3 | MCH 18.1 17.8-18.2 3 1 MCHC 29.7 29.1-30.5 3 16.6 16.1-17.3 3 78 71-82 3 13.6 8.0-16.5 5.6 4.0-7.5 3 1 3 1 1.6 0-3.5 3 1.2 0-2 3 331 304-350 3 14 11-16 3 Test | | MCD WBC 1 NL 1 1M 1BE 1Pits 1 ESR 1 ELT Pg l_AF | CARNIVORA 120 FELOIDEA FELIDAE Fé lis catus Domestic cat Ref. 2 Ref. 4 Ref. 6 Ref. 76 V^Av. | Test Av. Range Av. SD Av. Range Hb 10.7 7.0-16.2 12.5 ±1.72 11.2 8.7-14.5 12.98 | RBC 7.2 4.5-11.3 6.5 ±0.87 7.2 4.6-9.7 8.19 32 21-49 36.5 ±4.9 40.2 28.5-47.0 38.95 31-52 | 0.1 0-3.6 0.25 0-2 | | 1 PCV Retics 1 MCV 0.05 56.2 ±0.09 1 MCHC 50 41-58 47.7 40.2-56.9 15.4 12-18 15.9 11.9-19.3 33.4 29.1-37.1 ±3.26 MCH Range 10.1-16.8 1 6.1-10.6 1 33 29-37 34.5 ±3.26 31.0 29-34 16.5 | | MCD | WBC N 1 |M L 7.9-34.7 13.86 ±5.18 15.0 5.6-28.9 12.01 5.1-25.0 9.5* 3.2-28.4 61 ±15.4 59 35-79 55.5 20-80 4.5* 1.9-10.2 28.4 ±12.2 32 11-52 37.7 12-76 0.56* 0.1-0.3 1.9 ±1.8 0.7 0-4 2.0 0-7 0-10 1 E 1.0* 8.9 ±2.4 8 2-31 4.8 B 0.01* 0.03 ±0.11 0.01 0-0.4 0 Pits 371 157-876 1 ESR 1 ELT. 1 P'gen 443 286-668 18.2 5-38 | AF 114 cats 128 cats *cellsX103/c.mm. Howell Jolly bodies in 1% of red cells See also refs. 1,3,5, 7-14. 10-100 cats 100 cats 1 1 CARNIVORA 121 Domestic Cat Ref. 52 Ref. 73 1 Test Av. ±SD Av. 1 PT 8.6 ± 0.5 19.8 | 36 ± 4 RW PTT RT 1 KRT TT 1 I 45 1nv 49 11 VII 1080 | vin 200 IX 150 129 x 1XI 1 XII 168 1 XIII 1 AT 1 CR 1 TP No. = 26 No. = 5 122 CARNIVORA FELOIDEA FELIDAE Felis silvestris European wild cat Survey R e su Its 1 Test Av. Survey R e su Its No. | Av. Test 9.0 1 PT RBC 5.3 RW 7.0 [PCV 31.5 PTT 45 Hb | RT 34 54.4 | KRT 21 |MCH 15.5 1 TT |MCHC 28.6 Re tics |MCV 0.4 |WBC 5.2 N 57 II 7.0 I |MCD 128 1 il 70 1v 1000+ VII 35 [Vili lOOOf M 5 | IX 10004- E 3 X 40 |B 0 1 xi 334 XII 1000+ | xiii + Pits |ESR ELT Pg |AF 210 No. 1 11.5 1 AT |CR |TP | 4.91 ^ j | 123 CARNIVORA FELOIDEA FELIDAE Felis chaus Jungle cat Survey Results Test 1 Hb RBC Survey Results Av. No. | 12.2 5.6 [ Test Av. i 1 \ PT 11.5 1 1 RW PCV 1 Retics 1 MCV 1 MCH 21.5 1 MCHC 1 | MCD 5.28 i 1 1 WBC 9.4 1 91 i 1 7 1 1.5 i 1 i 1 i 1 1 NL 1M 1E 1 1B Pits 0.5 0 224 1 41 RT 84 | KRT 37 1 TT 1 Γ* | AF A small number of the red cells contain Howell Jolly bodies. 6.0 542 1 ΠV 1 1 VII 1 vin IX 1x 1xi XII | XIII 490 7.5 PIT I | ESR ELT | Afo.~| AT 1 CR IJTP + 1 1 124 CARNIVORA FELOIDEA FELIDAE Felis bengalensis Leopard cat Survey Results 1 Test Av. Range lift 13.7 12.4-17.5 IRBC 7.9 7.1-9.8 IPCV 39 35-45 1 Retics 1.0 0.5-1.5 No. | 4 1 48.9 46-50 4 4 4 4 MCH 17.2 16.2-17.9 4 IMCHC 35.2 32.5-38.0 4 1 |MCV 1 1 1 1 IMCD WBC 17.3 14.6-19.4 4 |N 62 46-79 4 |L 33.8 19-49 4 | |M 2 1-4 4 | | | IE 3 0-8 4 |B 0.2 0-1 4 1 |pits 462 243-684 |ESR 10 3-16 3 |ELT 232 225-240 3 Pg |AF A small number of the red cells normally contain Howell Jolly bodies 4 | 125 CARNIVORA FELOIDEA FELIDAE Felis caracal Caracal lynx Survey R esu Its Test \ Hb RBC | PCV Survey R esults Av. Range 12.6 9.8-14.5 6 8.2 6.1-10.0 6 RW 9.0 39 30-45 6 70 2 1 6 1 1 PTT 1 RT 80 | KRT 23 | IT 4.5 4-5 I 621 303-940 Retics 0.2 No. | 0-0.4 MCV 47.5 44-60 1 MCH 15.6 14.5-19.5 6 | MCHC 32.2 31-34 6 | | Av. Range PT 12.3 12.0-12.5 2 1 47-93 2 1 1 2 2 5.01 4.32-5.92 1 WBC 6.5 5.2-9.6 6 |N 72 53-88 6 1uv 11 vu |L 24 11-42 6 1 1 VIII |M 3 1-5 6 E 1 0-3 6 B 0 6 1XIx 4 1 xii 6 1 1 XIII 1 1 AT |MCD I Pits 260 194-310 ESR 14 1-62 ELT 175 6 1 [TP A small number of the red cells normally contain Howell Jolly bodies. 1 1 1 1 1 IX |CR Pg |AF No. 1 \ Test 100ÎH + 1 1 2 1 126 CARNIVORA FELOIDEA FELIDAE Felix lynx Northern lynx Survey R esu Its Test | Hb RBC Av. Range 12.3 10.4-13.7 6 6.1-9.2 6 7.25 1 pcv Survey ResuIts 33.7 30-41 Retics 0.4 0-1.4 No. | | \ Test \ PT 1 RW Av. 10.0 8.0 6 1 1 PTT 26 6 1 RT 40 MCV 48.5 44.6-51.8 6 1 KRT 24 | MCH 17.1 14.9-18.7 6 | MCHC 34.8 33-36 6 | IT 1 I 266 6 1 1nv 11 VII 9-23 6 1 VIII 0-6 6 IX 0-8 6 1 MCD 7.8 5.9-9.5 82 71-90 13 2 IE 3 B 0 WBC IN 1ML 1 Pits 404 200-632 |ESR 12 1-28 6 6 1XIx 6 1 XII 3 1 1 XIII IELT | 7.0 1000+ 62 600 + 1 AT Pg |CR 70 |AF |TP 5.8 A small number of the red cells normally contain Howell Jolly bodies. No. 1 127 CARNIVORA FELOIDEA FELIDAE Felis servai Servai Survey Results 1 Test \ Hb Av. 13.5 RBC 5.72 39.5 PCV ' Range Survey Results No. | \ Test 11.8-16.8 5 5.1-6.5 5 RW 33-48 5 1 PTT | Re tics 0.2 0-0.5 5 1 RT MCV 70.4 62-77 5 KRT 1 MCH 22.9 21.5-25.4 5 | MCHC 32.7 28-35 | TT 5 1 IN 9.0 4.7-13.7 5 70 66-77 1IM 25 19-30 2 0-4 5 1 5 1 5 1 E 3 0-4 5 B 0 1 Pits 197 148-286 IESR 13 2-26 IELT 270 L I I 1V Π |MCD 1 WBC IX 1000+ 1x 620 1XI 20 5 360 + | 3 1 1 XII 3 1 XIII 1 1 AT |TP A small number of the red cells normally contain Howell Jolly bodies 20 250 1 VII I Vili 1 CR Pg |AF Av. PT No. 1 128 CARNIVORA FELOIDEA FELIDAE Felis leo Lion Survey Results Ref. 43 No7\ 19 1 Test Av. Range Hb 12.0 10.2-13.9 RBC 7.0 5.4-8.3 19 PCV 36.8 31-44 | Retics 0.2 0-0.8 MCV 52.5 44-58 MCH 17.2 13.9-19.3 MCHC 32.3 29.5-37.2 19 18 19 19 19 5.34 4.93-5.53 12 MCD Range Av. Range Ref. 42 Av. 12.2 6.9-10.9 7.6 6.2-10.1 7.25 1 1 1 1 1 7.9 2.3-17.0 19 1 N 71 61-89 19 L 22 7-37 19 |M 3 1.5-5.0 19 I E 4 0.5-11.0 19 B 0.1 0-0.5 19 1 Pits 291 199-571 19j 1 ESR 1 ELT 19 2-46 212 60-330 9 4.8 3.5-5.1 7 108 84-132 51 A small number of the red cells normally contain Howell Jolly bodies Av. 1 9.3 WBC Pg | AF | Ref. 43 Ref. 1 ~Äv. | 11.5 7.9 1 36 46 1 7.0 14.2 8.2-19.8 12.4 7.2-20.8 15.6 1 74* 23 1 1 0.1 54-97 63* 45-82 79* 4.5 1 60 1 7-37 34 21-49 17 31 0-2 0.2 0-0.5 3 9 2.8 0-6 2.5 0.5-12.0 1 0 1 ° 0 0 0 25 6-10 month lions 1 lion 1 lion 12 14 matUre lions *Many immature cells present. 1 129 CARNIVORA Lion Survey Results | Test 1 PT Av. Range 11.9 8.5-16.0 No. 1 15 1 RW 8.5 6-10 15 FIT 30 25-38 15 | | RT 63 44-80 15 1 | KRT 37 30-42 11 TT 6.6 5-8 15 490 291-754 11 85 62-210 I u 1V 1000+ 1 VII | vin 100CH 1ixx 1XI 10 1 7 10 275 150-400 7 46 13-138 10 600-1000+ 3 XIII + AT 496 404-630 CR 64.5 64-65 2 5.89-7.6 7 TP 6.75 | 1 1000+ XII | 15 5 Contact activation index 85 (1) | 130 CARNIVORA FELOIDEA FELIDAE Felis pardalis Ocelot Survey R esults Test 1 Hb Av. No. 1 12.4 Survey R esu Its Test Av. No.^\ 1 FT 1 RBC 6.8 RW 1 PCV 38 1 PTT 43 1 Retics 2.0 1 RT 85 1 MCV 56.0 1 KRT 40 1 MCH 18.3 TT 9.0 1 MCHC 32.6 1 I 1 WBC 16.9 1NL 84 1HV 1 1 VII 10 1 VIII 1000* 1 1 1IxX 19 1 1000* 1 1 1 MCD 1 1M 1B E 5 0 1 Pits 1 1** 1 XII 1 ESR 1 XIII 1 ELT 1 AT Pg | AF 1 CR A small number of the red cells contain Howell Jolly bodies | TP 9.0 1000 + 1 L CARNIVORA 131 FELOIDEA FELIDAE Felis concolor Puma Survey Results Test Hb Av. 13.9 Survey Results Range No. 1 1 Test 11.3-17.2 12 1 PT Av. Range No. | 1 RBC 7.87 6.0-10.4 11 1 RVV fpcv 38 30-49 12 1 1 PIT 44 1 Retics 0.9 0-3.1 12 1 1 RT 87 1 MCV 48.2 38-52 11 1 1 KRT 39 1 MCH 17.6 14.6-18.8 11 1 | TT 5.0 1 1 1 1 | MCHC 36.5 1I 270 1 1 + 1 1 31-37 12 MCD 5.38 5.11-5.72 4 WBC 7.3 3.1-12.8 ii 1 69 35-85 11 28 14-65 ii 2 0-7 11 1 0-4 11 | 1 VΠ 1 1 VII 1 NL 1 1M 1EB 1Pits 11 1IXX 1XI 192 131-240 8 1 XII | ESR 6.5 0-14 9 | XIII 0 | 1 VIII ELT 1 AT Pg AF |TP |CR A small proportion of the red cells normally contain HowellJolly bodies. CMH-10 132 CARNIVORA FELOIDEA FELIDAE Neofelis nebulosa Clouded leopard Survey Results Test 1 Hb Av. Range Survey Results No. 1 Test RBC 5.3 1 1 PT 1 RW PCV 30 1 1 PTT 12.5 1 1 Retics 1 RT MCV | KRT MCH | TT MCHC I MCD WBC N L M E B Pits 1 ΠV 1 1 vii 1 ιχ vin 1 1M X | XII ESR 1 xiii ELT | AT pg 1 CR AF | TP Av. 500 1000+ Range No7\ 1 1 1 CARNIVORA 133 FELOIDEA FELIDAE Panthera tigris Tiger Survey R esu Its Test Hb Av. Range Survey Re su Its No7\ Test 13.4 10.1-16.2 15 RBC 6.7 5.5-7.7 1 PCV 40 34-47 15 15 15 15 15 15 1 1 1 1 1 1 4.98-5.54 4 | 6.7-13.7 13 1 Retics 0.2 1 MCV 59.7 54.8-69.0 1 MCH 20.0 17.1-21.0 1 MCHC 33.5 28.2-35.0 1 MCD |WBC 5.34 10.4 0-1 |N 75 64-87 1L Av. Range No. 1 PT 1 RW 5.5 PTT 37 28-46 2 1 RT 1 KRT 72 50-93 2 27 23-31 2 TT I 6.5 6-7 2 292 70 256-328 2 3 1 1 1000+ 5 13 1 VΠ 1VII 5 50-90 20 12-29 13 | vin 1000+ |M 3 1-5 13 IX 900 E 0.8 0-2 13 1xM 65 1000+ 1 950 + 1 I |B | Pits 0.2 0-1 13 325 169-514 10 1-14 8 1 XIII 6 AT 1XII |ESR 4 |ELT 213 Pg |AF 6.9 1 |CR 57 90 1 |TP 5.95 130-360 1 34-125 4 3 1 5.46-6.45 A small number of red cells normally contain Howell Jolly bodies. Contact activation index 73 (1). | 1 7.5 2 j 134 CARNIVORA FELOIDEA FELIDAE Panthera pardus Leopard Survey Av. Test Results Range Survey Results Test Av. Range 10 PT RVV 12.5 7.8 No. 10 1 Hb RBC 12.3 | pcv 36.8 34-38 10 1 PTT 0.7 0.1-1.5 10 RT 1 MCV 48 44-53 10 1 KRT 1 MCH 15.7 12.7-17.5 10 TT 33.4 31.0-35.2 10 I 7.82 Retics MCHC MCD 4.89 1 WBC 1 NL 1 1M E 11.0-13.4 6.4-8.9 4.60-5.43 31 No. 7.0-9.5 4 5 35 27-49 5 59 45-82 5 29 27-38 5 5.5 4-7 5 274 161-477 5 10-15 II 12.1 6.5-17.5 10 V 920 900-940 2 76 72-84 10 VII 135 97-210 3 17 10-27 10 VIII 1000+ 3 0-5 10 IX 750 4 0-7 10 | x 64 1B | Pits 374 292-468 10 1M 1XII | ESR 10 4-15 5 0 10 1 1 35-96 3 1000+ 1 900 1 | xiii + | ELT AT 570 Pg CR 57 | AF | TP Red cells often appear crenated on stained films. A small number normally contain Howell Jolly bodies. 2 6.35 2 1 1 1 5.84-6.86 Contact activation index 83 Range 81-85 (2 animals) 1 | 2 | CARNIVORA 135 FELOIDEA FELIDAE Panthera urica Jaguar Survey R esuIts Survey R esu Its Test Av. Range Hb 12.3 9.6-13.9 8 6.7 5.9-7.7 1 PCV 37 30-43 1 Re tics 0.2 0-0.6 1 MCV 55.0 47-62 1 MCH 18.2 15.5-20.7 | MCHC 32.5 21.7-34.2 RBC 14 7-16 3 0.5-7.0 8 8 8 8 8 8 5 8 8 8 8 3 1-5 8 1 MCD 5.2 5.12-5.41 1 WBC 7.1 4.6-8.4 1NL 80 66-82 11 M 1BE 11 Pits No. | 0 8 201 158-238 8 1 ESR 23 0-58 8 1 ELT 272 195-350 8 Pg | AF 4.71 3.25-5.8 4 1 1 1 1 1 1 1 1 1 1 1 | Test Av. Range 1 PT 12.3 10.5-16.0 8.0-10.5 No. 1 3 1 4 1 1 RW 8.6 1 PTT 36 27-49 4 1 RT 67 54-82 4 1 KRT 45 32-73 4 TT 7.4 5-10 4 1I 477 273-737 4 1πv 67 51-90 3 800 600-1000 3 11 VII Vili 100(H lx 310 1 57 4 1X M 1 1 XII XIII 1 AT I CR | TP 3 30-100 1000+ 1 450 1 + 538 455-610 3 65 63-68 4 6.10-7.42 4 6.78 A small number of red cells contain Howell Jolly bodies. Contact activation index 79, range 71-87 (2) PF3 release 55.5, range Total PF3 74, range 51-60 (2) 68-80(2) FELOIDEA FELIDAE Acinonyx Jubatus Cheetah Survey Results | Test Hb RBC Av. Range 12.6 11.2-14.0 7.0 5.8-8.5 1 PCV 40 | Retics 1.0 37-48 Survey Results 18.1 16.0-21.5 28-36 u1 5.8 3.4-9.7 N 72 59-77 1 1 1 1 1 8.0-10.5 11 31.8 WBC 3 5 4 3 3 8.4 ii 1 MCH 5.12-5.32 | 27-38 10.5-16.0 MCHC 5.22 5 33 Range 12.5 48-69 MCD 45-82 Av. PT 58.5 MCV 28-49 57 \ Test 11 11 1 ii 1 ii 1 0.4-2.2 36 No. 1 3 1 4 1 5 1 No.^\ 6 11 1 11 1 11 1 1 1 1 1 1 RW PTT RT KRT TT I 95 76-115 v 425 250-600 VIII 1000+ 1VII L 21 12-35 4 3-11 11 IX E 3 0-12 11 X 145 B 0 11 XI 1000+ XII XIII 540 + AT 60 CR 68 352 ESR 8 ELT 200 Pg 5.5 9 9 3 1 [AF 109 1 201-526 1-43 120-270 1 1 1 1 | 277-737 II M 11 Pits 5-8 6.5 423 | TP 300 6.24 100-235 5 1 5.88-6.51 A small proportion of red cells normally contain HowellJolly bodies. 3 | CARNIVORA 137 References 1. Schalm, O. W. (1967). Veterinary Haematology. Lea and Febiger, Philadelphia. 2. Bushby, S. R. M. (1970). Haematological studies during toxicology tests. In. Methods in Toxicology (Ed. G. E. Paget). Blackwell Scientific Press, Oxford. 3. Scarborough, R. A. The blood picture in normal laboratory animals. Yale J. Biol Med. Cats 3, 276; Dogs 3, 359. 4. Penny, R. H. C , Carlisle, C. H. and Davidson, H. A. (1970). The blood and marrow picture of the cat. Brit. vet. J. 126, 459. 5. Windle, W. F., Sweet, M. and Whitehead, W. H. (1940). Some aspects of prenatal and postnatal development of the blood of the cat. Anat. Ree. 78, 321. 6. Ackart, R. J., Shaw, J. S. and Lawrence, J. S. (1940). Blood cell picture of normal cats. Anat. Ree. 76, 357. 7. von Hauser, P. (1963).. Quantitative und qualitative Blutbild der Gesuden Katze. Schweizer Archif. f. Tierheilkinde 105,438. 8. Riser, W. H. (1946). The normal blood count of the domestic cat. North Am. Vet. 27, 93. 9. Jennings, A. R. (1947). Haematology of healthy kittens. Brit. vet. J. 103, 234. 10. Anderson, L., Wilson, R. and Hay, D. (1971). Haematological values in normal cats from four weeks to one year of age. Res. vet. Sci. 12, 579. 11. Hammon, W. D. (1940). Cellular blood elements of normal kittens. Anat. Ree. 76, 259. 12. Velasco, M., Landaverde, M., Lifshitz, F. and Parrà, A. (1971). Some blood constituents in normal cats. J. Am. vet. med. Ass. 158, 763. 13. Landsberg, J. W. (1940). The blood picture of normal cats. Folia haemat. 64, 169. 14. Irfan, M. (1961). Studies on the peripheral blood picture of the normal dog. Irish vet. J. 15,PtI, p.65; II, p.86; III, p.110. 15. Anderson, A. C. and Gee, W. (1958). Normal blood values in the beagle. Vet. Med. 53, 135. 16. Gower Smith, S. (1944). Evidence that the physiologic normal haemoglobin value for adult dog blood is 18 grams per lOOcc. Am. J. Physiol. 142, 476. 17. Ewald, B. H. and Sawyer, A. (1970). Automated haematological screening of the dog. Lab. Anim. Med. 20, 1103. 18. Afonsky, D. (1955). Blood picture in normal dogs. Am. J. Physiol 180, 456. 19. van Loon, E. J. and Clark, B. B. (1943). Haematology of the peripheral blood and bone marrow of the dog. /. Lab. clin. Med. 28, 1575. 20. Wintrobe, M. M., Schumacher, H. B. and Schmidt, W. J. (1936). Values for number, size and haemoglobin content of erythrocytes in normal dogs, rabbits and rats. Am. J. Physiol. 114,502. 21. Reece, W. O. and Wahlstrom, J. D. (1970). Effect of feeding and excitement on the PCV of dogs. Lab. Anim. Care 20, 1114. 22. Ederstrom, H. E. and DeBoer, B. (1946). Changes in the blood of the dog with age. Anat. Ree. 94, 663. 23. Vogel, J. A., Bishop, G. W., Genovese, R. L. and Powell, T. L. (1968). Haematology, blood volume and oxygen transport in dogs exposed to high altitude. / . appi. Physiol. 24, 203. 24. Potkay, S. and Zinn, R. D. (1969). Effects of collection interval, body weight and season on the hemograms of canine blood donors. Lab. Anim. Care 19, 192. 25. Spitzer, E. H.., Coombes, A. I. and Wisnicky, W. (1941). Preliminary studies on the blood chemistry of the fox. Am. J. vet. Res. 2, 193. 26. Kennedy, A. H. (1935). A graphical study of the blood of normal foxes. Canad. J. Res. 12, 796. 27. Dieterich, R. A. (1970). Hématologie values of some arctic mammals. J.A.M. V.A. 157, 604. 28. Wintrobe, M. M. (1961). Clinical Haematology, 5th edition. Kimpton (London). 29. Jacobs, G. J. (1957). Blood values of two American carnivores. / . Mammal. 38, 261. 30. Musacchia, X. J., Wilber, C. G. and Gorski, T. W. (1955). Haematological studies on mammals from Alaska. /. Mammal. 36, 362. 31. Svilha, A., Bowman, H. and Pearson, R. (1955). Blood picture of the American black bear, Ursus americanus. J. Mammal. 36, 134. 138 CARNIVORA 32. Youatt, W. G. and Erickson, A. W. (1958). Notes on haematology of Michigan black bears. / . Mammal. 39, 588. 33. Hock, R. J. (1966). Analysis of the blood of the American black bear. Comp. Biochem. Physiol 19, 285. 34. Seal, U. S., Swain, W. R. and Erickson, A. W. (1967). Haematology of the Ursidae. Comp. Biochem. Physiol. 22, 451. 35. Erickson, A. W. and Youatt, W. G. (1961). Seasonal variations in the haematology and physiology of black bears. J. Mammal. 42, 198. 36. Stowe, C. ML, Good, A. L. and Clifford, D. H. (1962). Some physiologic and pharmacologie observations in African lions and American black bears. Am. J. vet. res. 23,889. 37. Couturier, M. A. (1954). L'Ours brun. Grenoble, France. 38. Kennedy, A. H. (1935). Cytology of the blood of normal mink and raccoon. III. Morphology and numbers of the blood elements in raccoon. Canad. J. Res. 12, 495. 39. Kennedy, A. H. (1934). Cytology of the blood of normal mink and raccoon. I. Morphology of mink's blood. (Canad. J. Res. 12, 479. 40. Kennedy, A. H. (1934). Cytology of the blood of normal mink and raccoon. II. The numbers of the blood elements in normal mink. Canad. J. Res. 12, 484. 41. Kubin, R. and Mason, M. M. (1948). Normal blood and urine values for mink. Cornell Vet. 38, 79. 42. Kraft, H. (1957). Das morphologische Blutbild einer Junglowen (Fehs leo). Blut 3, 344. 43. Christoph, H. J. and Mehlhorn, G. (1960). Zur Hämatologie der Löwen (Panthera LeoOken 1816). Kleintier-Praxis 5, 12. 44. Carr, D. T. and Essex, H. E. (1944). The haemoglobin concentration of the blood of intact and splenectonized dogs under pentobarbital sodium anaesthesia with particular reference to the effect of haemorrhage. Am. J. Physiol. 142, 40. 45. Schalm, O. W. and Smith, R. (1963). Some unique aspects of feline haematology in disease. Small Anim. Clin. 3, 311. 46. Law, R. G. and Kennedy, A. H. (1934). Nutritional anaemia in mink. Canad. Field Nat. 48, 47. 47. Irfan, M. (1958). Studies on the peripheral blood picture of the dog and cat in health and disease with special reference to lymphatic leukosis; together with observations on the pathology and drug therapy of lymphatic leukosis in dogs. Thesis, Ph.D., University of London. 48. Hawkey, C. and Jordan, P. (1967). Sickle-cell erythrocytes in the mongoose Herpestes sanguineus. Trans. R. Soc. trop. Med. Hyg. 6 1 , 180. 49. Field, M. E. (1930). The effect of emotion on the blood platelet count. Am. J. Physiol. 93, 245. 50. Mills, D. C. B. (1970). Platelet aggregation and platelet nucleotide concentration in different species. Symp. zool. Soc. Lond. No. 27, 99. 51. Tschopp, Th.B. (1969). Aggregation of cat platelets in vitro. Thromb. Diath. haemorrh. 23,601. 52. Osbaldiston, G. W., Stowe, E. C. and Griffiths, P. R. (1970). Blood coagulation. Comparative studies in dogs, cats, horses and cattle. Brit. vet. J. 126, 512. 53. Field, R. A., Rickard, C. G. and Hutt, F. B. (1946). Haemophilia in a family of dogs. Cornell Vet. 36, 283. 54. Brinkhous, K. M. and Graham, J. B. (1950). Haemophilia in a female dog. Science, 111, 723. 55. Wurzel, H. A. and Lawrence, W. C. (1961). Canine haemophilia. Thromb. Diath. haemorrh. 6, 98. 56. Brock, W. E., Buckner, R. G., Hampton, J. W., Bird, R. M. and Wulz, C. E. (1963). Canine haemophilia. Establishment of new colony. Arch. Path. 76, 464. 57. Sharp, A. A. and Dike, G. W. R. (1963). Haemophilia in the dog. Treatment with heterologous antihaemophilic globulin. Thromb. Diath. haemorrh. 10,494. 58. Didisheim, P. and Bunting, D. L. (1964). Canine haemophilia. Thromb. Diath. haemorrh. 12, 377. 59. Mustard, J. F., Rowsell, H. C , Robinson, G. A., Hoeksema, T. D. and Downie, H. G. (1960). Canine haemophilia B (Christmas disease). Brit. J. Haemat. 6, 259. CARNIVORA 139 60. Mustard, J. F., Basser, W., Hedgradt, G., Secord, D., Rowsell, H. and Downie, H. G. (1962). A comparison of the effect of serum and plasma transfusions on the clotting defect in canine haemophilia B. Brit. /. Haemat. 8, 36. 61. Mustard, J. F., Hoeksema, T. D., Downie, H. G. and Rowsell, H. C. (1962). Canine factor VII-deficiency. Brit. /. Haemat. 8, 43. 62. Garner, R., Hermoso-Perez, C. and Conning, D. M. (1967). Factor VII deficiency in Beagle dog plasma and its use in the assay of human factor VII. Nature (Lond.) 216, 1130. 63. Capel-Edwards, K. and Hall, D. E. (1968). Factor VII deficiency in the beagle dog. Lab. Anim. Care 2, 105. 64. Spurling, N. (1970). Studies on a defect of the blood coagulation system in a breeding colony of beagles. Thesis M.I.Biol. (London). 65. Spurling, N., Burton, L. K., Peacock, R. and Pilling, T. (1972). Hereditary factor VII deficiency in the Beagle. Brit. J. Haemat. 23, 59. 66. Dodds, W. J. and Kull, J. E. ( 1971 ). Canine factor XI (plasma thromboplastin antecedent) deficiency. /. Lab. clin. Med. 78, 746. 67. Dodds, W. J. (1968). Current concepts of hereditary coagulation disorder in dogs. Exp. Anim. (Paris) 1, 243. 68. Dodds, W. J. (1966). Familial canine thrombopathy. Blood 28, 1013. 69. Mason, R. G. and Read, M. S. (1971). Some species differences in fibrinolysis and blood coagulation./, biomed. Mater. Res. 5, 121. 70. Rahn, B. and von Kaulla, K. N. (1964). Pharmacological induction of fibrinolytic activity in the dog. Proc. Soc. exp. Biol. Med. 115, 359. 71. Finlayson, R. (1965). Spontaneous arterial disease in exotic animals./. Zool. 147, 239. 72. Hall, D. E. (1972). Blood Coagulation and its Disorders in the Dog. Baillière, Tindall, London. 73. Didisheim, P., Hattori, K. and Lewis, J. H. (1959). Haematologic and coagulation studies in various animal species. /. Lab. clin. Med. 53, 866. 74. Hathaway, W. E., Hathaway, H. S. and Belhasen, L. P. (1964). Coagulation factors in newborn animals./. Lab. clin. Med. 63, 784. 75. Stormorken, H. (1958). Species differences of clotting factors in ox, dog, horse and man. Acta Physiol. Scand. 4 1 , 301. 76. Aliakbari, S. (1973). Personal communication. Chapter 4 PERISSODACTYLA This order comprises the odd-toed ungulates and is represented at the present time by only sixteen living species although at least 152 genera have been identified from fossil remains. The living species are separated into two sub-orders, the Hippomorpha (horses, asses and mules) and the Ceratomorpha. The Ceratomorpha are further sub-divided into two superfamilies, the Tapiroidea (tapirs) and the Rhinocerotoidea (rhinoceroses). Of the sixteen living species, twelve have been examined in the present survey. Red cells The blood picture of the domestic horse is well documented [1-15], [20, 21, 36-40], and mules [15, 16, 37] and burros (donkeys) have also been examined previously [17, 18, 37]. In the literature on domestic horses a distinction has been made between 'hot-blooded' and 'cold blooded' animals which are reported to have markedly different red cell counts, haemoglobin levels and packed cell volume [13]. For the purpose of differentiation, horses of Arabian descent and thoroughbreds resulting from crossing Arabian stallions with English mares are considered to be hot blooded; these include pure-blooded Arabs, American saddle-horses, standard-bred trotters, cow ponies, wild mustangs and quarter horses. Cart horses and ponies are cold blooded. In hot blooded varieties the reported total red count is from 7-13 x 106 per c.mm compared with 6-11 x 106/c.mm in cold blooded types. Since the MCH and MCD are relatively constant, the oxygen carrying capacity is higher in hot blooded animals, and has been held at least partially responsible for their high speed and stamina [3, 9]. Mules, donkeys and wild Hippomorpha examined in the present survey appear to resemble hot blooded horses with regard to their red cell characteristics. Red cells of Perissodactyla are small but comparable in shape and staining characteristics with those of man. The smallest cells are found in the South American tapir (Tapiris tenestris) and the largest in the black rhinoceros (Diceros bicomis) and the mule [16]. Reticulocytes are absent from the circulating blood of horses [13] and mules [16] and most other members of the group. In the present series, reticulocytes have only been found in zebras and in one black rhinoceros. Absence of circulating reticulocytes indicates that the red cells become fully mature before leaving the marrow. Polychromatic and nucleated red cells are rare in the peripheral blood, even in cases of marked cell regeneration [13]. Howell Jolly bodies are seen occasionally in normal animals of the order and more frequently in anaemic ones. Heinz bodies have been found in several apparently normal white rhinoceroses. The red cell and white cell count in horses is markedly increased by stress and exercise, probably as a result of splenic contraction in response to adrenaline secretion [19]. Stress association with blood sampling can increase the PCV by 16-64% [13, 44], a finding which has caused many investigators to express doubts as to the diagnostic value of blood counts on animals of this order. Wild perissodactyls examined in the present survey have been anaesthetised before obtaining blood samples, thus obviating stress effects. Other variables influencing red cell parameters in horses are age [5, 20] and lactation [21]. These variables have not been studied in wild Perissodactyla. The erythrocytes of domestic horses [12, 13] and of mules [16] have a marked tendency 141 142 PERISSODACTYLA for rouleaux formation and this property is shared by most other representatives of the order. The erythrocyte sedimentation rate is rapid in all perissodactyls and this test is consequently of limited diagnostic value. It is claimed that the 20 minute reading is the most useful; this is increased in anaemia and decreased in inflammatory conditions [13]. Rouleaux formation may be related to the presence in horse plasma of a well marked βχ globulin fraction [41] rather than to high fibrinogen levels. It would be of interest to examine this protein in other members of the order. White cells Unlike the red count, the total white count of horses is not influenced by breed [13] and does not vary significantly in other species of Perissodactyla. A neutrophilic leucocytosis occurs in horses in association with exercise and stress [13]. When stained with Leishman stain the neutrophil cytoplasm is only slightly granular. The nuclei often have as many as seven or eight lobes. Drumstick appendages are easily identified in females. Eosinophils, particularly in members of the Hippomorpha, contain strongly eosinophilic granules which are strikingly large, irregular in size and spherical or ovaloid in shape. In Ceratomorphs the granules are smaller, regular and spherical. Eosinophil nuclei have one or two lobes in domestic and .wild horses and a large number of less distinct lobes in other equidae. Large lymphocytes are common in animals of this order. Monocytes are unremarkable and the basophils are only sparsly granular. Platelets The platelet count is usually at the lower end of the normal human range in Hippomorpha but may be higher in the Ceratomorpha. Platelets of these animals stain well with Leishman's stain. Clot retraction is generally poor in hippomorphs. Adenosine diphosphate causes aggregation of perissodactyle platelets but the aggregates formed are smaller than those of most other mammals and are comparable only with those of the Artiodactyla (Figure 4.1). This is apparently caused by low platelet reactivity rather than by the presence of high plasma ADP-inhibitor levels. Figure 4.1. ADP-induced aggregation of perissodactyl platelets MINUTES Aggregation produced by addition of ADP, 1.2 mg per ml of plasma in the Malayan tapir, onager, horse and mountain zebra. Plasma standard­ ised to contain 400 x 10 platelets per cu.mm. Arrows denote addition of ADP. PERISSODACTYLA 143 Blood coagulation The blood coagulation mechanism of horses has been fairly extensively studied because these animals sometimes have relatively long whole blood clotting times, so stimulating the interest of coagulation experts. It has been variously reported that normal horses have low levels of factor VII [22], factor VIII [23, 25], factor IX [25, 26], factors XI and XII [25-29] and platelet phospholipid [27, 30]. Fantle and Marr [31] suggest that the thrombinfibrinogen reaction is abnormal in horses but exclude the presence of an inhibitor of this reaction as an explanation of their findings. Results obtained in the present survey suggest that, compared with man, levels of fibrinogen and factors V, VIII, X and XII are normal or increased in perissodactyls. Factor II and XI may be low. The thrombin-fibrinogen reaction, measured by clotting horse plasma with bovine thrombin, is prolonged; this could result from the unusually high antithrombin levels found in the group. True haemophilia has been reported in horses [31-35, 42]. The disease apparently resembles human haemophilia in its mode of inheritance, clinical manifestations and response to treatment [32, 35, 42]. Fibrinolysis Circulating plasminogen activator can be detected in animals of this order by the euglobulin lysis test. Plasminogen levels are often high compared with the normal human range. Plasminogen is activated by human urokinase and by streptokinase, if human serum is added as a source of proactivator. 144 PERISSODACTYLA HIPPOMORPHA EQUOIDEA EQUIDAE Equus caballus Horse Survey Results Ref. 12 1 Test Av. Range No.\ 1 Hb 13.8 11.4-17.5 12 1 RBC 7.3 6.1-9.9 1 pcv 38 33-51 Retics 0 1 MCV 51.9 47-60 12 MCH 18.6 15.1-21.8 12 15.9 10.8-20.6 1 MCHC 35.3 31.3-40.9 12 35.1 29.8-40.6 5.22 5.0-5.33 9 MCD Ref. 13 I Av. Range Av. Range 14.7 10.5-19.2 15.0 11-19 12 9.45 6.2-13.1 9.5 12 41.2 30-57 42 45.2 30.7-60.5 46 Ref. 39 1 Av. Range 9.5 8.1-11.0 6.5-12.5 6.95 5.7-8.8 1 32-52 27 24-34 6.6-12.41 34-78 1 13-56 1 1-8 1 1-28 1 0-3 1 12 35 31-37 WBC 8.0 5.7-11.5 12 8.4 4.5-13.4 9.0 5.5-12.5 8.8 N 71 40-90 12 5.5* 4.5-13.4 49.5 30-65 55 L 25 6-58 12 2.7* 0.85-6.17 44 25-70 31.5 M 3.4 1-8 12 0.25* 0.0-0.925 4 0.5-7.0 5 E 0.5 0-2 12 0.14* 0.0-1.04 4 0-11 8 B 0.1 0-1 12 0.06* 0.0-0.13 0.5 0-3 0.5 Pits 202 104-368 6 ESR 36 5-56 12 ELT 720 3 2.0 1 Pg | AF 'Hot-blooded'horses See also references 4-9, 15, 20, 36-38, 40. 40.1 1-61 132 Thoroughbreds 40 Thoroughbreds 36 Oydesdales *WBCX103/c.mm 145 PERISSODACTYLA Horse Survey Results 1 Test Av. PT 49 RW Range 6 6 6 6 6 6 6 5 6 11.0 9-15 92 64-110 1 RT 1 KRT 140 90-200 64 39-78 TT 11.0 8.0-16.5 344 150-481 60 50-76 700 410-1000 1Π V ΝοΤλ 21-57 | PTT 1I Ref. 22 1 1 1 1 1 1 1 1 VII 90 |x 1 xi 45-180 6 140 78-200 6 84 54-94 21 | XII 80 79-80 1 xiii + | AT Av. ± SD Av. 1 PT 1 RW 1 PTT 1 RT 1 KRT 11.6 ±0.9 14.2 80 ±6 1160 1010-1321 2 5.69 TT 1Hv 1 250 1 VIII 1IX 1xi X XII | XIII 4 1 Pits 240 ±30 CR 52 ± 3 _J 1 TP 'Hot-blooded' horses PF3 release 58, range 45- 70 (2) PF3 total 83, range 79-87 (2) Contact activation index 72.5, range 70-75 (2 animals) See also refs. 23-30. Range 1 I 6 |CR [ TP | Test 1 VII Vili 1ιχ Ref. 43 No. =29 220-295 HIPPOMORPHA EQUOIDEA EQUIDAE Equus przewalski Przewalski's wild horse Survey Results Test Survey Results No. 1 Av. Range [~Test Av. Hb 16.3 14.3-20.0 4 | 1 PT 25 [RBC 8.6 6.8-10.4 | RW 13 1 pcv 47 38-50 Retics 0 1 1 1 1 1 | MCV 55.1 45-66 MCH 19.2 17.0-21.6 4 4 4 4 4 | MCHC 35.2 32-36 MCD 5.49 | WBC N lL 135 | RT 270 1 KRT 170 1 TT 8.0 4 I 460 5.35-5.63 2 II 38 V 160 9.6 8.4-10.8 4 55 49-61 4 1 4 | | 42 37-50 |M 1 0-2 4 1 E 2 0-4 4 1B | PTT 0 4 | | 1 Pits 292 200-385 4 |ESR 25 5-57 3 1 ELT VII 1 VIII 78 X 55 1 ** | XII | XIII AT Pg | CR 1 AF 1 TP Red cells occasionally contain Howell Jolly bodies. 95 1 ix 30 260 + No. 1 PERISSODACTYLA 147 HIPPOMORPHA EQUOIDEA EQUIDAE Equus hemionus Onager Survey Results Test Survey Results Av. Range No. ~| Hb 14.5 14-15 3 1 1 RBC 7.0 6.3-7.7 | PCV 44 41-47 Retics Test Av. Range No. | 19.0 16-25 3 1 3 1 PT 1 RW 10.2 8.5-13.5 3 3 1 | PTT 94 82-102 3 | 3 | | RT 142 106-222 3 | 61-74 3 | | KRT 110 94-125 2 | 3 | I 0 | MCV 68.1 | MCH 22.6 19.5-25.3 3 | MCHC 32.5 31.5-33.8 3 | 2 | 1 TT | MCD 5.12 4.44-5.81 1 WBC 7.6 7.0-8.2 3 1 62 58-67 3 34 33-35 3 2 1-6 3 2 0-3 1 NL 1M 1E B 1 1 | VII 57-95 2 275 50-500 2 | VIII 140 100-180 2 IX 84 78-90 2 108 64-160 2 19-48 3 1 1 XIII 60-600 3 134-190 1 ESR 30 ELT 260 CMH-ll 3 76 Π V 2 162 Γ8 5-16 319-740 1 xM 1 1 xii 3 3 0 1Pits | AF | 9.8 471 45 1 160 + 3 1 AT 1 CR | TP 46 42-50 2 148 PERISSODACTLA HIPPOMORPHA EQUOIDEA EQUIDAE Equus asinus Donkey or ass Survey Results Test |Hb Av. 14.6 |RBC 6.2 [PCV 38 Retics No. Ref. 17 Ref. 17 Ref. 37 1 Av. Range 1 11.6 1 6.9 1 36 9.3-15.5 12.1 8.0-16.7 5.7-8.6 7.1 5.0-10.3 6.4 4.5-8.5 31-45 37 26-51 37 30-48 Range \Av. \AV. Range 0 Survey Results Test Av. PT 22 No. 1 | RVV 9.0 1 83 1 PTT | RT 238 1 1 |MCV 61.8 1 KRT 99 |MCH 23.7 | TT 10.0 1 IMCHC 38.0 1I 377 1 230 1 310 1 1000 + 1 140 1 |MCD 5.33 | WBC 6.9 N 38 |L 52 M 7 IE 3 B 0 1 Pits 229 |ESR 47 ELT Pg | 12.6 1 1 1 43 42 6 | 7.5 14.4 9.3-28.5 14.4 11.5-21.9 26-65 43 28-64 34 15-37 18-64 42 24-59 53 33-71 1-14 5.5 0-12 4 2-15 0-18 8 0.5-26 8 1-14 1 0-1 7.0-17.7 1vΠ 11 VII | 1 VIII ιχ 1 1XI X XII XIII 540 | AT 5.8 CR AF [ TP 16 males 12 females See also ref. 18. 14 animals + PERISSODACTYLA HIPPOMORPHA EQUOIDEA EQUIDAE Equus caballus X E asinus Mule Ref. 15 1 Test Av. Ref. 16 Range |Hb |RBC 7.4 6.2-9.9 IPCV 1 Retics Ref. 37 Av. Range 14.2 11.6-15.7 7.2 6.3-8.6 39 33-46 Av. Range 8.04 35 0 |MCV 54.2 52.5-58.0 36.6 35.1-37.8 |MCH |MCHC MCD 6.83 5.3-7.8 |WBC 8.9 6.0-10.8 11.7 8.4-15.4 12.9 IN II 43 33-60 52 35-67 49 32-70 47 36-60 39 26-54 41 22-60 4 2-7 2.3 1-5 3 1-5 6.5 3-9 6 2-13 1 1 0-2 M I E 5 2-11 B 0.6 0-1 9.0-18.3 1 Pits ESR 98* 43-133 ELT Pg |AF 20 English army mules 10 Indian mules *Westergren's method 15 South African mules 150 PERISSODACTYLA HIPPOMORPHA EQUOIDEA EQUIDAE Equus zebra Mountain zebra Survey Results Survey Results 7VoT] 1 Test Av. Range 5 1 1 PT 31 21-41 4 9.7 8-15 4 63 52-73 4 No. \ Av. Range 14.2 13.2-15.3 RBC 8.5 7.7-9.5 5 1 RW PCV 39 36-46 5 1 1 PTT Retics 0.1 5 | RT 147 109-183 4 MCV 46.1 1 KRT 107 95-119 4 Test Hb 0-0.4 | MCH 16.5 16.0-17.3 5 1 5 1 |MCHC 34.3 31.5-38.0 5 5.14 4.98-5.26 4 8.1 7.3-8.9 4 |N 63 54-76 4 1n v 1 1 VII |L 32 21-40 4 | VIII IM 4 1-9 4 IX IE 1 0-2 4 |MCD WBC B 1 Pits 38.6-54.0 0 214 162-360 1 IT 17 13-23 4 I 447 287-586 4 61 39-115 4 800-1000+ 2 298 125-470 2 2 102 90-120 4 1XIx 172 160-185 2 4 1 XII 150 125-175 2 IESR 21 12-36 4 1 XIII + IELT 144 80-190 4 1 AT 1200 2.9-4.2 2 1 CR 55 [ TP 6.79 6.24-7.53 Pg 3.55 |AF PF3 release 56, range 51-62 (2 animals) PF3 total 72, range 71-73 (2 animals) Contact activation index 70 (1 animal) 4 1 43-65 4 2 J PERISSODACTYLA 151 HIPPOMORPHA EQUOIDEA EQUIDAE Equus burchelli (Common zebra) and E. grevyi (Grevy's zebra) Survey Results Common Zebra Survey Results Grevy's Zebra | Test Av. Range No. 1 Hb 15.4 13.2-17.6 5 RBC 8.3 7.4-9.7 5 1 1 PCV 44 38-54 5 1 1 pcv 5 1 1 Retics 5 1 MCV 51.0 1 MCH 18.6 | MCHC 36.0 1 Test Hb 1 Ret ics 0.1 0-0.5 1 MCV 54.0 42-66 1 MCH 18.7 15.2-21.7 5 1 1 MCHC 34.7 31.5-39.0 5 1 | MCD RBC | MCD Av. 17A 9.4 48 0 5.01 WBC 8.3 7.4-9.7 5 WBC 9.9 N 67 43-83 5 N 83 28 14-52 51 1 M 3 2-6 5 E 1.5 0-4 51 0.5 0-1 5 193 155-258 4 5-38 1 L B 1 | Pits | 1 L 1 | M 14 6 E 0 1PitsB 253 1.5 | ESR 16 3 1 ESR 1 ELT 90 2 1 ELT Pg 1 AF 6.9 1 Pg | AF 0 No. 1 152 PERISSODACTYLA CERATOMORPHA TAPIROIDEA TAPIRIDAE Tapirus indicus Malay tapir Survey Results Test \ Hb Av. 15.0 NoV^\ Survey Results Test A v. \ PT 21 1 RVV 9.0 1 RBC 6.7 | PCV 42 | PTT 30 0 | RT 76 45 Retics 1 MCV 62.0 1 KRT MCH 22.3 | TT MCHC 36.0 | I 1 MCD 1 WBC 12.3 1L N 78 1vH 11 vii 24 VIII ix 1 Range No. | 5.5 632 850 1 1 | M 1 E 0 B 0 XI 245 480 1 XII 540 1 ESR 7 | xiii + 1 ELT 300 AT Pits Pg | AF 1000+ X CR ITP 220-270 2 PERISSODACTYLA CERATOMORPHA TAPIROIDEA TAPIRIDAE Tap ir us terre s tris South American tapir Survey Results \~Test Av. \ Hb 9.8 Survey Results No. | Test \ PT No. | 150 1 | + 1 Av. 24 RBC 7.3 RVV 7.5 I PCV Retics 37 1 PTT 42 0 1 RT 82 1 KRT 41 1 MCV 50.5 MCH 13.5 1 TT 8.0 | MCHC 26.2 | I 615 | MCD 4.7 8.5 50 1y Π 11 VII 16 1 WBC 34 1 VIII 10 IX 1L N M E B 1 1Pits 0 1XIx 335 1 XII | ESR 56 1 XIII 6 ELT Pg 1 AF 1000+ 1 AT 5.6 1 1 CR 48 1 TP 5.62 1 1 1 | 154 PERISSODACTYLA CERATOMORPHA RHINOCEROTOIDEA RHINOCEROTIDAE Dicero s simus White rhinoceros Survey Results Survey Results 1 Test Av. Range No. | \Test |HI> 17.5 15.3-19.9 21 1 \ PT |RBC 7.2 5.9-9.8 21 |PCV 46.5 41-54 21 1 RW 1 PTT 54 21 | [ RT 108 53 Retics 0 Av. 7.0 |MCV 65.2 57-71 21 1 1 KRT |MCH 24.7 20-29 21 | TT IMCHC 37.4 34-41 21 |I 510 1000+ 1 WBC 9.0 5-12 21 |N 63 35-84 21 1 UV 1 | VII 30 14-51 21 1 vin 4 1-9 21 3 0-9 21 |MCD 1|ML IE 1B No. 17.5 9.0 501 120 1 ix 1X 21 XI 1 Pits 328 146-664 21 1 XII 125 1 IESR 21 5-34 21 1 XIII + 1 0 IELT 1 AT |pg 1 CR | AF | TP Red cells often contain inclusion bodies resembling Heinz bodies. | PERISSODACTYLA 155 CERATOMORPHA RHINOCEROTOIDEA RHINOCEROTIDAE Diceros bicomis (black rhinoceros) and Rhinoceros unicornis (Indian rhinoceros) Black rhinoceros Survey Results Indian rhinoceros Survey Results 1 Test 1 Hb Av. Range 19.2 18.8-19.5 21 | Test \ Hb 1 RBC 7.3 50.5 7.1-7.5 2 | 50-51 2 | 1 PCV Retics 0.5 No. Av. 13.5 Range 11.5-15.5 1 RBC 6.0 5.7-6.3 3 | Pcv 39 34-44 3 1 No. 3 0 68.0-70.4 2 1 2 | Retics MCV 65.0 59-70 3 MCH 69.2 26.2 26.0-26.4 2 | MCH 22.1 20-25 3 MCHC 37.9 37.6-38.2 2 | | MCHC 33.8 33-34 3 1 6.51 6.21-6.81 2 | | MCD 5.9 5.6-6.1 2 | 1 WBC 8.3 4.3-10.8 59 48-68 65-76 5 1 25-37 1 NL 73 32 21 21 22 20-27 5 1 3 2-4 2 5.5 1-10 2 | MCV MCD | WBC N L 1 | M 1 BF 1 1 Pits 0.5 0-1 2 313 220-480 3 ESR 59 57-61 2 1 3 1 1 |M 1 BE 1 1 Pits 154 134-180 ESR 42 27-57 1 ELT [ELT Pg | AF Pg 1 AF 3 2 5 5 0-5 0 5 5 3 1 2 156 PERISSODACTYLA References PERISSODACTYLA 1. McLeod, J. and Ponder, E. (1946). An observation of the red cell content of the thoroughbred horse. Science 103, 73. 2. Holman, H. H. (1947). Studies on the haematology of the horse, ox and sheep. Proc. R. Soc. Med. XI, 185. 3. McLeod, J., Ponder, E., Aitken, G. J. and Brown, R. B. (1947). The blood picture of the thoroughbred horse. Cornell Vet. 37, 305. 4. Hansen, M. F., Todd, A. C , Kelley, G. W. and Hull, F. E. (1950). Studies on the haematology of the thoroughbred horse. I. Mares in foal. Am. J. vet. Res. 11, 296. 5. Hansen, M. F., Todd, A. C , Kelley, G. W., Cawein, M. and McGee, W. R. (1950). Studies on the haematology of the thoroughbred horse. II. Weanlings. Am. J. vet. Res. 11, 393. 6. Hansen, M. F., Todd, A. C , Cawein, M. and McGee, W. R. (1950). Studies on the haematology of the thoroughbred horse. III. Stallions. Am. J. vet. Res. 11, 397. 7. Hansen, M. F., Todd, A. C , Kelley, G. W. and Cawein, M. (1951). Studies on the haematology of the thoroughbred horse. Am. J. vet. Res. 12, 3 1 . 8. Todd, A. C , McGee, W. R., Wyant, Z. N. and Hollingsworth, K. P. (1951). Studies on the haematology of the thoroughbred horse. V. Sucklings. Am. J. vet. Res. 12, 364. 9. Hansen, M. F. and Todd, A. C. (1951). Preliminary report on the blood picture in the Arabian horse./. Am. vet. med. Ass. 118, 886. 10. Brenon, H. C. (1956). Erythrocyte and haemoglobin studies in thoroughbred racing horses./. Am. vet. med. Ass. 128, 343. 11. Brenon, H. C. (1958). Further erythrocyte and haemoglobin studies in thoroughbred racing horses./. Am. vet. med. Ass. 133, 102. 12. Archer, R. K. (1959). The normal haemograms and coagulograms of the English thoroughbred horse. / . comp. Path. Therapeut. 69, 390. 13. Schalm, O. D. (1967). Veterinary Haematology. 2nd. ed. Lea & Febiger, Philadelphia. 14. Littlejohn, A. (1968). Packed cell volume, haemoglobin and plasma electrolyte studies in horses. I. Mean values in clinically normal horses. Brit. vet. J. 124, 530. 15. Morris, P. G. (1942). Comparative blood picture of army mules and horses. Vet. J. 98, 224. 16. Sastry, G. A. and Dhanda, M. R. (1953). Studies on the blood of mules. Indian vet. J. 29,395. 17. Wilding, J. L., Kimball, A. W., Whitaker, M. W., Trum, B. F. and Rust, J. H. (1952). Some blood values of the Southwestern burro (Equus asinus). Am. J. vet. Res. 13, 509. 18. Brown, D. G. and Cross, F. H. (1969). Haematologic values of burros from birth to maturity: cellular elements of peripheral blood. Am. J. vet. Res. 30, 1921. 19. Persson, S. (1969). Value of haemoglobin determination in the horse. Nord. Vet.-Med. 21, 513. 20. Archer, R. K. and Miller, W. C. (1959). The interpretation of haematological examinations in thoroughbred horses. Vet. ree. 7 1 , 273. 21. Hansen, M. F., Todd, A. C. and McGee, W. R. (1950). Blood picture of lactating and non-lactating thoroughbred mares. Vet. Med. 45, 228. 22. Osbaldiston, G. W., Stowe, E. C. and Griffiths, P. R. (1970). Blood coagulation: comparative studies in dogs, cats, horses and cattle. Brit. vet. J. 126, 512. 23. Bell, W. N., Tomlin, S. C. and Archer, R. K. (1955). The coagulation mechanism of the horse with particular reference to its 'haemophiliod' states. / comp. Path. Therapeut. 65,255 24. Barkhan, P., Tomlin, S. C. and Archer, R. K. (1957). Comparative coagulation studies in horse and human blood. / . comp. Path. Therapeut. 67, 358. 25. OUendorf, P. (1959). Defects in and variability of the thromboplastin system in horse plasma. Thromb. Diath. haemorrh. 4, 45. 26. Sjolin, K-E. (1956). Lack of Christmas factor in horse plasma. Nature (Lond.) 178, 153. 27. Sjolin, K-E. (1957). Coagulation defect in horse plasma. Proc. Soc. exp. Biol. Med. 94,818. 28. Archer, R. K. and Flute, P. T. (1959). Heparin and thromboplastin generation in the PERRISSODACTYLA 157 horse. Nature (Lond.) 183, 235. 29. Botti, R. E. and Ratnoff, O. D. (1964). / . Lab. clin. Med. 64, 385. 30. Fantle, P. and Marr, A. G. (1958). The coagulation of horse blood./. Physiol. 142, 198. 31. Archer, R. K. (1961). True haemophilia (Haemophilia A) in a thoroughbred foal. Vet. Ree. 73, 338. 32. Nossel, H., Archer, R. K. and Macfarlane, R. G. (1962). Equine haemophilia: report of a case and its response to multiple transfusions of heterospecific AHG. Brit. J. Haemat. 8,335. 33. Sanger, V. L., Mairs, R. E. and Trapp, A. L. (1964). Haemophilia in a foal. /. Am. vet. med. Ass. 144, 259. 34. Hutchins, D. R., Lepherd, E. E. and Crook, I. G. (1967). A case of equine haemophilia. Aust. Vet. J. 43, 83. 35. Archer, R. K. (1970). Blood coagulation in non-human vertebrates. Symp. zool. Soc. Lond. No. 27, 121, (Ed. R. G. Macfarlane). Academic Press, London. 36. Moore, V. A., Haring, C. M. and Cady, B. J. (1904). The clinical examination of the blood of the horse and its value to the veterinarian. Proc. Am. vet. med. Ass. 4 1 , 284. 37. Neser, C. P. (1923). The blood of equines. 9th and 10th Report, Dir. vet. Educ. Res. Union of South Africa, Pretoria, p.479. 38. Scarborough, R. A. (1931). The blood picture of normal laboratory animals. Yale J. Biol. Med. 3 , 4 3 1 . 39. Stewart, J. and Holman, H. H. (1940). The 'blood picture' of the horse. Vet. Ree. 52, 157. 40. Trum, B. F. (1952). Normal variances in horse blood due to breed, age, lactation, pregnancy and altitude. Am. J. vet. Res. 13, 514. 41. Bottiger, L. (1967). Erythrocyte sedimentation rate and protein-bound carbohydrates in domestic animals. A eta. vet. Seand. 8, 279. 42. Archer, R. K. and Allen, B. V. (1972). True haemophilia in horses. Vet. Ree. 9 1 , 655. 43. Stormorken, H. (1958). Species differences of clotting factors in ox, dog, horse and man. A eta. physiol. Scand. 4 1 , 301. 44. Archer, R. K. (1965). The effect of exitation and exertion on the circulating blood of horses. Vet. Ree. 77, 689. Chapter 5 ARTIODACTYLA This order comprises the even-toed ungulates or cloven-hoofed animals. There are 194 living species, and apart from the polar regions, distribution is world wide. Most artiodactyls are herbivorous and are the prey of the large, wild carnivores. Thus evolutionary trends in the order include the development of long legs for fast speed, acute senses for locating predators and weapons of defence such as horns, antlers or tusks. A marked herding instinct is present in many species and the ruminants are unique in possessing specialised dentition and a digestive mechanism which enables them to obtain and store food rapidly when circumstances may be dangerous, to be digested at leisure in safer surroundings. Associated with rumination, true sleep rarely occurs in these animals. The order is divided into three suborders, the Suiformes (pigs, peccaries, hippopotomuses), the Tylopoda (camels, llamas, alpacas) and the Ruminantia (ruminants). Of these, the Suiformes is generally considered to be the most primitive because its members are without most of the specialised features listed above, and survive only in protected forest, aquatic or domesticated environments. Camels and their relatives are adapted for life in arid situations or at high altitude. The Ruminantia is the suborder of the Artiodactyla regarded as the most successful on grounds of number of living species and distribution. Ruminants are divided into four superfamilies, the Traguloidea (chevrotains), the Cervoidea (deer), the Giraffoidea (giraffe, okapi) and the Bovoidea. The Bovoidea is further classified into two families, the Antilocapridae (pronghorn antelopes) and the Bovidae. Within the Bovidae four main subfamilies are distinguished; the Bovinae (kudu, eland, ox, bison, yak etc.), the Hippotraginae (oryx, blesbok, gnu), the Antilopinae (blackbucks) and the Caprinae (goats and sheep). The fact that this order includes many species which have been domesticated for food, transport and provision of wool or hair for clothing is reflected in the haematological data available from the literature. Cattle [1-16, 89, 90], sheep [4, 8, 9, 17-24, 91] and pigs [4, 25-28] have been fairly extensively studied. Other species which have received attention include goats [4, 29, 92, 96], buffalo [4, 30-32, 87, 97, 98] and deer of the species Cervus elephas (red deer) [33], Odocoileus hemionus (mule deer) [34, 35], O. virginianus (whitetailed deer) [36], O. columbianus (black-tailed deer) [35] and Rangifer tarandus (reindeer) [37]. Because of the unusual shape of their red cells, animals of the suborder Tylopoda (camels, llamas etc.) have also proved of interest [38-42, 88, 95]. Animals examined in the present survey include mainly members of the Tylopoda, Cervidae, Bovinae and Capinae. The sum total of the information available demonstrates a wide haematological variation throughout the order, much of which can be related to environmental demands and/or phylogenetic relationships. Erythrocytes Throughout the order, the inverse relationship between red cell size and number is well demonstrated. A clear distinction can be made between the red cells of animals of the three different suborders (Table 5.1). Red cells of Suiformes are relatively large in contrast to the cells of the Ruminantia. The large number of small erythrocytes often found in ruminants 159 160 ARTIODACTYLA has been related to the high altitudes usually inhabited by these animals where the availability of a large total surface area for gaseous exchange in situations of low oxygen tension is advantageous. This suborder includes the animal with the smallest red cells yet described, the mouse deer or lesser Malay chevortain (Tragulus javanicus) in which the mean cell diameter is 1.5μ [43] but which is not a mountain dweller. Camels and their relatives (suborder Tylopoda) are unique amongst mammals in that their red cells are oval in contrast to the biconcave discs found in all other mammalian species. Reticulocyte and nucleated red cells in camels are round. Contrary to some reports in the literature the mature oval cells do not contain nuclei although they tend to be flat rather than concave (Figure 1.1). The mean cell haemoglobin concentration is usually higher than that of other mammals and the packed cell volume lower. Oval cells do not form rouleaux. It is interesting that alpacas, llamas, guanacos and vicunas which inhabit mountainous regions of South America and bactrian camels from mountain plateaus of the Gobi desert have higher total red counts and smaller cells than the Sahara desert-dwelling Arabian camel. TABLE 5.1 RED CELLS OF ARTIODACTYLS. AVERAGE VALUES Suborder Hb RBC PCV MCV MCH MCHC MCD SUI DAE TYLOPODA RUMINANTIA 14.1 13.8 14.5 7.2 11.5 10.1 44.8 36.1 43.3 62.9 31.2 44.7 19.7 12.0 15.0 31.1 38.7 33.2 5.66 4.8 In sheep [44] and cattle [1,4] the packed cell volume, haemoglobin and red count are increased by stress. This reaction is likely to operate in wild species but has not been studied. In domestic ruminants the red count, haemoglobin and packed cell volume are high and the mean cell volume low in suckling animals and tend towards normal adult levels within the first few months of life [2, 3, 21, 28, 30]. In cattle it has been reported that the red count is influenced by breed [13], climate [4], altitude [45] and parturition and there is some evidence of diurnal variation which may be related to changes in water balance [46, 104]. Some reports suggest that bulls have a higher red count than cows [4, 9 ] , but the apparent sex difference, together with other physiological differences, may reflect individual variation and environmental influences [1, 90]. In sheep there is no evidence of a sex or breed difference [17, 19, 20]. Sheep are particularly susceptible to infestation with intestinal parasites which may cause low-grade anaemia. This may explain the low normal ranges often given in the literature for red cell indices of this species and the possibility of parasitic infestation should be borne in mind when studying wild ruminants. Pigs have larger red cells than ruminants and a correspondingly lower total count [25, 26]. This species is prone to develop iron deficiency anaemia, particularly in early life [4]. Reticulocytes and nucleated red cells are common in suckling pigs and in sows during the farrowing period [26]. This is in contrast to ruminants in which reticulocytes and polychromatic red cells are rare after the first few days of life; even in cases of resolving anaemia the reticulocyte count is rarely above 2% of red cells. Cabot's rings can often be found in red cells of normal Bactrian camels (Camelus bactrianus). The red cells of deer are also unusual in that, in many species, a sickling tendency is present (Figure 5.1). Sickled deer erythrocytes are often similar in shape to those seen in human sickle cell anaemia; it is interesting that the phenomenon was first recognised in deer in 1840 [47], seventy years before the human condition was noticed. ARTIODACTYLA 161 Sickle cells have so far been found in deer of the species Cervus mexicanus [47], C. reevesii (Reeves' muntjac) [47], C. porcinus (hog deer) [47], C elephas (red deer) [33, 48], C equinus (elk) [48], C. nippon (Sika deer) [48], Dama dama (fallow deer) [48], Odocoileus virginianus (Virginian white-tailed deer) [49-53], O. columbianus (black-tailed deer) [54], Axis axis (axis deer) [48], Pseudoaxis hortulorum [48], Elaphurus davidianus (Père David's deer) [48] and Cervus canadensis (Wapiti). It has been suggested that the condition can occur in all species of Cervidae. Amongst other ruminants, sickling has been reported in Soay and Clun Forest sheep [55] and in young goats [56]. The sickling trait is apparently inherited but the mode of inheritance has not yet been determined. In man, sickle cell disease is a congenital condition occurring as a result of the presence of an abnormal haemoglobin molecule, (Hb-S), in which two glutamine residues are replaced by valine. In deoxygenated Hb-S, apolar bonds are formed between valine residues of adjacent molecules, giving rise to linear aggregation of the molecules to form stiff tactoids. These distort the red cells into the characteristic sickle shape. In vitro, sickling can be produced in the blood of affected humans by addition of reducing agents; in vivo sickling occurs in situations of low oxygen tension. Human sickle cells have a reduced mechanical fragility and are structurally rigid in nature. Their presence in blood causes a marked rise in viscosity. Pathological consequences include haemolytic anaemia and occlusion of small blood vessels by rigid cells. In white-tailed deer, multiple haemoglobin types have been found in animals with sickle cells, some of which can be associated with the red cell shape change [49J, but the molecular characteristics have not yet been determined. In affected animals, evidence of sickling can usually be seen on air-dried blood films and the degree of sickling can be increased in anticoagulated blood by storage at 4°C overnight or by saturation with oxygen, carbon monoxide or nitrogen [48]. Exposure to carbon dioxide and the addition of reducing agents brings about reversal of the cell shape to the normal discoid form [48 j . Sickling is correlated to some extent with blood pH and above pH 7.2, sickling is rapid [48J. In vivo sickle cells are formed in conditions of exercise-induced respiratory alkalosis and can be produced experimentally by infusion of sodium bicarbonate [53]. Sickled deer cells do not show increased mechanical fragility or the rigid structure of human sickle cells although the viscosity of the blood is increased [53]. Apart from one report of 'watery blood' and splenic atrophy in affected animals dying of cold exposure and malnutrition in America [51J, the sickling condition has not been correlated with any haematological or other abnormality and is generally accepted as being non-pathological in deer [531. Subjective observations indicate that affected animals have a higher death risk in stress situations associated with hyperventilation. It has been suggested that, although the conditions associated with sickle cell production in deer differ from those affecting human Hb-S, the basic cellular mechanisms may be similar [52]. A fuller study of sickling in deer would be of great interest. In domestic ruminants, erythrocytes show little tendency to sediment [3, 4, 57, 58] and the same is true for other animals of this order. The ESR is apparently not useful as a clinical test in cattle [59] although some information may be gained by reading the result after 18-24 hours [58]. The oval red cells of Camelidae do not form rouleaux and sedimentation is negligible. In the present survey, erythrocyte sedimentation rates of less than one mm have been recorded in camels with severe anaema, acute bronchitis, chronic wound infections and advanced arthritis. Red cell osmotic fragility is apparently comparable with that of mammals in all artiodactyl groups except the Tylopoda. Camel red cells possess the ability to withstand the effects of lower ionic concentrations in the surrounding medium than most other mammals (Figure 5.2). The reason for this is not clear. A teleological explanation has been proposed, suggesting that, since camels may exist for many months without drinking, but when given access to ARTIODACTYLA 162 Figure 5.1 Figure 5.2 Sickled red cells of the fallow deer. Red cell osmotic fragility in the Bactrian Camel 100η c/3 >< O O 02 04 %NaCl Normal human range 0-6 ARTIODACTYLA 163 water, imbibe vast quantities very rapidly, the ionic strength of their plasma may vary within wide limits [60]. Thus high resistance of red cells to ionic changes in their environ­ ment may be essential. Confirmation of this theory by monitoring changes in plasma ionic strength of camels would be of interest. White cells The white cell count of artiodactyls is of interest because, in many species, the total number of circulating white cells is significantly below the normal human range. This finding could lead to misinterpretation of results if not appreciated. Low white counts have been reported in red deer [33], white-tailed deer [36] and reindeer [37J and, in the present survey, have been found in some bovine animals belonging to the subfamilies Caprinae and Bovinae, in most deer and in the Arabian camel. In domestic artiodactyls, including cattle, goats and sheep, the total white count in normal animals is between 4 and 12 thousand/c.mm of blood and may be higher in pigs [4]. However, in domestic artiodactyls the white cell response to infections may be less than expected [4]. Total white counts of domestic ruminants may be influenced by age [1 ], breed [14, 24], pregnancy and parturition [1, 12] although it has been suggested that individual variation and environmental factors may account for some of the results on which reported claims are based [1]. In cattle [11, buffalo [32], sheep [20], goats [29] and pigs, and in some wild Bovinae and Cervidae, lymphocytes outnumber neutrophils in adult animals although the ratio may be reversed in newborn animals [2, 3 ] . Monocytes are present in usual numbers. Basophils are relatively common in some individuals. Eosinophils are low at birth but numbers increase with increasing age, probably as a result of parasitic infestation [1,4]. When stained with Leishman stain, the cytoplasma of neutrophils contains sparse to moderate basolphilic granulation. The nuclear lobes are not always well defined. Drumstick appendages are easily identified in female animals. Eosinophils have small, well staining spherical or ovaloid granules which generally do not fill the cell. The cytoplasm of these cells is greyish blue. Of lymphocytes, the large forms usually predominate and in some species cytoplasmic granules are prominent. Basophils are moderately granular. Lymphocytic leukaemia possibly due to viral infection occurs in domestic cattle with some frequency [4], and leukaemia of various types has been recorded in sheep, pigs, goats [4] and some wild ruminants [801. It has already been mentioned that the white cell response of cattle to bacterial infections is often less marked than expected [4]. In those species with a low neutrophil/lymphocyte ratio, localised inflammatory processes may lead to the draining off of circulating neutrophils at a rate greater than their replacement by the bone marrow, resulting in the development of a temporary neutropenia in the initial stages of infective conditions. This situation may be augmented by lymphopenia associated with stress, leading to frank leucopenia [41. In domestic animals, leucopenia is also found in viral infections [81-85]. Platelets The platelet count is within or above the normal human range in animals of this order. Platelets appear small in wet preparations but not on stained films. When stained with Leishman stain, they differ in morphology from platelets of other mammals in that each contains several discrete, evenly spaced, purple granules in contrast to the irregularly clumped basophilic material usually seen. The adhesive platelet count is higher in sheep than in man [61]. Platelets are aggregated by ADP in vitro but the process does not proceed as rapidly as in carnivores and primates and the aggregates are comparatively small (Figure 5.3). Clot retraction is often less than expected in samples with plentiful platelets. Experience has CMH-12 164 ARTIODACTYLA shown that platelets of Caprinae are small and often appear partly aggregated even in blood samples collected with the utmost care; this may explain their reduced reactivity in in vitro tests. Total PF3 and PF3 release is normal in the few species which have been tested. Blood coagulation Blood coagulation studies on cattle [1-3, 93, 94, 99, 100], sheep [17, 24, 61, 94| and buffalo [32, 86] suggest that the mechanism is active in these animals but that levels of activity of specific clotting factors may vary from human values. Because of availability of large volumes of blood from domestic ruminants and the presence of high levels of some clotting factors in their plasma, separation of clotting factors for use as laboratory reagents and therapeutic material has been extensively studied [62-65]. Peptide mapping and amino acid analysis of bovine, porcine and sheep fìbrinogen have also been carried out [66-68]. Studies on bovine plasma indicate that the reaction between bovine clotting factors and the protein fraction of human brain extract is impaired [69] and similar lack of reactivity in other artiodactyls is indicated by the prolonged prothrombin time using human brain. This prolongation is most marked in members of the Cervidae. In homologous test systems however the prothrombin time is within the expected range. Intrinsic prothrombin activation is usually rapid but in some ruminants, standardized contact with kaolin does not shorten the recalcification time, probably as a result of low levels of factor XL Levels of fìbrinogen and factor V are within the normal human range or higher. Factors VIII and XII are high and factors II, VII and sometimes IX and X are low even when measured in artificially prepared homologous test systems or when activated by specific snake venoms. Factor XI is low in Tylopoda and in most ruminants excluding some deer. Factor XI levels of less than 1% have been found in two apparently normal greater kudu (Tragelephas strepsiceros); it remains to be determined if this is a general characteristic of the species or an inherited defect. Factor XIII is present in all artiodactyls tested and antithrombin levels are within the expected range. TYPICAL PATTERNS OF PLATELETS AGGREGATION INDUCED BY ADP ÌN ARTIODACTYLA Figure 5.3. i ADP 60 70 WILD BOAR 4 5 Z * ADP Û ! 60 70 80 1 2 3 6 MINUTES Aggregation produced by addition of ADP 12.5 mg per ml of PRP containing 400 x 10 platelets per.c.mm ARTIODACTYLA 165 The acquired coagulation defect arising in cattle eating spoiled sweet clover is well documented [70] and study of this condition led to the discovery of the anticoagulant properties of the coumarin and indanedione drugs [71]. A bleeding disease due to deficiencies in factors I, II, V, VII, IX and X has been reported in newborn calves [103]. Perhaps surprisingly, only one congenital coagulation defect has been described in domestic cattle, namely factor XI deficiency [1051. A bleeding defect, originally thought to be analogous with human haemophilia [72, 73] but now shown to be similar to von Willebrand's disease, has been found in pigs. Affected animals have reduced levels of factor VIII, reduced platelet adhesiveness and prolonged bleeding times [74,79]. Congenital afibrinogenaemia has been described in goats [101]. Fibrinolysis Plasminogen levels of Artiodactyla are usually within the normal human range although lower levels have been recorded in some Cervoidea and Caprinae. Plasminogen is activated directly by human urokinase but not by streptokinase unless 'proactivator' is provided. With the exception of the Cervoidea, animals in this order have prolonged euglobulin lysis times, their euglobulin clots often remaining stable for longer than 24 hours. In sheep the euglobulin lysis time is reduced by stress in association with acute haemorrhage but not by infusion of adrenaline. Lack of fibrinolytic activity in the intima and media of blood vessels of pigs and cows has been described [102]. Fibrinolytic inhibitors in sheep and in those wild species where they have been measured are within the expected range. Complete lysis within a few hours of clots of some 8-10 day old buffalo calves has been reported [86]. 166 ARTIODACTYLA SUIFORMES SUOIDEA SUIDAE Sus scrofa Wild boar Survey Results Survey Results NOT] 1 Test Av. Range |Hb 14.9 13.8-15.6 4 6.4 6.1-6.6 4 1 RBC | pcv 45.5 42-48 Retics 1.1 0.2-1.8 |MCV 71.0 69.5-73.5 |MCH 23.5 22.8-24.0 4 4 4 4 IMCHC 32.4 31.5-33.8 4 Test | PT RW 1 1 1 1 7 7 | 1 KRT 26 20-31 7 | | IT 11.3 8.5-17.0 5 | I 482 278-667 7 49 30-66 7 500-1000+ 7 8.3 6.6-10.4 4 |N 53 34-73 4 1VII |L 4 1 0-2 4 B 0 0 4 1 Pits 170 120-217 4 IESR 4 1-6 4 I IELT Pg |AF 12-24 h 2.7 2.6-2.8 7 6 v VIII ix 1x 1XI | 1 1 7 38-62 1 WBC 4 5.5-8.0 20-32 II 5-10 7 7.0 27 4 17-60 10-14 49 5.61-5.77 8 12.2 | PTT 5.66 38 Range | RT |MCD M E No. ] Av. 1 xii 100(H 7 100(H 3 157 80-200 7 | | 1 100(H630 + 510-750 1 XIII 1 AT 384 265-485 1 CR 52 50-54 | TP 6.22 5.08-7.18 2 7 7 2 1 1 1 1 7 | ARTIODACTYLA 167 SUIFORMES SUOIDEA SUIDAE Sus scrofa Domestic pig Ref. 4 Test \ Hb Av. 13.0 Ref. 27 Range 10-16 Ref. 92 Av. 13.4 Range 11-15 Av. 13.0 Range | 10-16 1 RBC 6.5 5-8 6.8 6.1-7.8 7.0 5-9 PCV 42 32-50 41 37-47 40 35-50 63 50-68 60.3 56-68 19.5 17.5-21.0 32 30-34 32.3 29-36 19.6 16.0 10-22 Retics | MCV | MCH 1 MCHC | MCD WBC 16.0 11-22 N 37 28-47 6.3* L 53 39-62 10.6* 7.7-15.8 8.0* 3-13 |M 5 2-10 1.2* 0.5-2.2 0.1* 0.05-1.0 0.1* 0-1 0.05* 0-0.5 12-30 2.2-12.0 E 3 1-11 0.98* 0.3-1.8 B 0.5 0-2 0.13* 0-0.2 11 Pits ESR 1 ELT Pg 1 AF 25 animals *X103/c.mm. For blood coagulation tests on pigs, see refs. 77, 78, 99. 6.0* 2-10 168 ARTIODACTYLA SUIFORMES SUOIDEA SUIDAE Potamochoerus por cm (Bush pig) Phacochoerus aethiopicus (Wart Hog) Bush Pig Survey Results Test | Hb Av. Wart Hog Survey Results NoA 17.0 Test \ Hb Av. 14.3 1 RBC 8.9 RBC 6.9 1 PCV 50 1 pcv 43.5 | Retics 0 1 Retics 1.2 1 MCV 56.3 | MCV 63.0 1 MCH 19.2 1 MCH 20.7 1 MCHC 34.0 | MCHC 32.8 1 MCD | MCD 5.69 1 WBC 16.0 1 WBC 13.8 1NL 80 1 NL 53 1 1 M 1BE 11 Pits 13 1 ESR 3 7 0 0 1 1M 1B E 41 1 Pits 322 1 ESR 1 ELT 1 ELT Pg | AF Pg | AF 3 2 1 2 No. 1 ARTIODACTYLA 169 SUIFORMES SUOIDEA TAYASSUIDAE Tayassu tajacu Collared peccary Survey Results 1 Test A v. 1 Hb 10.5 Survey Results No. | | Test Av. No~1 \ PT RBC 6.4 1 pcv 39 | PIT 40 î I 1 Retics 0.3 | RT 80 1 41 1 8 1 RW MCV 61.4 | KRT | MCH 16.5 | TT | MCHC 27.0 | i | MCD N 1L 1 1M 1 EB 500 1 | vin 1000+ 1 1 IX 100(Η 1 130 1 + 1 î 1 î 1 1M Pits 344 i 1 1 | XII | XIII | ESR 1 ELT Pg 1 x 1 1 AF 1 1 55 1 1 vu 1 WBC ( 1 330 1 vH 5.42 10.0 24h+ 1 | | AT 2.42 1 | | CR 72 | TP 6.4 PF3 release 43 (1) PF3 total 84(1) Contact activation index 49 (1) ARTIODACTYLA 170 TYLOPODA CAMELIDAE Lama glama Llama Ref. 41 Survey Results Survey Results Ref. 88 Test Av. Range No. 1 PT 14.8 13.5-16.0 4 RW 8.0 7-9 4 12 PTT 37 34-40 4 12 RT 136 66-240 4 25.6-31.0 12 KRT 63 49-69 4 10.6-12.3 12 TT 9 7-11 4 28.5-44.4 MCHC 39.2 7.55 x 7.3-7.8 MCD x 3.6-4.2 3.74 12 I 200 124-267 4 Test A v. Range No. Av. Av. Hb 14.3 12.0-16.1 12 13.0 12.8 RBC 11.9 8.3-13.7 12 1 11.3 9.9 PCV 34 28-39 Retics 0 MCV 28.3 MCH 11.6 3.9 x 7.2 10.3 5 WBC 10.8 4.8-16.4 12 N 66 47-84 12 1 16.2 Range \ 11.614.5 8.512.5 8.9-22 L 22 3-43 12 11 M 3 2-11 12 4 0.5-2 1 E 3 0-5 12 10 3.5-6 1 0.5 0-1 12 320-368 5 ΓΒ Pits 344 1 15-59 1 10 0.5-3 63 49-69 4 137 110-160 4 VII 28-95 65 11 V ix 1 X 1 1 XIII + 4 480-600 3 I AT 3.4 1.7-5.3 4 CR TP No. not given WBC N L M E B See also réf. 45. 6.4, range 2.8-10.8 14-21 18 71-83 76 3-7 5 2 04 0-1 0.5 7 animals 4 54 0 White cell indices on 3 yearlings: 4 200-220 460 520 Pg 260-330 205 XI ELT 1 AF 310 XII 1 ESR 3 500-1000+ 4 VIII 5.56 5.4-5.64 PF 3 release 42 (1) PF 3 total 98(1) 41 ARTIODACTYLA 171 TYLOPODA CAMELIDAE Lama pacos Alpaca Survey Results Ref. 88 Range\ Survey Results | Test Av. Range 7.5-16.71 1 PT 16.2 15.0-17.5 7.8-10.81 1 RW 9.3 8.5-10.0 4 PTT 39 35-43 4 1 RT 78 65-90 2 2 2 2 4 1 [ KRT 49 38-59 2 1 IT Γ Av. 1 Test Av. Range No. 1 Hb 14.2 12.3-15.4 4 1 12.2 RBC 12.0 10.8-13.3 4 1 9.5 1 PCV 35 29-42 | Retics 0.1 0-0.6 1 MCV 29.8 29-39 1 MCH No. | 2 7 11.7 10.6-13.3 4 1 MCHC 40.2 6.51 1 MCD 35.0-43.5 4 1 I 323 1 14.4 9.8-17.5 4 II V 50 500 1 1 79 69-87 4 43-79 18 9-30 4 14-27 1000+ 2 2 1-4 4 1 0-2 4 9-33 4 0-1.5 WBC 1NL 11 M 1BE 11 Pits 1 ESR | ELT Pg | AF 0 290 230-328 11.8 | 6.9-15.5 0-0.5 3 1 vu 1 vin 1X 1XIIxi 233 135-330 2 26 1 + 1 1 1 1 1 XIII 1 1 AT 3.5 1 | CR 78 TP 5.7 7 animals 2 ix 0 24h See also ref. 41 190-455 1 1 1 1 172 ARTIODACTYLA TYLOPODA CAMELIDAE Lama guanaco Guanaco Ref. 4 Survey Results 1 Test Av. No. 1 | Test Ref. 88 Av. Range Av. Range 1 PT 16 1 Hb 17.3 13.2-20.5 16.4 1 RW 8.5 1 RBC 15.5 12.1-17.8 10.4 8.9-1I.7I 1 ΡΤΓ 47 1 PCV 40 31-45 1 RT 88 1 Retics 1 KRT 44 | MCV 1 TT 8.0 | MCH 624 MCHC 80 1 MCD 100 1 WBC 12.6 8.6-19.0 11.7 6.4-I9.2I 64 57-78 24 16-30 15-27 1 3 2-3.8 0.5-2.5 1 1I 1 1 Π V N 1 VII L 1 VIII 1IXx 1XI 1 XII | XIII 120 20 540 + 1 AT CR | TP 1 1 1 11 M 1BE 1 1 1 Pits 1 I 1 ESR 5 14.6-19.2 41-93 1 3-8 4-16 1 0-0.5 1-2 1 ELT 57 Pg 1 AF 3 animals 8 animals ARTIODACTYLA TYLOPODA CAMELIDAE Vicugna vicugna Vicuna Survey Results Ref. 88 Survey Results Av. Range No. 1 ^Äv. Range\ 15.5 15.2-15.8 2 12.2 9.8-14.81 1 PT 1 RBC 13.0 12.6-13.4 9.4-11.51 1 RW 7.5 40.5 38-43 1 PTT 47 45-49 2 | Retics 1.1 1.0-1.2 2 1 2 1 2 1 10.3 1 PCV 1 RT 98 96-100 2 1 MCV 31.1 30.1-32.1 2 | KRT 47 46-48 2 1 MCH 11.9 11.7-12.0 2 1 TT 10.75 10.0-11.5 36.2-40.0 2 1 1 I 508 2 1 135 1 86 1 1000+ 1 76 1 1 Test 1 Hb Test 1 MCHC 38.1 1 MCD xiB mm3- 2 1 WBC 8.5 5.8-11.2 2 1NL 77 70.5-82.5 2 41-54 1 1 ΠV 1 1 VII 17 11-22 2 11-40 1 1 VIII 5 4-6 2 1.5 1-2 2 0-0.5 1 5-18 1 1 1 M E B 1 1 Pits ESR 2 0 231 0 198-265 2 2 1 11.7 6.4-19.2 Range 17.5-18.0 No. 1 2 1 2 1χιχ 11 x* 1 xii | XIII | ELT 1 AT Pg ^AF | CR See Û/SO re/ 45 Av. 17.8 | TP 600 + 1 174 ARTIODACTYLA TYLOPODA CAMELIDAE Camelus bactrianus Bactrian camel Survey Results Ref. 38 Av. Range Hb 14.5 11.1-17.6 | RBC 11.7 9.7-12.9 14 PCV 35 29-42 14 Test Retics 0.1 0-0.6 No. 1 27.0 26.0-31.6 14 [MCH 11.9 10.6-13.6 14 43.8 37.2-45.0 7.45 x3.81 15.6 8.6-24.4 14 |MCD WBC 1 10-19 Av. Av. 12.7 8.8 10.45 11.1 40 14 [MCV |MCHC 1 Av. 14 Ref. 41 Ref. 42 1 | 3.5 x 7.2 3.6 x 7.5 17 10.8 |N 67 50-86 17 69 L 27 10-37 17 11 IM 3 0-7 E 2.5 0-7 17 1 17 1 15 17 | 2 I IB Pits 0.5 0-1 355 220-526 ESR 0 ELT 720+ Pg 4.36 3.05-5.9 3 1 | | 12 19 13 | 9 [AF No. = 12-20 No. not 24 animals given Cabot's rings present in some red cells. For Hb and RBC of Bactrian X Arabian Camels (Nairs) see Ref. 42. ARTIODACTYLA 175 Bactrian camel Survey results 1 Test Av. Range 1 PT 20.5 14-26 RW 8.5 5-11 PTT No. | 13 1 13 59 42-77 13 | RT 101 73-133 13 | KRT 73 53-90 13 TT 7.5 5-10 13 303 184-454 10 | 30 24-38 9 | 190 120-310 9 1 i 1 VΠ 1 | VII [ vin 700-10004 14 1χιχ 107 60-160 200 76-300 11 32 20-44 2 XII 575 510-640 1 XIII + 1 AT 1 CR [TP 400 54 1XI 5.34 | | 5 1 2 10 300-501 2 50-59 3 4.4-6.4 9 .1 1 PF3 release 60, range 51-67 (5 animals) PF3 total 103, range 100-104 (5 animals) Contact activation index 71 Range 29-84 (9 animals) ARTIODACTYLA 176 TYLOPODA CAMELIDAE Camelus dromedarius Arabian camel Survey Results Test Hb Range Av. Ref. 38 No. 1 Av. Range 10.7 9.1-12.0 6 RBC 9.1 8.0-10.9 6 7.24 PCV 36 28-42 6 27 1 Retics 0.6 0.2-1.2 3 MCV 39.9 31-46 6 37.9 30-47 MCH 13.1 10.5-15.7 6 17.4 14.6-21.3 6 47 41-53 MCHC MCD WBC 32.3 24.4-43.0 6.92-7.08 7.0 x 3.8 x 3.41-4.15 4.1 3.0-4.0 N 49 38-65 13.1 Ref. 39 Av. Range 10.6-15.1 15.5 10.6-20.3 6.1-9.3 8.2 3.8-12.6 20-33 Ref. 95 Av. 1 13.2 7.2 1 43 1 59.9 j 18.3 1 30.7 I 2 4 18.1 10.5-28.3 20.1 12.9-27.2 12.5 4 51 10-60 39 21-56 31 | L 42 25-51 4 40 35-58 46 26-65 63 j ΠΜ 5 1-9 4 3 1-6 6 0-12 2.4 | E 4 24 4 6 2-18 9.5 0-19 2.2 I 0.1 0-0.5 4 0.05 0-0.5 0-1 0.7 B Pits 271 ESR 0 ELT 144(H 263-280 2 4 Ί 2 Pg 1 AG _.__.. 10-20 animals See also refs. 41, 42 95 animals 80 animala ARTIODACTYLA 177 Arabian camel Survey Results 1 Test | PT Av. Range No. 1 20.5 20-21 2 | | | RVV 9.0 | PTT 55 54-56 1 2 | RT 95 85-105 2 1 KRT 63 58-67 2 [TT 13.5 10-17 2 1 i 270 1 1 | VII 1000+ 1 1Π V 1 vin 1xix 100(H 1 100CH 1 145 1 xi 18 1 1 + 1 1 1 XII | xiii AT CR | TP Contact activation index 57 (1) | | 178 ARTIODACTYLA RUMIN ANTIA CERVOIDEA CERVIDAE Dama dama Fallow deer Survey ResuIts Survey R esults | Test Av. Range No. | \ Test |HI> 14.3 12.2-15.6 3 1 \ PT IRBC 10.0 9.0-11.8 3 IPCV 46 42-53 3 1 Retics 0 RW Av. Range 30.6 18-45 3 No. 1 10.6 8.0-13.5 3 | PTT 47 45-53 3 1 3 | RT 93 83-101 3 ! IMCV 45.9 44.9-47.0 3 1 KRT 231 50-420 3 IMCH 14.6 14.2-15.2 3 1 TT 5.2 4.5-6.0 3 IMCHC 31.5 30.0-32.5 3 | I 469 184-743 3 1Hv 58 37-79 2 387 125-650 2 300-1000* 2 IMCD 4.91 4.77-5.04 3 WBC 2.6 1.7-4.0 3 IN 81 67-90 3 11 VII |L 15 5-29 3 | VIII IM 3 2-4 3 E 1 3 1IXx 1XI Ipits 362 253-472 2 1 XII IESR 0.5 0-1 ΓΧΙΙΙ IELT 300 3 1 I 0 |B kg |AF 3 3 1000+ 158 150-165 2 115 90-140 2 1 1000+ + 3 1 AT CR J 1 1 60 60.5 | TP Red cells showed complete sickling when exposed to oxygen PF3 release 77(1) PF3 total 100(1) Contact activation index 80 (1) 59-62 2 ARTIODACTYLA I79 RUMINANTIA CERVOIDEA CERVIDAE Axis axis Spotted deer or chital Survey R esults \ Test Hb Range No. 12-14 2 PT 13.4 13.0-13.7 IPCV 34.5 32-37 |MCV IMCH |MCHC | Av. 13.0 IRBC 1 Retics Survey R esults 0 23.5 9.75 37.5 22-25 8.5-10.0 37-38 Av. Range No. 1 17.0 1 2 1 2 1 RW 8.0 1 PTT 47 1 2 | RT 96 2 2 | KRT 88 1 2 TT 8.0 1 2 1 I |MCD 2 | |WBC 5.0 4.9-5.1 |N 30 27-33 2 1 |L I Test ] II 15.5 V 900 15-16 2 1 VII 65 62-68 2 1 VIII 825 M 2 1-3 2 IX 50 E 3 2-4 2 x 77 650-1000 4 2 Pits 410 370-450 2 1 1 ** XII 600 1 IESR 8 3-12 2 I XIII + 3 IELT 120 1 I AT Pg 3.0 1 |B 2 0 Red cells showed complete sickling when CMH-13 1000+ I CR 1 TP [AF P 60-100 yS PF3 release 85 (1) PF3 total 115 (1) Contact activation index 69 (1) 3 1 ARTIODACTYLA 180 RUMINANTIA CERVOIDEA CERVIDAE Axis porcinus Hog deer Survey R esults Survey R esuli s No. | Test Av. Av. Range 1 Hb 16.8 15.5-18.2 3 1 RBC 14.3 13.6-15.1 3 RVV 6.5 1 PCV 50 46-54 3 1 ρττ 1 RT 25 KRT 40 Test 0.2 0-0.4 2 | MCV 37.0 35-39 3 | MCH 12.7 11.4-14.0 1 Retics | MCHC 32.5 28-39 1NL 1M 1BE | 3 1 3 1 PT 1 ir | i n | MCD WBC | 1V 3.3 1.2-5.5 3 46 40-52 3 VII 34 26-42 3 | VIII 4 4-5 3 IX 15 11-18 3 44.0 32 7.0 187 52 1000+ 1000+ 1 0-2 3 1 Pits 273 240-305 3 1x 1 ^ 1 xii 1 ESR 4.5 0-13 3 | XIII 680 + 1 ELT 160 AT 230 Pg | AF 1 No.] 1 1 1 1 ì I I CR | TP These animals, together with one other hog deer examined, showed complete sickling of red cells on exposure to oxygen. ARTIODACTYLA 181 RUMINANTIA CERVOIDEA CERVIDAE Cervus timore nsis Timor deer Survey Results Survey Results No. 1 1 Test Av. | Hb 14.5 PT 15.0 1 1 RBC 10.5 RVV | PCV 41 IPTT 42 1 0.5 RT 70 1 Test Retics Av. | MCV 40 KRT 67 | MCH 14.5 TT 7.0 | MCHC 35.0 | MCD 4.82 | WBC 7.4 1 NL 1 1M 1 EB 1 1 Pits 100 40 52 | Vili 1000+ 4 IX 620 2 x 78 420 1 ESR 1 ELT Pg | AF Red cells showed complete sickling when exposed to oxygen. No. 1 1 6.0-8.0 2 [I 1 V" 1 1 vii 2 Range 1M 1XII 270 | XIII + AT 1 CR | TP 38 1 182 ARTIODACTYLA RUMINANTIA CERVOIDEA CERVIDAE Cervus nippon Sika deer Survey Results Test Hb RBC |PCV Survey Results Av. Range No. 16.9 14.1-19.9 6 PT 13.07 10.0-15.7 6 RW 7.0 45.2 37-54 6 PTT 36 Test Av. 6 RT 68 |MCV 34.9 33.5-37.0 6 KRT 58 |MCH 13.0 11.9-14.1 6 TT 6.0 |MCHC 37.1 36-38 6 I Retics 0 705 II |MCD |WBC 3.6 3.4-3.9 6 |N 39 12-50 6 VII |L 55 32-79 6 VIII I No. | 17.0 V 1000+ 1 X 220 1 XI 190 1 M E 2 0-5 6 IX 4 0-9 6 B 0 6 1 Pits 353 308-480 6 XII 1000+ 1 IESR 2 0-7 6 XIII + 1 IELT AT Pg CR 50 1 |AF TP 7.4 i Red cells of all animals showed sickling trait when exposed to oxygen | PF3 release 68(1) PF3 total 100(1) Contact activation index 60 (1) ARTIODACTYLA 183 RUMINANTIA CERVOIDEA CERVIDAE Cervus elephas Red deer Survey Results Ref 33 Survey Results No. | \ Test Av. Range No7\ Av. Av. Range 1 Hb 15.81 13.6-17.4 6 14.5 ±0.69 FT 50 45-55 2 1 RBC 10.8 9.1-12.9 6 9.58 ±0.6 RW 8.2 8.0-8.5 3 1 pcv 47.4 42-51 6 46.5 ±0.46 PTT 38 34-42 3 69 68-70 3 3 Retics 6 0 SEM 1 Test | RT | | MCV 43.9 41.3-45.0 6 47.5 | KRT 49 48-50 MCH 14.6 13.4-15.4 6 15.1 ±0.56 | IT 6.5 6-8 3 1 MCHC 33.3 31.5-34.2 6 31.9 ±0.65 | I 514 509-520 3 | MCD 4.49 4.43-4.55 6 12.5-17.5 3 2.5 0.7-4.5 6 2.95 ±0.11 1Vn 15 1 WBC 385 70-700 2 38 29-47 6 50 1 VII 1L N 54.5 40-59 6 35 1 VIII 1000+ 1M 5 3-8 6 6.6 IX 220 1BE 2 0-6 6 9.1 x 166 0.5 0-2 6 0 258 164-412 6 XII 11 Pits 1 ESR 2 180-24h 1 ELT Pg 2.85 1XI 3 1 58-300 3 100(H 1 2 1 XIII lOOOf + 3 2 1 AT 435 1 1 CR 67 | TP 5.78 [AF Red cells from these animals plus 2 other red deer examined showed complete sickling when exposed to exygen. For effect of age on blood count see ref 33. 29 animals 1 1 66-68 2 5.42-6.15 _ 3 PF3 release 56(1) PF3 total 103 (1) Contact activation index 60 (1) | RUMINANTIA CERVOIDEA CERVIDAE Odocoileus virginianus Whitetailed deer Survey Results Test Av. Ref. 36 Av. No7\ Range 1 Hb 11.0 18.6 11.9-24.61 | RBC 7.0 18.7 10.8-23.01 | PCV 33 5.2 3.7-6.2 Retics 0 1 MCV 46.5 | MCH 15.7 | MCHC 33.8 1 MCD WBC 1 NL 1 | M 1 EB 1Pits 4.57 3.5 56 32 34 1| 60 3 3 17-63 29-77 1 2-4 7 0-5 2 0-3 460 | ESR | 17* 3-61 1 | ELT Pg | AF Red cells showed sickling tendency on exposure to oxygen *Westergren method For results on Odocoileus hemionus (mule deer) see refs. 34 and 35. ARTIODACTYLA 185 RUMINANTIA CERVOIDEA CERVIDAE Cervus canadensis (Wapiti) Elaphurus davidianus (Père David's deer) Wapiti Survey Results Père David's Deer Survey Results Av. Range No. | 13.3 13.1-13.4 2 1 RBC 9.4 9.1-9.7 2 RBC 9.5 8-11 PCV 35.5 35-36 2 1 1 PCV 47 43-57 Test Hb 1 Retics | MCV 0 38.9 | Test \ Hb Range 16.6-19.5 No. | 10 10 10 1 2 1 Retics 0.1 0-1 38.2-39.6 2 MCV 50.1 43.8-60.2 10 MCH 14.5 14.4-14.6 2 | MCHC 37.2 36.3-38.2 2 | | | MCH 18.4 15.7-23.5 10 36.7 34.0-39.6 10 5.46 5.37-5.55 2 WBC 4.8 4.5-5.1 2 59.5 53-66 2 34.5 27-42 2 2.5 0-5 2 2.5 0-5 2 1 0-2 2 1 Pits 355 250-460 2 1 Pits 1 ESR 3.5 0-7 2 1 ESR | MCD 5.59 5.49-5.69 2 1 WBC 4.2 2.3-5.2 10 44 28-63 10 48 31-66 10 3 0-4 10 1NL 1 1 M 1B E 1 ELT 1 ELT Pg | AF Pg | AF /?ec/ cells of 2 out of a total of 12 Wapitis examined showed sic kling when exposed to oxygen 10 1 | MCHC | MCD 1LN 1M 1B E Av. 17.2 4 2-5 10 1 0-3 10 247 125-386 10 3 0-5 9 Red cells of all animals examined showed sickling when exposed to oxygen 186 ARTIODACTYLA RUMINANTIA CERVOIDEA CERVIDAE Hydropotes inermis Chinese water deer Survey Results Test Hb A v. 16.2 RBC 10.2 PCV 42 Retics 0.1 MCV 42.0 MCH 16.0 MCHC 38.0 MCD WBC 6.4 N 74 1ML 1 EB 1| Pits 370 | ESR 2 | ELT Pg 1 AF 19 6 4 1 No. Ί ARTIODACTYLA 187 RUMINANTIA CERVOIDEA CERVIDAE Rangifer tarandus Reindeer = Caribou Survey Results 1 Test Av. Range Ref. 37 Survey Results No. \ ~Äv. Range Γ Test A v. IPT IRW 23.0 20-27 5 12.7 10.5-15.0 6 50 43-54 6 89 52-109 5 57-141 5 Hb 17.4 13.8-19.9 10 14.5 11.516.5 1 RBC 9.8 8.6-11.3 10 10.8 9.5-11.8 PCV 47.4 41-56 10 | Retics 0.4 0-0.8 10 IRT 42-55 10 |KRT MCV 47.5 PTT MCH 17.4 15-20 10 ITT 1 MCHC 36.6 33-39 10 II 15 1 1 38-50 1 VII 26-57 pin 1-4 IX 2 1-3 Ix 0.8 0-1 Ιχι 10 56.5 38-67 10 L 38 22-52 10 M 2.5 1-9 1 I7 2.5 0-6 10 B 0.5 0-2 10 1 Pits 9 Ιχιι 3 1 3 1 IAT 276 153-440 0.5 0-1 1 ELT 284 229-300 4.2 57 1 1 38 3 IXIII CR Pg [ AF No sickling of red cells observed 7 2 300 2.4-7.5 1 ESR 5.5-8.5 193-249 In 4.76-4.98 4.7 10 1 7.0 221 |v 4.87 1 WBC 1 NcT\ 2.3-5.4 7 1 1 MCD N 91 Range |TP 7 animais 360 134-800 107 80-175 5.78 6 1 4 1 + 56 6 46-64 5 5.42-6.15 2 | 188 ARTIODACTYLA RUMINANTIA GIRAFFOIDEA GIRAFFIDAE Giraffa camelopardalis Giraffe Survey Results Test Hb RBC IPCV Retics Av. Survey Results Range No. 13.3 13-13.4 3 9.4 8.4-10.1 3 | Test Av. 1 PT 1 RW 13.5 37.6 37-38 3 | PTT 80 0.1 0-0.2 3 | RT 108 76 IMCV 39.4 35.9-45.5 3 MCH 14.1 13.2-15.9 3 1 KRT | IT |MCHC 34.8 34-36 3 | i 622 1 3 370 270 IMCD 4.34 |WBC 4.4 3.5-5.8 IN 56 47-68 3 1v " 1VII L 39 28-48 3 1 VIII IM 3 1-2 3 ix E 0 |B 2 3 0-3 3 Pits 140 129-151 2 ESR 2 1.0-2.5 2 ELT 1X 11 MXII XIII Range No. 1 73-87 2 9.0 37 115 38 310 + 1 AT 515 Pg CR 61 |AF | TP 59-63 8.25 PF3 release 62 (1) PF3 total 116(1) Contact activation index 63.5 Range 63-64 (2) | ARTIODACTYLA RUMINANTIA BOVOIDEA ANTILOCAPRIDAE Antilocapra americana Pronghorn antelope Survey Results Test No. | | Av. Range 14.4 14.1-14.6 2 1 PT RBC 10.6 10.3-10.8 2 RVV PCV 45.5 45-46 2 Hb 1 1 Retics Test 1 PTT MCV 41.0 38-44 2 1 KRT 13.2 12.8-13.6 2 1 TT 1 MCHC 31.1 30.2-32.0 1 MCD 5.11 5.05-5.18 2 2 1 WBC 3.3 2.5-4.1 2 67 65-69 2 25 20-31 2 6 3-9 2 2 1-3 2 1 L 1M E 1 1B 0 2 Av. Range No. | 21.5 20-23 2 | 36 35-37 2 1 1 1 | I 6.25 301 6.0-6.5 185-417 '2 2 1nv 1 1 VII | VIII 1IxX 1 XI 1 XII 1 Pits | XIII ESR 1 ELT Results 1 RT 1 MCH N Survey 1080 1 1 AT |pg 1 CR | AF | TP + 2 190 ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE BOVINAE Boselephas tragocamelus Nilgai Survey R esults Av. Range 13.9 12.0-16.4 RBC 7.1 6.0-8.6 PCV 41.6 39-45 Test Hb Retics 0 Survey R esults No. | Test Av. VT 13.0 3 RW 10.0 3 | PTT 40 3 | RT 79 78 3 1 | MCV 59.0 52.5-65.2 3 1 KRT 1 MCH 19.4 19-20 3 | TT 33.1 30.8-37.4 3 | I MCHC MCD 1 5.04 2.7-5.7 60-83 3 1v 1 1E 22 8-29 3 | VIII M 7 4-11 3 IX 1 0-2 3 0-1 3 1x XI 69 1 Pits 387 166-624 3 1 XII 80 1 ESR 24 2-50 3 1 XIII 1 ELT Pg | AF 0.5 2 II 3.4 B 65-74 4.0 70 4 No. 385 1NL 1 WBC Range 1 VII 1 AT CR LTP 1 | RUMINANTI A BOVOIDEA BOVIDAE BOVINAE Trage lephas strepsiceros Greater kudu Survey R esu Its Test Av. Range Survey R esuìts No. | | Test Av. Range No. ] 18.5 17.9-19.2 2 PT 25.5 19-32 RBC 9.6 8.4-10.7 2 RW 11.5 9-14 2 PCV 51.5 45-58 2 1 PTT 137 125-150 2 RT 232 180-285 2 | KRT 205 156-255 2 5.0-7.5 2 279 229-330 2 11 1(M2 2 290 280-300 2 110-150 2 Hb Retics 0 MCV 53.6 | 2 MCH 19.5 17.9-21.0 2 1 2 1 MCHC 36.0 33.1-39.0 2 53.0-54.2 | TT 6.25 I 1V Π 2 1 MCD 5.74 5.49-5.99 2 WBC 4.9 4.3-5.5 2 50 34-66 2 | VII 43 30-56 2 | Vili 130 2.5 2-3 2 IX 600 1 4 1-7 2 x 100 2 1 NL 1 1 M 1 BE 1 1 Pits 0.5 0-1 2 313 222-404 2 1M 1XII 1 ESR 0 2 | XIII + 2 ELT 1380 1 AT 290 1 4.6 1 | CR Pg 1 AF | TP 2 <1 260 230-290 6.4 2 i 1 Note factor XI Activity of less than 1% PF3 release 57(1) PF3 total 121 (1) Contact activation index 33 (1) 192 ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE BOVINAE Bos taurus Domestic cattle Ref. 1 Ref. 4 Ref. 5 Test A v. SD. Av. Hb 11.3 1.49 11.0 8-15 0.765 7.0 5-10 33.7 4.14 35 24-46 52 40-60 33 30-36 RBC PCV 5.95 Range Av. 6.15 Range 4.8-7.9 Ref 9 \Av. 6.6 Ref. 92 Range Av. 8.9-11.0 11.0 8-14 6.5 5-11 37 33-48 5-8 Range Retics MCV 57.1 7.27 MCH 19.2 2.8 MCHC 33.7 MCD 5.75 2.81 0.216 WBC 7.03 8.0 4-12 5.5 2.3-10.6 9.2 6-12 9.0 6-12 N 39 10.0 28 15-45 30 13-46 32 20-40 3.0* 2-4 1.96 L 51 11.8 58 45-75 54 31-76 55 45-65 5.0* 4^6 M 8 2.7 4 2-7 1.5 0-3 5 3-15 0.5* 0.2-1.5 E 9 11.9 2-20 13 4-26 8 3-15 j 0.5* 0-1.5 B 0 0-2 0.6 0-1.2 0.6 0-1 0.05* 0-0.1 Pits 9 0.5 350 350 ESR ELT Pg AF 81 Ayrshire* 21 animals See also refs. 2, 3, 6-8, 10-14. For blood coagulation on domestic cattle see ref. 93. *WBC xl03/c.mm \ ARTIODACTYLA 193 RUMINANTIA BOVOIDEA BOVIDAE BOVINAE Bos taurus Domestic cattle (Ankole) Survey 1 Test /?<?/ 76 Results Av. Range Μλ~Ί Λι>. Hb 12.5 12-13 2 8.98 | RBC 8.6 21 6.2 PCV 33 Retics 0 32-34 2 2 32.9 | 1 MCV 38.2 37.0-39.5 21 53.2 | MCH 14.4 13.9-15.0 2 14.6 37.8 37.5-38.2 2 27.2 11.2 1 MCHC 1 MCD 1 WBC 1NL 1 1E M B 11.1 9.3-12.9 2 57.5 47-68 2 29 31 26-36 2 46 2.5 2-3 2 6.2 7 2-12 2 12.9 2 1-3 2 Pits 240 1 | ESR 0 2 ELT Pg 1 AF 40 cows For blood picture of Zebu cattle, see ref. 15. ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE BOVINAE Tauro tragus oryx (Eland) Bos grunniens (Yak) Eland Survey Results Yak Survey Results Test Av. Av. 12.7 11.0-15.1 7 \ Hb RBC 7.1 5.6-8.2 7 1 RBC 7.3 1 pcv 36.1 29-44 7 | PCV 37 0-0.1 7 48-55 7 | MCV Retics MCV 0.05 51.0 Range No. | Test \ Hb Retics 0 MCH 18.1 17-19 7 1 MCH 14.8 35.3 34-37 7 | MCHC 30.4 1 MCD 5.63 5.55-5.82 2 1 MCD 5.08 WBC 5.7 4.4-8.5 7 1 WBC 9.3 N 70 56-82 7 L 23 11-29 7 1N L 76 M 3 1-6 7 M 3 E 3 1-5 7 E B 1 0-2 7 Pits 287 239-440 7 ESR 4 1-8 4 ELT 5.07-5.09 18 3 B 1 Pits | No. ~| 48.8 | MCHC 1 Range 11.2 ESR ELT Pg Pg | AF AF 0 336 0 2 1 195 ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE BOVIN AE Bubalus bubalus Asiatic buffalo Ref. 32 Ref. 87 Ref. 97 Av. 1 Test Av. Range Av. Hb 13.0 11.0-15.2 12.1 RBC 6.8 PCV 44.3 6.9 6.8 10.1 "~| 38-52 Retics MCV 1 MCH 1 MCHC | MCD 6.7 11.5 36 31.7 36 1 |M 1 BE 1 1 Pits 51 61.4 53 | 8 2.2 4 1 5 4.7 7.5 1 0 0 ESR 6 WBC 1NL | ELT Pg | AF 20 animals See also refs. 30, 31. CMH-14 2-8 <1 196 ARTIODACTYLA RUMINANTI A BOVOIDEA BOVIDAE BOVINAE Bison bonasus European bison Survey Test Results No. 1 4 1 4 1 A v. Range 13.6 11.7-15.3 RBC 8.0 6.4-9.1 PCV 47 41-50 4 Hb 2 1 Retics 0 MCV 59.7 51.5-65.0 4 MCH 17.2 14.9-18.8 4 1 MCHC 28.7 28-30 4 1 MCD 5.34 5.25-5.44 4 1 WBC 6.1 5.0-8.4 4 60 50-75 4 34 23-44 4 4 1LN 11 M E 1B Pits | ESR ELT Pg | AF 5 2-8 0.5 0-1 4 0.5 0-1 4 253 163-307 3 ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE HIPPOTRAGINAE Oryx tao (Scimitar-horned oryx) O. leucoryx (Arabian oryx) Scimitar-horned oryx Survey Results Arabian oryx Survey Results No. | \Test Av. \ Hb 12.5 Av. Range 15.6 15.3-15.9 3 RBC 9.0 8.(H0.4 3 RBC 8.2 IPCV 42.8 42-44 3 | PCV 43.5 Test Hb 1 Retics Retics 3 0 IMCV 49.1 43.0-52.4 3 IMCH 17.6 15.7-19.1 3 36 35-37 3 IMCHC | 1 MCV | IwBC IN II IM E | MCH 18.2 | MCHC 29.1 | MCD |MCD 5.8 4.9-7.7 74 62-82 3 1 3 1 23 17-34 3 2.5 1-4 3 0.5 0-1 3 3.6 1NL 77 0 3 1 Pits 295 1 1 Pits IESR 0.5 3 B 5.41 1 WBC 1 1 M 1B E I 0.5 61.5 18 213 5 0 0 1 ESR 4 IELT 1 ELT 24h+ Pg |AF Pg | AF 0-1 No. | 198 ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE HIPPOTRAGINAE Connochaetes gnou (Brindled gnu) C. taurinus (White-bearded gnu) Brindled gnu Survey Results Test White-bearded gnu Survey Results No. | Av. Range Hb 14.8 12.7-16.2 3 RBC 10.4 9.7-11.2 1 PCV 42 Retics 0 No. 1 1 Test Av. Range Hb 14.8 14.2-15.5 4 RBC 12.6 12.3-12.9 2 37-47 3 1 PCV 39.5 39-40 2 | 2 3 Retics 0 1 MCV 40.1 38-43 3 MCV 31.3 31-31.7 2 1 MCH 13.7 13.2-14.7 3 MCH 11.7 11.5-12.0 2 1 MCHC 35.1 34-36 3 1 MCHC 37.4 36.4-38.0 2 172-574 3 | MCD WBC 1 NL | MCD 4.9 3.3-6.3 WBC 3.1 48 35-55 4 N 83 47 41-58 4 L 15 3 1-5 4 1M 2 0-5 4 0.5 0-1 4 512 498-528 | ESR ELT Pg | AF 4.41 4 1 1 M 1BE 1Pits 2 2 E 2 1B 1Pits 398 0 3 | ESR 0.5 24h+ 2 ELT Pg 1 AF 0 0 3 ARTIODACTYLA 199 RUMINANTIA BOVOIDEA BOVIDAE HIPPOTRAGINAE Damaliscus dorcas Blesbok Survey Results Test Survey Results | Test Av. Range PT 16.2 15-18 4 No. j Av. Range 16.7 14.6-20.0 RBC 10.5 9.6-12.7 12 1 RW 7.3 7-9 4 PCV 1 Retics 46 rare 39-51 0-0.1 12 12 1 PTT 1 RT 50 109 44-62 75-134 4 4 1 MCV 43.8 39.3-49.0 12 1 1 KRT 79 62-100 4 1 MCH 15.9 14.3-18.6 12 1 1 TT 8.1 7-10 4 | MCHC 36.3 |I 292 248-318 3 25 23-27 2 500-1000+ 4 1 Hb No. 12 1 35-40 12 1 MCD 4.28 4.18-4.38 WBC 4.2 2.7-7.2 3 12 1V π 61 31-82 12 1 vu 1 | M 33.5 15-52 12 1 vin 1000* 4 1-10 12 445 210-800 4 E 1.5 0-4 12 1xιχ 120 90-180 4 1Pits 0.1 0-1 12 222 101-550 |ESR 2 0-6 |N L I B ELT Pg |AF 24h+ 4 250 1 10 1M 1XII 98 1 7 1 XIII + 4 1 AT 306 4 285-345 3 5.43-6.43 3 1 CR | TP 6.01 200 ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE HIPPOTRAGINAE Kobus ellipsiprymnus Waterbuck Survey Test Av. Results Range No. I lib 18.2 16.2-19.5 3 |RBC 10.1 9.1-11.0 3 PCV 51 Retics 0 49-55 3 3 MCV 50.9 49.0-54.5 3 MCH 18.0 17.5-18.5 3 MCHC 35.3 32.7-37.4 3 WBC 5.3 3.9-6.4 3 N 51 34-60 3 L 47 37-64 3 J M 1 1-2 3 E A 0-2 3 B 0 0 3 Pits 288 216-382 3 ESR 0 MCD ELT Pg L.AF 3 ARTIODACTYLA 201 RUMINANTIA BOVOIDEA BOVIDAE ANTILOPIN AE Antilope cervicapra Blackbuck Survey Results 1 Test |Hb Av. Range Survey No. ~| 2 1 1 7esr 16.6 16.2-17.0 RBC 11.3 9.7-12.8 2 RW IPCV 46.5 46-48 2 1 PTT Retics | PT Results Av. Range No. 13.5 12-15 2 7.5 55 7-8 2 54-56 2 1 2 2 | RT 74 73-75 |MCV 44.6 42.0-47.5 2 1 KRT 54 53-55 2 |MCH 16.3 16.0-16.7 2 6-8 2 |MCHC 35.5 1.0 35-36 2 4.72-4.78 2 TT 7.0 | I 351 1 1 11 |WBC 9.3 8.3-10.3 2 1nv 69 59-78 2 1 300 |N 1 VII |MCD 4.75 L 29 18-41 2 | VIII 100(H |M 1 0-2 2 1 ix 125 E 0.5 0-1 2 X 95 1 |B 0.5 0-1 2 XI 75 1 Pits 459 458-460 2 1 XII 223 |ESR 5 0-10 4 Γ ΧΙΠ + IELT 630 240-1010 3 1 AT 1 1 CR Pg |AF 6.3 | | TP 6.5 4 100-150 200-245 2 2 4 Ί 5.9-7.3 2 | 202 ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE CAPRINAE Saiga tat anca Saiga antelope Survey Results Survey No. | 15.1 13.6-18.9 4 | RBC 9.3 8.7-10.1 PCV 55 51-56 Test Hb Av. Range Test Av. No. i 1 4 RVV 11.0 1 4 PTT 55 51-60 2 RT 75 56-94 2 58.9 54-64 4 KRT 40 MCH 16.3 13.6-20.0 4 TT 5.0 MCHC 28.1 4-6 i 1 2 1 2 24.5-36.5 4 1 768 5.24-5.34 4 II 12 1 100(H 1 763-773 5.2 3.5-8.6 4 V 64 56-79 4 VII 1 1E 31.6 14-40 4 | VIII 450 1 3.7 1-7 4 IX 270 1 0.3 0-0.5 4 X 56 1 B 0.2 0-0.5 4 1 Pits 331 1 1 ** 1 ESR 2.5 1 | XIII + 2 1 ELT 144(H 1 AT 1 WBC 1 NL 1 M | 17.0 MCV 5.28 Range PT Retics 1 MCD Results XII Pg 1 CR | AF | TP 5.9 5.1-6.7 6 1 PF3 release 77 (1) PF3 total 152 (1) Contact activation index 77 (1) ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE CAPRINAE Ovis canademis (Bighorn sheep) Capra falco neri (Markhor) Bighorn sheep Survey Results Test Hb Av. Range 17.5 15.1-19.9 Markhor Survey Results No. j 2 | RBC 11.8 10.2-13.4 2 1 PCV 47.5 43-52 | Retics 0 1 MCV 40.6 1 MCH 14.8 2 2 2 2 1 1 1 1 | MCHC 36.7 2 | 38.8-42.5 35.2-38.2 1 1 N L Av. 12.2 1 RBC 16.9 PCV Retics 31 0 1 MCV 18.3 1 MCH 7.2 | MCHC 39.3 | MCD | MCD WBC Test | Hb 19.4 19.2-19.6 2 86.5 86-87 2 | 13 12-14 2 | 0.5 0-1 2 | WBC 1L 1 N 15.9 77 22 | M 1 E 0 2 E 0 B 1 1 Pits 0 2 246 1 11 BPits 380 | ESR 0 2 | ESR 0 | M | ELT ELT Pg Pg j AF j AF 0 No. 1 204 ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE CAPRINAE Ovibos moschatus Musk ox Survey Results 1 Test Av. Hb Range No. ] 13.5 12-15 1 RBC 9.4 7.8-10.9 2 PCV 36 33-39 2 Retics 0 2 2 | MCV 39.1 35.7-42.4 MCH 14.5 13.7-15.4 2 37.6 36.4-38.9 2 MCHC MCD 4.54 1 WBC 9.3 2 4.51-4.57 2 7.9-10.6 2 N 41.5 39-44 2 ML 50.5 46-55 2 1 M 2 0-4 2 E 5 4-6 2 B 1 0-2 2 Pits 301 1 1 ESR 6 1 | ELT Pg [AF 205 ARTIODACTYLA RUMIN ANTIA BOVOIDEA BOVIDAE CAPRINAE Capra ibex Ibex Survey Results | Survey Results Range No. 21 20-22 2 320 140-500 2 550 400-700 2 53 50-56 2 A v. Range No. Test Av. 9.6 9-12 9 PT 16.0 RBC 12.9 9.2-21.4 9 1 RW 9.0 PCV 46 30-64 9 Γ PTT 26 3 1 RT 51 30-43 9 1 KRT 64 Test Hb | Retics 0 MCV 36.2 MCH MCHC 8.9 5.0-10.8 9 24.4 16.8-32.2 9 TT Γι 1 MCD 4.24 4.01-4.44 9 1 WBC 3.8 0.6-9.0 9 61 50-82 9 1nv 1 L 33 10-46 9 1 VIII 1 M 5 1-12 9 1 0-2 9 1Γχ 9 XI 1 N 1 BE 1 262 1 ESR 0 1 Pits 1 ELT Pg | AF 0 7.0 525 1 VII ix 1000+ 2 2 1 XII 640 1 1 1 XIII + 1 1440+ 1 1 AT 260 1.67 1 226-299 | 1 1 1 CR | TP 6.9 5.7-7.8 8 | ARTIODACTYLA 206 RUMINANTIA BOVOIDEA BOVIDAE CAPRINAE Capra hircus Goat Ref. 4 Survey Results Av. Range No. 1 Hb 10.8 9.0-12.9 10 11.0 RBC 15.8 11.9-19.4 10 1 13.0 PCV 34 30-41 1 Test 10 | Retics 0 MCV 21.5 19.2-23.5 10 MCH 6.9 5.8-7.8 10 32.1 30.0-34.8 10 MCHC MCD 3.12 WBC 9.9 Av. Ref. 92 Range 11.0 8-14 8-18 15.0 13-18 16.6 1 34 29-38 32.8 1 16.6 Range 28 19-38 23.0 15-30 Γ38.0 35-42 | 1 9.4-10.4 10 9.0 4-13 9.0 5-13 3.0* 2-4 N 49 25-75 36 L 49 25-74 10 56 50-70 6.0* 2-10 1 M 1 0-3 10 2.5 0-4 0.5* 0-0.7 1 0-4 10 1-8 0.2* 0-1 0.5 0-3 0.05* 0-0.5 0 1 Pits 420 | ESR 0 1 ELT 24h+ 9.2 10 30-48 B Av. 1 Av. 8-14 10 1E Ref. 96 10 180-620 1 5 10 1.2* 1 10 10 Pg | AF No. not given *X103/c.mm * in 12 hrs. ARTIODACTYLA 207 Goat Ref. 101 Survey Results 1 Test PT Av. Range 20.5 19-22 1 RW 8.0 1 PTT 49 RT KRT TT 1 I 1,|V 11 VII No. | 2 2 108 90-126 74 60-88 497 448-547 2 2 1 2 62 41-83 2 7.5 41 1 1 1 1 1 1 VIII 1000* 2 1 11 XII 680 1 1 XIII + 2 AT CR [TP 1 Av. ±SD 1 60 ±0.1 2 1 48-50 41 Range 12.6 420 1xlx 1M Av. Ref. 99 35-52 85 462 32.8 3 + 208 ARTIODACTYLA RUMINANTIA BOVOIDEA BOVIDAE CAPRINAE Ovis aries Domestic sheep Survey Results Ref. 4 Ref. 17 Ref. 92 I Test Av. Range No. \ Test Av. [Hb 12.9 10.0-16.6 20 \ Hb 12.0 [RBC 10.3 8.2-12.4 20 | RBC 12.0 8-16 |PCV 36.3 30-40 20 PCV 38 24-50 Retics 0.1 0-0.4 20 Retics 0 MCV 34.3 29.8-38.0 20 MCV 33 IMCH 12.7 10.6-14.6 20 1 MCH 10.7 9-12 [MCHC 34.2 31-41 20 1 MCHC 33 31-38 MCD 4.65 4.25-4.9 20 1 MCD 4.5 3.2-6.0 WBC 5.0 2.9-7.4 20 WBC 8.0 4-12 9.2 1.1-17.5 8.0 IN [L 43 18-73 20 N 30 10-50 24 11-47 3.0* 43 23-70 20 |L 62 40-75 68 41-83 5.0* |M 6 2-10 20 1M 2.5 0-6 2.5 0-13 0.5* 0.1-0.7 1 E 9 2-21 20 E B 0 20 ΓΒ Pits 284 109-579 20 Pits ESR 0.5 0-1 20 ESR ELT 144(K Pg 1.5 0.9-2.5 AF 19 ELT 6 Pg Range Av. Range 8-16 11.5 6.2-15.5 Av. Range 11.0 8-14 11.0 8-14 34 29-38 23-48 5-11 1 1.5-4.5 4-6 1 5 0-10 5 0-15 0.2* 0-0.5 1 0.5 0-3 0.5 0-3 0.05* 0-0.1 1 400 250-750 AF No. not given See also refs. 18-21 \ 100 Scottish h ill sh eep No. not given x 103/c.mm ARTIODACTYLA 209 Domestic sheep Survey Results Test Av. Range Ref. 61 No. j Test Range 14.7 12.5-16.5 117 67-162 1 291 132-456 1uv 21.4 10-40 15 11 VII 417 160-800 200 30 1 VIII 809 6 1IX 1xM 13.9 1(^20 6 | RW 8.4 7.0-12.5 10 RW PTT PT 45 30-64 10 | RT 98 70-150 10 RT I KRT 1 TT 83 72-112 9 1 KRT 11.7 8.0-23.0 7 297 190-429 30 26 16-34 I 1 V" 1 | VII | VIII 450-1000* 100(H 105 45-150 | 6 1 6 ,x 1X 1XIIM 1 1 1 1 XII 1 xiii 290 + 10 1 XIII | AT 238 4 | AT | CR | TP 11.4 1 TT 15 203-275 Av. 1 Av. FT PTT Ref. 94 210 4501650 82-350 32 13-72 36 7-80 140 1 1000 1 100 6 600 CR 6.15 5.73-6.66 _ 5 PF3 release 5 7(1) Contact activation index 53 Range 25-69 (8 animals) | TP 25 sheep 1 animal 210 ARTIODACTYLA RUMINANTI A BOVOIDEA BOVIDAE CAPRINAE Ovis musimon Mouflon Survey R esu Its Survey R esults Av. Range 1 Test Av. Range Hb 15.8 14.1-17.4 17 PT 15.7 14-18 11 RBC 14.2 11.6-20.4 17 1 RW 8.7 8-10 11 PCV 45.2 40-49 32 1 PTT 48 42-62 12 Retics 0.3 0-1.4 32 RT 96 86-112 12 MCV 31.8 22-37 17 1 KRT 91 86-98 12 MCH 11.1 10.2-13.0 17 1 TT 7.6 7-9 12 MCHC 34.5 33.0-37.4 17 1 I 180 113-288 34 4.35 4.34-4.36 2 Test 1 MCD 1 WBC | No. 1nv 1 6.9 3.9-9.2 32 N 37 15-48 32 L 57 49-80 32 1M 2 1-4 32 E 3 1-8 32 1IXx B 1 0-2 32 1 XI 650 492-884 32 1 XII 14 ! XIII 32 1 AT 1 Pits 1 ESR ELT 0 144G> 1 VII VIII Pg 1 CR | AF | TP No. 1 34 1 27 1 1000+ 1 90 1 Ί 5.0 1 | ARTIODACTYLA 211 RUMINANTIA BOVOIDEA BOVIDAE CAPRINAE Ovis tragelaphus Barbary sheep Survey R esu Its Survey R esults No. I \ Test Av. Range 1 Test Av. Range No. I Hb 13.4 12.4-13.9 6 1 PT 45 33-52 3 1 17.7 53 0 15.3-19.2 49-55 6 6 1 RW | 1 PTT 10.3 47 10-11 46-49 3 3 4 | | RT 76 70-90 3 | MCV 29.2 27.9-31.0 6 1 KRT 61 49-70 3 1 MCH 7.6 6.5-9.1 6 | TT 9.0 6-11 3 | MCHC 26.8 22.2-33.6 6 1 313 292-343 3 3.4 3.23-3.63 6 21 1 1 WBC 3.9 3.4-5.0 1 52 28-67 11 VII 700 1 NL 6 1 6 1 1 i 1vU 1 1 M 1B E 38 26-59 6 1 VIII 100O+ 2 8 6-13 6 1000+ 1 2 0-3 6 1IxX 35 1 1 0-3 6 Pits 286 266-306 4 XII 1 AT 1 RBC | PCV Retics | MCD | 1XI | ESR ! XIII 1 ELT 144(K 3 Pg | AF 7.6 1 CMH-15 | 1 22 407 + 190-640 6.4 5.0-7.0 2 3 1 CR | TP 6 1 212 References ARTIODACTYL 1. Holman, H. H. (1955). The blood picture of the cow. Brit. vet. J. 111,440. 2. Holman, H. H. (1956). Changes associated with age in the blood picture of calves and heifers. Brit. vet. J. 1 1 2 , 9 1 . 3. Greatorix, J. C. (1954). Studies on the haematology of calves from birth to one year of age. Brit. vet. J. 110, 120. 4. Schalm, O. W. (1967). Veterinary Haematology. Lea and Febiger, Philadelphia. 5. Dimock, W. W. and Thompson, M. C. (1906). Clinical examination of the blood of normal cattle. Am. vet. Ev. 30, 553. 6. Delaune, E. (1939). Observations on the bovine blood picture in health and under parasitism. Proc. Soc. exp. Biol. Med. 41, 482. 7. Reid, J. T., Ward, G. M. and Salsbury, R. L. (1948). Mineral metabolism studies in dairy cattle. IV. Effects of mineral supplementation of the prepartial diet upon the composition of the blood of cows and their calves at parturition. /. Nutr. 36, 75. 8. Norris, J. H. and Chamberlin, W. E. A chemical and histological investigation in Victoria (Australia) of the blood of cattle and sheep. Aust. J. exp. Biol med. Sci. 6,285. 9. Scarborough, R. A. (1931-33). The blood picture of normal laboratory animals. Yale J. Biol. Med. Pig 3, 547. Cattle, sheep, goats 4, 69. 10. Clawson, A. B. (1914). Some results of blood counting on cattle. Am. vet. Rev. 45,527. 11. Heyns, H. (1971). The effect of breed on the composition of the blood. /. agric. Sci., Camb. 76, 563. 12. Moberg, R. (1955). The white blood picture in sexually mature female cattle with special reference to sexual conditions. Thesis. Stockholm, Sweden. 13. Ryan, G. M. (1971). Blood values in cows. Erythrocytes. Res. vet. Med. 12, 572. 14. Ryan, G. M. (1971). Blood values in cows. Leucocytes. Res. vet. Sci. 12, 576. 15. Smith, I. M. (1959). The blood picture of normal Zebu cows in Uganda. Brit. vet. J. 115, 1. 16. Smith, I. M. (1959). The blood picture of Ankole longhorn cows. Brit. vet. J. 115, 27. 17. Holman, H. H. (1944). Studies on the haematology of sheep. I. The blood picture of healthy sheep. /. comp. Path. 54, 26. 18. Watson, D. F. (1953). Studies on the haemoglobin content of sheep blood in the Sierra of Peru. Am. J. vet. Res. 14,405. 19. Becker, D. E. and Smith, S. E. (1946). A chemical and morphological study of normal sheep blood. Cornell Vet. 36, 25. 20. Reda, H. and Hathout, A. F. (1957). The haematological examination of the blood of normal sheep. Brit. vet. J. 113, 251. 21. Upcott, D. H., Herbert, C. N. and Robbins, M. (1971). Erythrocyte and leucocyte parameters in newborn lambs. Res. Vet. Sci. 12, 474. 22. Britton, J. W. (1946). Changes in the blood constituents in diseases of Ruminants. Cornell Vet. 36, 25. 23. Grunsell, C. S. (1955). Seasonal variation in the blood and bone marrow of Scottish hill sheep. /. comp. Path. 65, 93. 24. Morag, M. and Robertson Smith, D. (1971). The day to day variations in certain blood values and in blood coagulation times of healthy ewes. Refuah vet. 28, 74. 25. Fraser, A. C. (1938). A study of the blood of pigs. Brit. vet. J. 94, 3. 26. Müller, E. R. (1961). Swine haematology from birth to maturity. II. Erythrocyte population, size and haemoglobin concentration. /. Anim. Sci. 20, 890. 27. McTaggart,H. S. and Rowntree, P. G. M. (1969). The haematology of 'minimal disease' in bacon pigs. A comparison with genetically-related, conventionally reared pigs. Brit. vet. J. 125,240. 28. Osborn, J. C. and Meredith, J. H. (1971). Haematological values of the normal weanling pig. Cornell Vet. 6 1 , 13. 29. Vaida, M. B., Vaghari, P. M. and Patel, B. M. (1970). Haematological constituents of the blood of goats. Indian vet. J. 47, 642. 30. Reda, H. (1951). The haematologic examination of normal blood of Egyptian buffaloes. Am. J. vet. Res. 12, 23. ARTIODACTYLA 213 31. Mastrangelo, P. (1971). Study of blood cell haemoglobin concentration in domestic animals. Note 5. Buffaloes. A eta. med. vet. Napoli 17, 115. 32. Nafez, E. S. and Anwar, A. (1954). Normal haematological values in the buffalo. Nature 1 7 4 , 6 1 1 . 33. Upcott, D. H. and Herbert, C. N. (1965). Some haematological data for red deer (Cervus elephas) in England. Vet. Ree. 17, 1348. 34. Bowman, L. G. and Sears, H. S. (1955). Erythrocyte values and alimentary canal pH values in mule deer. J. Mammal. 36, 474. 35. Rosen and Bischoff (1952). Quoted by Bowman,. L. G. and Sears, H. S. (1955). /. Mammal. 36, 474. 36. Teeri, A. E., Virchow, W., Colovos, N. F. and Greenley, F. (1958). Blood composition of white-tailed deer. /. Mammal. 39, 269. 37. Gibbs, H. C. (1960). Some haematological values for the barren ground Caribou. Canad. J. comp. Med. 24, 150. 38. Banerjee, S., Bhattacharjee, R. C. and Singh, T. I. (1962). Haematological studies in the normal adult Indian camel (Cam e lus dromedarius). Am. J. Physio I. 203, 1185. 39. Soni, B. K. and Aggarwala, A. C. (1958). Studies on the physiology of the camel (Camelus dromedarius). I. Cellular blood constituents. Indian vet. J. 35,209. 40. Kohli, R. N. (1963). Cellular micrometry of camel's blood. Indian vet. J. 40, 134. 4 1 . Ponder, E., Yeager, J. F. and Charipper, H. A. (1928). Haematology of the Camelidae. Zool. Sci. (NY. Zool. Soc.) 11, 1. 42. Kushner, H. F. (1938). Composition of the blood of camels in relation to working ability of these mammals. C.R. Acad. Sci. U.S.S.R. N.S. XVIII, 681. 43. Duke, K. L. (1963). Erythrocyte diameter in Tragulus javanicus, the chevrotain or mouse deer. Anat. Ree. 147, 239. 44. Turner, A. W. and Hodgetts, V. E. (1959). The dynamic red cell storage function of the spleen in sheep. I. Relationship of fluctuations of jugular haematocrit. Aust. J. exp. Biol. med. Sci. 37, 399. 45. Hall, F. G. Adaptations of mammals to high altitudes. /. Mammal. 18, 468. 46. Manresa, M. (1939). Hae itological studies in cattle in the Philipines. Philipine agriculturist 23, 588 (1934), 28, 79 (1939) and 28, 187 (1939). 47. Gulliver, G. (1840). London and Edinburgh Philosophical magazine. November, page 329. 48. Undritz, E., Betke, K. and Lehmann, H. (1960). Sickling phenomenon in deer. Nature 187, 333. 49. Kitchen, H., Putnam, F. W. and Taylor, W. J. (1964). Haemoglobin polymorphism; its relation to sickling of erythrocytes in white-tailed deer. Science, 144, 1237. 50. Whitlock, S. C. (1939). Studies on the blood of white-tailed deer. /. Wildl. Manag. 3, 14. 51. O'Roke, E. C. Sickle cell anaemia in deer. Proc. Soc. exp. Biol. Med. 34, 73$. 52. Moon, H. J. (1960). Tactoid formation in deer haemoglobin. Am. J. Physiol. 199, 190. 53. Whitton, C. F. (1967). Innocuous nature of sickling (pseudosickling) phenomenon in deer. Brit. J. Haemat. 13, 650. 54. Dougherty, R. W. (1939). Sickle cells in the blood of Western deer. /. Wildl. Manag. 3, 17. 55. Rees Evans, E. T. (1968). Sickling phenomenon in sheep. Nature, 217, 74. 56. Holman, H. H. and Dew, S. M. (1964). The blood picture of the goat. II. Changes in erythrocytic shape, size and number associated with age. Res. vet. Sci. 5,27'4. 57. Osbaldiston, G. W. (1971). Erythrocyte sedimentation studies in sheep, dogs and horses. Cornell vet. 6 1 , 386. 58. Bunce, S. A. (1954). Observations on the blood sedimentation rate and packed cell volume of some domestic farm animals. Brit. vet. J. 110, 322. 59. Ranken, J. D. (1955). The E.S.R. in normal cattle and cattle infected with Mycobacterium johnei. Brit. vet. J. Ill, 480. 60. Perk, K. (1963). The camel's erythrocyte. Nature, 200, 272. 61. Gajewski, J. and Povar, M. L. (1971). Blood coagulation values in sheep. Am. J. vet. Res. 32, 405. 62. Malhotra, O. P. and Carter, J. R. (1968). Modified method for the preparation of 214 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. ARTIODACTYLA purified bovine prothrombin of high specific activity. Thromb. Diath. haemorrh. XIX,179. Malhotra, O. P. and Carter, J. R. (1966). A simple method of preparing substrate for factor X assay. Fed. Proc. 25, 256. Straughn, W. and Wagner, R. H. (1966). A simple method of preparing fibrinogen. Thromb. Diath. haemorrh. XVI, 198. Bidwell, E. R. and Dike, G. W. R. (1966). Therapeutic Materials in Treatment of Haemophilia and other Coagulation Disorders, (Eds. R. Biggs and R. G. Macfarlane). Blackwell Scientific Publications, Oxford. Blomback, B. and Blomback, M. (1956). Purification of human and bovine fibrinogen. Ark. kemi. 10,415. Henschen, A. (1964). S-sulpho derivatives of fibrinogen and fibrin: preparations and general properties. Ark. kemi. 22, 1. Cartwright, T. and Kekwick, R. G. O. (1971). A comparative study of human, cow, pig and sheep fibrinogen. Biochem. biophys. Acta. 236, 550. Irsigler, K., Lechner, K. and Deutsch, E. (1965). Studies on tissue thromboplastin. II. Species specificity. Thromb. Diath. haemorrh. IX, 18. Schofield, F. W. (1924). Damaged sweet clover; the cause of a new disease in cattle simulating haemorrhagic septicaemia and blackleg. J. Am. vet. med. Ass. 64, 553. Link, K. P. ( 1959). The discovery of dicoumarol and its sequels. Circulation 19, 97. Bogart, R. and Muhrer, M. E. (1942). The inheritance of a haemophilia-like condition in swine./. Hered. 33, 59. Brown, R. C , Cole, K. W., Cornell, C. N. and Brinkhouse, K. M. (1968). Haemophilia­ like disease in swine: cytogenetic studies. Am. J. vet. Res. 29, 1491. Chan, J. Y. S., Owen, C. A., Bowie, E. J., Didisheim, P., Thompson, H. H., Muhrer, M. E. and Zollman, P. E. (1968). Von Willebrand's disease 'simulating factor' in porcine plasma. Am. J. Physiol. 214, 1219. Cornell, C. N. and Muhrer, M. E. (1964). Coagulation factors in normal and haemophiliatype swine. Am. J. Physiol. 206, 926. Hogan, A. G., Muhrer, M. E. and Bogart, R. (1941). A haemophilia-like disease in swine. Proc. Soc. exp. Biol. 48, 217. Mertz, E. T. (1942). The anomaly of a normal Duke's and a very prolonged saline bleeding time in swine suffering from an inherited bleeding disease. Am. J. Physiol. 136,360. Muhrer, M. E., Lechler, E., Cornell, C. N. and Kirkland, J. L. (1965). Antihaemophilic factor levels in bleeder swine following infusions of plasma and serum. Am. J. Physiol. 208, 508. Cornell, C. N., Copper, R. G., Kahn, R. A. and Garb, S. (1969). Platelet adhesiveness in normal and bleeder swine as measured in a celite system. Am. J. Physiol. 216, 1170. Hammerton, A. E. (1943). Report on the deaths occurring in the Society's gardens during 1942. Proc zool. Soc. Lond. 113, 154. Luedke, A. J., Browne, J. G., Jochim, M. M. and Doyle, C. (1964). Clinical and pathologic features of bluetongue in sheep. Am. J. vet. Res. 25, 963. Heuschele, W. P. and Barber, T. L. (1963). Haematologic studies of Rinderpestinfected swine. Canad. J. comp. Med. 27, 26. Easterday, B. C , Murphy, L. C. and Bennett, D. G. (1962). Experimental rift valley fever in lambs and sheep. Am. J. vet. Res. 23, 1224. Storz, J., Kaneko, J. J. and Wada, E. M. (1962). The leucocytic response of cows and calves to acute infection with an agent of the Psittacosis — lymphogranuloma group. Am. J. vet. Res. 23, 1200. Baker, J. A., York, C. J., Gillespie, J. H. and Mitchell, G. B. (1954). Virus diarrhea in cattle. Am. J. vet. Res. 15, 525. Adval, S. C. and Gangwar, P. C. (1971). Blood coagulation in buffaloes. Indian vet. J. 48, 1123. Patel,B. M., Vaikya, M. B., Thakore, V. R. and Shukla, P. C. (1971). Seasonal variation in certain biochemical and haematological constituents in the blood of Surti buffaloes. Indian J. Anim. Sci. 4 1 , 537. Kraft, H. (1957). Untersuchungen über das Blutbild der Camelen. Tierarztl. Wochenschrift 70, 371. ARTIODACTYLA 215 89. Nirmalan, G. and Nair, S. G. (1971). Influence of certain physiological factors on erythrocyte count and haemoglobin concentration of Sindhi cattle. Kerala J. vet. Sci. 2,47. 90. Alencar, R. A., de Fo Penha, A. M. and Cintra, L. C. (1971). Blood picture of acclimatized Dutch Red-and-white cattle. Biologico 37, 272. 91. More, T. K., Chattopadhyay, S. K., Mathur, P. B. and Roy, A. (1971). Certain haematological and biochemical attributes during parturition and lactation of Malpura and Chokla ewes. Indian J. Anim. Sci. 4 1 , 580. 92. Archer, R. K. (1965). Haematological Techniques for Use on Animals. Blackwell Scientific Publications, Oxford. 93. Osbaldiston, G. W., Stowe, E. C. and Griffith, P. R. (1970). Blood coagulation: comparative studies in dogs, cats, horses and cattle. Brit. vet. J. 126, 512. 94. Didisheim, P., Hattori, K. and Lewis, J. H. (1959). Haematologic and coagulation studies in various animal species. /. Lab. clin. Med. 53, 866. 95. Soliman, M. K. and Shaker, M. (1967). Cytological and biochemical studies on the blood of adult she camels. Indian vet. J. 44, 989. 96. Bhalla, N. P., Bhalla, R. C. and Sharma, G. L. (1966). Haematological values in healthy hill goats. Indian J. vet. Sci. 36, 33. 97. Vogel, J. and Vogel, L. (1967). Some haematological indices of the buffalo (Bubulus bubalis). Veterinaria Rio de Jan. 20, 166. 98. Gautam, O. P. and Buttav, H. S. (1966). Normal haematological values in buffalo. /. res. Louisiana 3, 76. 99. Mason, R. G. and Read, M. S. (1971). Some species differences in fibrinolysis and blood coagulation./, biomed. Res. 5, 121. 100. Jones, W. H., Hughes, C. D., Swenson, M. J. and Underbjerg, G. K. L. (1956). Plasma prothrombin time and haematocrit values of blood of dairy cattle. Proc. Soc. exp. Biol. 91, 14. 101. Breukink, H. J., Hart, H., v. Arkel, C , Velden, N. A. and Watering, C. C. (1971). Congenital afibrinogenaemia in goats. Zbl. vet. Med. 19, 661. 102. Astrup, T. and Buluk, K. (1963). Thromboplastic and fibrinolytic activities in blood vessels of animals. Circ. Res. 13, 253. 103. Bentink-Smith, J., Roberts, D. J. and Katz, E. M. (1960). A bleeding disease of newborn calves. Cornell Vet. 50, 15. 104. Fiennes, R. N. T-W- (1952). Diurnal variation in the blood picture of cattle. Nature, (Lond.) 170,934. 105. Kociba, G. J. (1973). Plasma thromboplastin antecedent (Factor XI) deficiency in the cow. Proc. IVth Internat. Cong. Thrombosis and Haemostatis, Vienna 1973, p.436. Chapter 6 OTHER MAMMALIAN ORDERS This chapter includes results from animals of several zoological orders, presented without detailed comments because of the small number of individuals and species which have been examined. The information is included mainly for general interest and for comparative purposes. It may also serve to give some indication of the haematological pattern to be expected in less easily accessible related animals as, on the whole, the blood picture follows zoological classification. Unusual features of special interest have also been pointed out. 217 218 OTHER MAMMALIAN ORDERS Order: MONOTREMATA Blood counts on a small series of echidnas (spiny anteaters) have been included because of the primitive nature of these mammals. The red cells are disc-shaped and biconcave and do not contain nuclei although a small number of Howell Jolly bodies are present [1]. The findings on one Bruijn's echidna are remarkable for the high mean red cell volume and, although this animal appeared clinically normal at the time of obtaining the blood sample, the possibility that it was suffering from macrocytic anaemia should be excluded before speculating on the significance of this finding. In each of the three species of echidna examined the white count is relatively high. Apart from an increased neutrophil nuclear lobe count there are no remarkable features about the white cells. The platelets are large and, on stained films appear either as very elongated, spindle-shaped structures with a tendency to intertwine together or as normal platelets with spreading and aggregating activity. The possibility that two types of haemostatic cells are present in these animals, one type perhaps forming a link between the spindle-shaped thrombocytes of non-mammalian vertebrates and regular mammalian platelets is of great interest and requires further study. Blood coagulation in echidnas has been reported as being comparatively rapid [2] and this has been confirmed by limited tests on one Australian echidna in the present survey. OTHER MAMMALIAN ORDERS 219 MONOTREMATA TACHYGLOSSIDAE Tachyglossus setosus (Tasmanian echidna) and 71 aculeatus (Australian echidna) Tasmanian echidna Survey R esu Its | Test \ Hb Av. 11.2 No. | Australian echidna Survey R esuIts | Test \ Hb Av. Range 11.5 11.1-11.8 RBC 5.9 1 PCV 35 1 PCV 32.3 1 Retics 0 | Retics 0 RBC 5.25 No. | 2 1 5.1-5.4 2 30-34.5 2 1 2 1 1 MCV 59 1 MCV 60.8 58.3-63.4 2 MCH 20 1 MCH 21.55 21.5-21.6 2 1 MCHC 33 | MCHC 35.6 34.2-37.0 2 16.75 16.7-16.8 2 1 MCD WBC N L | MCD 14.9 WBC 64 N L 1M 34 E 1 B 0 1 Pits 215 ESR 4.5 1 1 1 M 1B E 55.5 54-57 2 42 40-44 2 2.5 2-3 2 1 Pits 235 1 ESR ELT 1 ELT Pg AF [ AF 0 2 0 2 10 Pg A few red cells in each species contain Howell Jolly bodies. For blood coagulation of echidna, see ref. 2. 234-236 2 1 OTHER MAMMALIAN ORDERS MONOTREMATA TACHYGLOSSIDAE Zaglossus bruijni Bruijn's echidna Survey Results 1 Test Hb Av. Survey Results No. | 10.6 7VcT| Test Av. PT 44 1 30 1 32.5 1 1 206 1 1 RBC 1.5 RW PCV 29 PTT Re tics 0.2 RT MCV 198 KRT MCH 72 TT 36.5 I MCD 8.3 II 37 1 WBC 14.0 V 760 î N 54 vu L 39 VIII 1000+ î 1 M 2 IX 5 X 15 î 1 0 XI MCHC [E B Pits XII 195 ESR ELT XIII 24h 1 AT Pg CR AF TP A small proportion of the red cells contain Howell Jolly bodies. 1 221 OTHER MAMMALIAN ORDERS Order: MARSUPIALIA Some information on the haematology of marsupials is available from the literature [3-7]. This does not always support the finding in the present survey of high haemoglobins and packed cell volumes in many animals of this order [4, 6]. The red cells often contain Ho well Jolly bodies and occasionally nucleated red cells are found in the peripheral blood of normal animals. Reticulocytes are common. The white count of Bennet's Wallaby is low with the neutrophil as the predominant cell in adult animals. The neutrophyl/lymphocyte ratio is reversed in immature animals. Neutrophil nuclei are hyperlobulated compared with man [5]. Results on a few animals suggest that the platelet count may be below the normal human range. These animals however have an active coagulation mechanism [6, 8] with rapid generation of intrinsic prothrombin activator associated with high levels of fibrinogen and factors V and VIIL.The prothrombin time with human tissue factor is prolonged [6, 8] and assayed levels of factors II and X are very low. It should be restated that these findings may be explained by lack of reactivity in mixed clotting systems, although, in marsupials, unlike other mammals in which factors II, VII and X react poorly with nonspecific tissue factor, a proportional prolongation of the clotting time with Russell's viper venom is also found. This may indicate a true comparative deficiency of factor II and/or X although no bleeding tendency is present. The fibrinolytic mechanism of the few marsupials in which it has been tested is moderately active, and plasminogen is activated by human urokinase and by streptokinase if 'proactivator' is provided. OTHER MAMMALIAN ORDERS 222 MARSUPIALIA PHALANGEROIDEA MACROPODIDAE Protemnodon rufogrisea Bennet's wallaby Survey Results \ Test Range Av. Survey No. Ί Results Av. Test No. 17.5 14-20 IRBC 5.8 4.6-6.9 15 1 IPT [RW 29 1 1 i 1 PCV 52 43-58 15 1 IPTT 37 1 Retics 3.6 0-8 15 1 IRT 71 1 IMCV 90.3 83-98 15 1 IKRT 47 1 IMCH 32.9 27-35 15 ITT 6.0 1 IMCHC 34.1 30-38 I 1270 1 II <1 1 |v \\\b 15 80 7.37 7.34-7.40 15 2 |WBC 4.5 2.4-6.6 15 IN 59 31-74 15 | VII |L 37 19-65 15 | VIII 100O* 1 IM E 2 0-7 15 | IX 100 1 1.5 0-4 15 |x <1 1 + 1 5.60 i IMCD I XI 0.5 0-1 15 Ipits 210 118-302 15 XII IESR 4 0-12 6 1 XIII IELT |pg 240 1 IAT |B 1 IcR | TP [AF Howell Jolly bodies present in a small proportion of the red cells. Occasional nucleated red cells seen. Neutrophil Ilymphocyte ratio reversed in 3 immature (6 month old) animals examined. Note low factor II and X activity. For coagulation studies in marsupials, see ref. 8. | OTHER MAMMALIAN ORDERS MARSUPIALIA PHALANGEROIDEA MACROPODIDAE Macropus agilis x M. ualabatus Agile x swamp wallaby Survey R esults 1 Test Av. No. Survey R esults | Test Av. No. | 1 Hb 17.9 68 i IRBC 6.8 1 RW 27 1 IPCV 60 1 FIT 37 1 1 Retics 0.6 1 RT 77 1 IMCV 88.5 KRT 68 1 IMCH 26.4 |MCHC PT 6.0 1 | I 343 1 12 1 100(H 1 TT 29.3 |WBC 3.4 |N 25 1 V" 1 1 VII |L 66 | VIII 1000+ 1 9 IX 22 1 0 1 + 1 |MCD M IE 1X 0 |B 1 Pits 0 XI 245 1 XII XIII IESR IELT |pg |AF 240 1 1 AT CR | TP 4.05 _ i Some red cells contained Howell Jolly bodies. Note low factor II activity and no detectable factor X. OTHER MAMMALIAN ORDERS MARSUPIALIA PHALANGEROIDEA MACROPODIDAE Dendrolagus goodfellowi Goodfellow's tree kangaroo Survey Results | Test Av. Hb 17.5 Survey Results No. 1 \ Test Av. 1 PT 80 1 RBC 6.1 1 RW 32 PCV 50 1 PTT 53 1 RT 85 | Retics 0.5 1 MCV 81.4 1 KRT 1 MCH 28.5 1 TT 1 MCHC 35.0 | MCD WBC 1NL 1 1 M 1BE 762 1Π V 860 1 1 VII 23 | VIII 14 IX 4 1x 33 1.5 1 + 1 1 x* 0 1 xii 1 Pits 1 ESR 7.0 | I 59 6.8 No. 0 1 1 XIII 1 ELT AT Pg 1 AF 1 CR | TP Red cells occasionally contain Howell Jolly bodies. Note low factor X activity. OTHER MAMMALIAN ORDERS 225 MARSUPIALIA PHALANGEROIDEA MACROPODIDAE Setonix brachyurus Quokka Survey Results 1 Test Av. Survey Results No. | 1 Test Av. Hb 15.6 PT 30 IRBC 7.3 1 RW 21 [PCV 45 1 PTT 35 1 Retics 0 1 RT 118 MCV 61.5 1 KRT 25 MCH 21.3 | |MCHC 34.4 IT I |\VBC 13.0 |N 86 |L 12 | VIII M 1 IX E 1 I VII 1XIx B 0 Ipits 427 1 xii |ESR 12 1 XIII ELT 960 1 AT 6.5 1 CR Pg [AF 6.0 1020 1 VΠ 1 1 |MCD No. 1 | TP + 1 OTHER MAMMALIAN ORDERS MARSUPIALIA PHALANGEROIDEA VOMBATIDAE Vombatus ursinus Common wombat Survey R esults | Test Hb No. | [ Test Av. \ PT 20 RW 5.8 PCV 43 1 PTT 39 Retics 0.4 1 RT 65 26 MCV 74.0 1 KRT MCH 23.3 1 TT MCHC 31.0 | I 590 1000+ WBC 8.8 N 10 1nv 11 VII 1 VIII 5.49 L 76 M 13 E 1 B 0 No. 1 14.5 RBC MCD I Av. 13.5 Survey R esults 19 1 1 1x,x 1 XI Pits 148 1 XII ESR 8 [xm ELT 1 AT Pg 1 CR AF | TP + 6.15 1 _j | 227 OTHER MAMMALIAN ORDERS Order: EDENTATA Results of a blood count on one clinically normal animal of the species Myrmecophaga tridactyla (giant anteater) have been included because of the rarity of opportunity in obtaining data of this species. The large MCV in this animal confirms the report of Gulliver [88]. The blood coagulation and fibrinolytic mechanisms of Edentates has not been studied, but plasminogen of the giant anteater is activated by urokinase and by streptokinase in the presence of human 'proactivator'. CMH-16 228 OTHER MAMMALIAN ORDERS EDENTATA MYRMFXOPHAGIDAE Myrmecophaga tridactyla Giant ant-eater Survey Results Test Hb A v. 13.5 1 RBC 3.0 1 pcv 50 | Retics 0.4 | MCV 162.0 1 MCH 49.0 1 MCHC 30.3 1 MCD 8.24 1 WBC 7.1 1N 67 1ML 1BE 1Pits 24 6 2 1 ESR [ELT Pg 1 AF See also frontispiece. No. 229 OTHER MAMMALIAN ORDERS Order: LAGOMORPHA The only species of this order for which haematological data is available is the domestic rabbit (Oryctolagus cuniculus) [9-13, 87]. Rabbit blood is unusual in that the cells compar­ able to neutrophils have uncharacteristic staining properties and are known as pseudoeosinophils or amphophils. These cells, which comprise 30-60% of the total white cells, have polymorphous nuclei and cytoplasm which stains diffusely pink with Romanowski stains, apparently as a result of the fusion or aggregation of many small acidophilic granules, with a variable number of larger eosinophilic granules superimposed on the pink background [14]. These cells are easily distinguished from true eosinophils which have larger, more regular spherical granules. Similar cells are found in some rodents. The rabbit is also unique amongst laboratory animals in the relatively large numbers of basophils present in the circulating blood. The blood count of this species varies slightly with age and breed and diurnal variation in the white count has also been reported [14]. Reticulocytes and polychromatic red cells are common. Rabbit platelets have been studied extensively. The total count is often greater than 4x 106 perc.mm. Platelets are rapidly aggregated by ADP [38, 40, 59, 60] and collagen [38] but not by adrenaline or 5-hydroxytryptamine [38, 40]. ADP-induced aggregation is inhibited by adenosine [38]. The plasma of rabbits has a higher ability than that of man to inactivate ADP [38]. The blood coagulation mechanism of rabbits has also been studied in some detail. The extrinsic pathway of prothrombin conversion is activated rapidly by human tissue factor and rabbit brain thromboplastin reacts well with human plasma [15]. This fact is utilised in the commercial production of thromboplastins made from rabbit brain used mainly in laboratory tests for the control of anticoagulant therapy in man. Intrinsic thromboplastin generation is rapid in New Zealand white rabbits but slower in a few lop-ears which have been tested. This difference may be a function of factor VIII activity which is higher in New Zealand whites than in lop-ears. The euglobulin lysis time is variable in rabbits [54], possibly as a result of individual differences in response to the stress associated with handling. Fibrinoly tic inhibitors are more active in rabbit than in human blood [62]. Rabbit plasminogen is activated by human urokinase and by streptokinase without addition of proactivator. Many of the original experiments on lysis of intravascular thrombi by streptokinase were carried out on this species [16]. OTHER MAMMALIAN ORDERS 230 LAGOMORPHA LEPORIDAE Oryctolagus cuniculus Domestic rabbit (New Zealand White) Survey Results Ref. 11 \ Test Av. Range No. 1 Hb 11.2 9.6-13.1 20 RBC 5.1 4.5-5.8 20 1 PCV 36.5 31-41 20 1 20 1 | Retics 2.6 0.8-5.0 MCV 72.2 61.9-82.2 20 1 MCH 22.3 18.0-27.2 20 1 MCHC 30.2 27.8-31.8 20 1 Av. 5.6 Range 4.5-7.0 Ref. 12 Av. 5.9 Range/SD ±7.8 Ref. 13 Av. ±SD 1 11.8 ±0.55 1 5.4 ±0.55 2.62 ±1.22 ±1.88 MCD 6.30 6.06-6.59 10 1 5.7 5-8 WBC 6.4 3.1-9.2 20 7.9 4-13 10.7 5.8-15.5 7.07 IN 49.5* 38-66 20 43* 39* ±10.8 37.8* L 38 26-51 20 42 56 ±13.3 53 ± 14 M 8.5 4-16 20 9 1.5 ±1.4 E 1.5 0-3 20 2 1.1 ±0.8 B 2.5 1-6 20 3.6 ±2.1 386 230-690 20 743 ± 218 Pits IESR |ELT 0-1.5 20 17a24h+ 10 0.75 Pg |AF *Pseudoeosinoph Us See also refs. 9 & 10, 20, 87. 1 4 1 540 200-1000 ____ ' ± 13.88J OTHER MAMMALIAN ORDERS 231 Domestic rabbit New Zealand whites Survey Results Lop-ears Survey Results Ref. 17 Ref. 18 Av. Av. 1 Test Av. Range No. |PT 15.5 9-25 12 |RW 9.3 7.5-10.0 8 |PTT 53 32-90 26 RT 104 85-155 11 |KRT 42 30-55 10 ITT 8.3 5-11 14 I 317 247-462 11 143 1 II 30 19-70 5 95 1 500-1000+ 9 2000 V Av. 14.2 1 Range No. 11-26 7 1 73 66-95 12 1 117 110-125 2 1 96 80-120 12 1 8.0 7.5-8.5 2 1 116 320 VII VIII 315 1000+ 7 130 IX 220 100-520 24 X 480 350-620 5 1 110-160 4 1 XI XII 430 2 XIII + 5 AT 312 CR 37 ^ΓΡ 5.74 260-365 | 300 1 100 Ί 143 1 4 1 + 2 1 4.96-6.62 Contact activation index 65 Range 51-77 (5 animals) 5 J ^JJ.55 J.2-3.85 3 1 No = 6 No = 3 232 OTHER MAMMALIAN ORDERS Order: RODENT1A The order Rodentia is divided into three suborders, the Sciuromorpha (squirrels, marmots, chipmunks), the Myomorpha (rats and mice) and the Hystricomorpha (porcupines, cavies, agoutis etc.). Rodents are world-wide in distribution and highly successful with regard to numbers of species and individuals. They are highly adaptable and thus inhabit a wide variety of different environments; this variety is reflected to some extent in their haematology. Rats, mice, guinea pigs and hamsters are widely used as laboratory animals and there exists a large and diffuse literature on their haematology [9-11, 18-32, 66, 87]. These species have not been studied in great detail in the present survey; results on a small number of animals have been included for the sake of general interest but it should be emphasised that their haematological parameters can be influenced by time and site of obtaining the blood sample, age, sex, anaesthetic or handling techniques, temperature, stress [65] and also varies in different strains [14, 23]. Some differences have even been reported in rats of the same strain obtained from different suppliers [29]. Thus, reported normal values cannot take the place of experimental controls. The red cells of rats, mice and hamsters have relatively short half-lives [14] and polychromatic cells, reticulocytes and cells containing Howell Jolly bodies are common. Reticulocytes often occur in clumps on stained films. The neutrophils of laboratory rodents also warrant some comment. The nucleus is often without the definite lobulation usually seen and horse-shoe, sausage-shaped or ring (doughnut) forms are present. This finding is applicable only to myomorph rodents; hystricomorphs have neutrophils with nuclei which are hyperlobulated compared with man. In guinea pigs, like rabbits, the neutrophil is replaced by the pseudoeosinophil or amphophil. These cells, which are easily distinguished from true eosinophils, have a number of spherical acidophilic granules in their cytoplasm, usually less distinctive than those seen in rabbit pseudoeosinophils, and smaller and less numerous than those of true eosinophils. In the present survey, similar cells have been found in all other hystricomorph rodents examined, the most extreme example of eosinophilic granulation occurring in the Capybara. Guinea pig lymphocytes are of interest for the occurrence in a variable number of large lymphocytes of Kurloff bodies. These stain diffusely red or appear vacuole-like with reddish granulation [87]. They are rare in immature animals and are apparently influenced by sex hormones [58]. These inclusions have not yet been observed in other rodent species. In the present survey blood counts have also been carried out on a few less commonly available rodents. The hystricomorphs tested are notable for the apparent wide species variation found, particularly in the size and number of red cells. The Capybara, which is the largest living rodent, also apparently has the largest red cells of animals in this group. A sickling tendency has been observed in animals of this species, the mechanism of which has not yet been investigated. Experimental studies on platelet behaviour and blood coagulation in rats and guinea pigs provide some basic information about the haemostatic mechanism of rodents. Platelets are numerous in rodents, reported counts sometimes being greater than 1 x 106 per c.mm of blood [14]. Rat platelets are moderately adhesive on glass surfaces [34, 36] and rat and guinea pig platelets are aggregated rapidly and completely by ADP [36-39]. Unlike human platelets, aggregation does not occur with adrenaline [38, 39], and the ADP reaction is not inhibited by adenosine [36, 39]. The breakdown of ADP by rat and guinea pig plasma is more rapid than in man [37-41]. An inherited platelet storage pool disease, characterised by a mild haemorrhagic diathesis, has been described in Fawn-hooded rats [45]. Data obtained in the present survey together with information from other authors OTHER MAMMALIAN ORDERS 233 suggests that the clotting mechanism is active in rodents and that levels of clotting factors are equal to or greater than those of man. [42-45] Extrinsic prothrombin activation with human brain extract is rapid in rats, mice, hamsters and some hystricomorphs but prolonged in guinea pigs and porcupines. The whole blood clotting time [46, 47] but not the prothrombin time [48] is shortened by stress in rats and in this species exericse and adrenaline injection produce no measurable increase in factor VIII activity [49]. The clotting time of hibernating hamsters [50] and ground squirrels [63] is prolonged and a correlation between clotting time and population density has been reported in the vole, Micro tus californicus. [51]. Rodents are particularly susceptible to the action of coumarin and indanedione drugs which accumulate in the tissues and cause severe depression of the vitamin K-dependent clotting factors. This has led to the use of warfarin as a rat poison. The blood fibrinolytic mechanism is active in those rodents in which it has been examined [52-57], particularly in the guinea pig [56]. The measurable level of circulating plasminogen activator is highly dependent on tiu; jthod used [52]. Plasminogen of rodents is activated directly by human urokinase but requires the addition of human proactivator for activation by streptokinase. OTHER MAMMALIAN ORDERS RODENTIA SCIUROMORPHA SCIUROIDEA SCIURIDAE Sciurus sp. Tree squirrel Survey Results 1 Test ' A v. 1 Hb 12.2 | RBC 4.4 1 pcv 40 | Retics 0.6 | MCV 91.5 1 MCH 27.5 | MCHC 29.8 1 MCD 1 WBC 2.2 1 NL 32 1| M 1BE 65 3 0 11 Pits 372 |ESR 1 1 ELT Pg | AF 0 No. 1 OTHER MAMMALIAN ORDERS RODENTIA MYOMORPHA MUROIDEA CRICETIDAE Lemmus sp. Lemming Survey Results | Test A v. Range No. 1 | Hb 15.1 1 | | RBC 10.5 i | 39 i | | MCV 37.1 1 | | MCH 14.4 1 | 1 MCHC 1 MCD 39.6 i 1 PCV Re tics | WBC 8.9 IN 62 54-79 3 1 35.5 20-42 3 1 1 1-2 3 1.5 1-2 3 L 1 1E | M B 1 Pits 1 ESR | ELT Pg | AF 0 1 3 | OTHER MAMMALÌAN ORDERS 236 RODENTIA MYOMORPHA MUROIDEA CRICETIDAE Mesocricetus aura tus Golden hamster Survey Results Test Av. Range Ref 9 Range Av. Av. 15-20 17.4 17.6 7.2 7.5 16.2 14.9-18.0 RBC 7.7 7.1-8.5 10 5.0-9.2 PCV 49 44-51 10 47.4 1.7 1.0-2.4 10 MCV 62.4 59-67 10 MCH 21.0 19.8-23.0 10 MCHC 33.3 31.2-34.9 10 Retics Ref. 24 No. ] 10 Hb Ref. 10 Ref. 25 ±SD ± i ± 0.5 Av. ±SD^ 15.5 ±4.1 7.1 ±1.7 41-53 46.2 5.77 5.57-6.04 10 1 6.2-7.0 6.7 4.9-9.8 10 8.5-10.0 7.6-8.4 8.56 ± 1.54 5.24 ±1.2 |N 26.4 20-40 10 16-29 28 29 ±11 20 ± 6 L ±11.9 MCD IWBC 61.4 53-70 10 68-81 62 67.9 61 ±7.5 M 9.5 5-17 10 0-25 2 2.4 3 ±0.5 E 2.7 1-6 10 0.7-2.8 1 0.7 1.8 ±0.2 B 0 10 0 1 0 0 Pits 370 ESR 0 1 ELT Pg | AF See also ref 87. 329-451 902 10 10 8-20h 4 | ±50 237 OTHER MAMMALIAN ORDERS Golden hamster Survey Results Test 1 PT Av. | RW 9.5 1 FIT 85 1 1 1 1 103 RT KRT TT I ~No. 1 13.0 39 17.0 1πV 1 1 VII | VIII 1ιχ X 11Mxu Ixiii 1 AT 1 CR 1 TP For blood coagulation in hamsters, see refs. 25 & 50. OTHER MAMMALIAN ORDERS 238 RODENTIA MYOMORPHA MUROIDEA CRICETIDAE Gerbillus unguiculatus Gerbil Survey Results 1 Test Ref. 30 Av. No. 1 4.0 1 1 Hb RBC Ref. 30 Test A v. Range Av. Hb 15.9 15.2-16.8 15.0 14.4-15.6 1 46.8 44-48 1 RBC PCV 1 PCV Retics | Retics Range 8.85* 7.9-10.0 49.2 46-52 MCV 1 MCV 54.5* 46-60 1 MCH 1 MCH 17.5* 16.1-19.4 MCHC 1 MCHC 32.1* 30.6-33.3 1 WBC 13.5 6.5-21.6 8.7 1NL 13.9 2-23 23.4 7-41 84.8 73-97 74.8 58-92 1 MCD | MCD WBC 8.0 N 57 L 1 1M 1 BE 1 | Pits 42 0 0.5 0.5 1 | M 0.3* 0-3 E 1.2* 0-4 0.05* 0-1 1 B 7.5-10.9 Pits ESR 1 ESR | ELT | ELT Pg Pg 1 AF | AF \ Males Females * Males & females No. = 20 OTHER MAMMALIAN ORDERS 239 RODENTIA MYOMORPHA MUROIDEA CRICETIDAE Ondatra s p. Muskrat Ref. 33 Test A v. Range \ Hb 13.6 6.6-19.81 1 RBC 6.4 4.3-8.0 1 50 24-68 80 65-119 1 WBC 7.5 3.3-25.0 1 1 NL 70 33-93 1 25 5-46 1 PCV Retics | MCV MCH 1 MCHC 1 MCD 1 | M 1BE 11 Pits 2.8 0-10 0.6 0-2.5 1.66 0-15 1 ESR ELT Pg | AF No. = 71 OTHER MAMMALIAN ORDERS 240 RODENTIA MYOMORPHA MUROIDEA MURIDAE Rattus norvegicus Norway rat Survey Results Ref. 9 \ Test Av. Range No. j Av. Range Hb 13.6 12.4-14.7 10 14.0 10.8-17.5 RBC 6.8 6.1-7.8 10 8.5 7.4-9.6 PCV 41.7 40-43 10 45 35-51 | Retics 3.9 1.2-6.2 10 MCV 61.8 53-69 10 MCH 20.1 MCHC MCD 32.2 Ref. 11 Av. Range Ref. 21 Av. 14.3 8.5 8.8 17.6-22.2 10 29.7-33.9 6.52 6.38-6.71 10 WBC 6.6 4.5-11.0 10 15.0 6.4-26.2 11.6 8-15 N 20 13-36 10 30 12-46 27 15-40 24 L 71 54-83 10 67 53-83 68 50-80 68 M 8 4-12 10 5 1-7 5.3 2-7 6 E 1 0-3 10 2 0-3.4 2 0-4 2 B 0 10 0.1 0-1 0.8 0-1.5 0.01 10 Pits 459 393-561 10 ESR 0.1 0-0.5 10 120-1200 6 ELT 6.34 6.3 5.8-6.8 15.5 0.7-1.8 Pg AF Wistar strain See also refs. 10,14, 20, 29, 31,87. 1036 rats OTHER MAMMALIAN ORDERS 241 Norway rat Survey Results [ Test A v. Range [ PT 14.0 11.5-15.0 | RW 8.4 7-10 PTT 42 30-50 | RT 84 70-90 1 KRT 38 31-50 | TT 9.6 8.5-11.0 No. ~~| 12 12 12 12 12 12 1 1 1 1 1 1 |I 1vΠ 92 76-99 11 VII 370 155-600 7 1 Vili 450 300-1000 10 1XI 170 120-200 7 122 120-125 2 1 XII 420 370-460 2 71 ,χ 1x | XIII 1 AT 1 CR [TP 6.26 1J PF3 release 70, range 66-74 (2 animals) PF3 total 124, range 119-129 (2 animals) For fibrinolysis in rats, see ref. 52. 242 OTHER MAMMALIAN ORDERS RODENTIA MYOMORPHA MUROIDEA MURIDAE Mus musculus House m o u s e (albino) Survey Results Ref. 9 A v. Range No. 1 Av. Range 15.0 13-16 10 15.0 12-17 RBC 9.0 7.1-10.0 10 9.2 5.5-13.9 PCV 47.4 44-52 10 \ Test Hb 4.2 1-11 52.9 48-62 1 MCH 16.7 14.9-19.6 MCHC 31.2 Retics MCV MCD 29-33 5.41 5.12-5.66 WBC 7.8 4.0-12.8 N 17 6-29 1 Ref. 10 Ref. 31 Av. Av. Range \ 14.5 15.0 10-20 9.2 9.0 42 40 10 10 1 10 10 10 1 10 1 14.0 7-32 7-8 8.0 10 20.6 8-58 25.8 2.0* 36-90 64.7 6.0* L 77 68-90 10 66.6 M 5 1-7 10 5.7 0.7-14 7 1.0* E 1 10 1 2.6 0-15 2 0.05 s» rare 0-0.5 0.5 1.0* 0 B Pits 0-2 10 443 358-583 1 10 ESR 0 10 ELT 60(H 6 Pg | AF *X103/c.mm See also refs. 11,14,23,87. 7-11 35-45 4-12 1 0.5-4 3-9 1 0-5 1 0-0.5 1 0-3 1 243 OTHER MAMMALIAN ORDERS House mouse Survey Results Ref. 43 1 Test A v. Range PT 11.0 10-15 RW 6.5 PTT 53 KRT 32 27-38 7 TT 7.6 6.0-9.0 12 TVo.^l 12 | 6.0-7.5 12 | 47-59 12 1 \~ Av. Range 13.0 11.5-16.5| 25.2 I8.5-33.4I RT 7.9 6.9-IO.5I I 231 44-339 | II 47 29-73 | 1VII 538 360-688 | v VIII ix 900 1 1 46 23-80 | X 148 57-256 1 XI 63 38-96 1 xii 86 60-136 1 | XIII + 1 1 AT CR |TP 4.94 See also ref. 44. CMH-17 4.39-5.49 2 | OTHER MAMMALIAN ORDERS MYOMORPHA MUROIDEA MURIDAE Praomys natalensis Multimammate mouse Ref. 66 1 Test 1 Hb 13.83 Av. Ref. 66 SD/range ± 9.4 A v. SD/range \ 12.91 ± 0.92 1 1 1 RBC 7.89 ± 0.41 7.3 ± 0.58 1 PCV Ret ics 42 1.8 ± 3.4 0.2-4.2 38.8 2.17 ± 3.0 0.2-6.8 | MCV 53.07 ± 3.2 53.45 ± 3.36 MCH 17.5 ± 9.4 17.74 ± 1.19 | MCHC 33.02 ± 1.29 33.3 ± 0.98 7.55 5.4-10.6 1 | MCD WBC N L M 1 1 1E 1B 1 1 Pits 7.53 2.8-13.0 22.8 8-46 18.4 4-35 73.2 48-89 76 57-93 2.7 0-7 1.9 0-5 1.3 0-5 1.7 0-9 0 0 368 217-750 289 208-445 1 ESR 1 ELT Pg 1 AF 23 males 32 females 1 OTHER MAMMALIAN ORDERS 245 RODENTIA HYSTRICOMORPHA CAVOIDEA HYDROCHOERIDAE Hydrochoerus hydrochaeris Capybara Survey Results No. | 1 Test Av. Range \ Hb 10.6 10.2-11.1 2 3.1-3.2 2 33-37 2 RBC 1 PCV 3.15 35.5 | | Retics 2 1 1 MCV 113.5 102-125 1 MCH 33.8 31.6-36.0 2 1 MCHC 30.5 30-31 2 | MCD 9.9 WBC 7.0 6.1-7.9 2 2 1 2 1 1 NL 1M 1 1B E 1 62 55-69 34.5 25-44 3 1-5 2 2 0 0.5 0-1 1 Pits 213 129-294 1 ESR 29 24-34 | 2 2 1 2 1 1 ELT Pg | AF Neutrophils have markedly eosinophilic granules Red cells show a tendency to form sickles. 246 OTHER MAMMALIAN ORDERS RODENTIA HYSTRICOMORPHA CAVOIDEA CAVIIDAE Cavia porcellus Domestic guineapig Survey Results 1 Test Hb Av. Range Ref. 9 No~7\ Av. Range 13.0 11.5-15.4 10 RBC 5.0 4.7-5.9 10 5.64 3.4-8.8 PCV 41.3 36-48 10 42 37-47 0.2-3.2 10 Retics 1.4 MCV 79.1 73-86 10 MCH 24.9 23.4-27.5 10 MCHC 31.0 MCD 6.87 29.8-32.5 10 6.73-7.09 10 WBC 13.3 10.0-19.5 10 N 55.2 40-71 10 L 35.0 19-51 M 9.2 5-15 E 0.1 B | Pits 14.7 9.0 Ref. 11 Ref. 26 Av. Range Av. Range 5.8 4.5-6.8 5.0 4.6-5.4 7.5 7.2-7.8 13-16 3.2-15.0 10.7 6-20 9.1 5-15 18-60 41.8 30-50 32 16-44 10 55-80 45.3 35-55 64 55-81 10 1-2 8.4 1-20 3.1 0-7 0-1 10 1-5 4.8 2-15 0.6 0-3 0.5 0-1 10 0-3 0.77 0-2 0.2 0-2 250 182-308 10 ESR 2.8 0-7 10 ELT 144 37-225 7 Pg 1 AF Lymphocytes sometimes contain Kurloffbodies Neutrophils have eosinophilic granules For haematology, see also re fs. 10,19,27, 28, 31,87. 247 OTHER MAMMALIAN ORDERS Domestic guineapig Survey Results Test | PT Av. 26.5 Range 24-29 No. 1 10 1 RW 14 10-17 10 FIT 41 33-48 10 RT 76 60-87 10 30 23-35 10 8.5 7-12 10 1 KRT TT | I 528 483-605 10 33.5 26-44 10 11 vu 330 150-500 10 1 VIII 100(H IX 100 45-150 10 1XIx 325 240-410 2 420 + 370-460 3 1nv 1 XII 1 XIII | | 5 60 1 5 1 1 1 4 | 1 AT 1 CR 63 [TP 4.38 3.6-4.9 Contact activation index 31 Range 29-32 (2 animals) 248 OTHER MAMMALIAN ORDERS RODENTIA HYSTRICOMORPHA HYSTRICOIDEA HYSTRICIDAE Atherussp. Brush-tailed porcupine Survey R esuli s Test Hb RBC IPCV Survey Results 1 Test Av. 12.0 PT 26 16-34 3.6 1 RW 1 PTT 11.0 10.5-12.5 40 35-50 Av. No. | Range No. | 3 1 3 3 1 Retics 44 1.0 | RT 59 44-85 3 MCV 122 | KRT 37 35-39 IMCH 33.5 | TT 7.0 6.5-8.0 2 1 3 1 |MCHC 27.0 | i 525 410-640 2 12.5 590 280-900 2 380 IN 31 1nv 11 vu L 52 | VIII M 4 ix E 12 B 1 |nts MCD |WBC 1X 87 192 XII 170 6 | XIII + |ELT 275 1 AT 1 CR 415 Neutrophils contain eosinophilic granules 1 | 85-90 3 1 380-450 1 1 2 1 2 1 XI ESR Pg |AF 1 15 | TP 5.95 5.65-6.25 Contact activation index 61 (1) 2 | OTHER MAMMALIAN ORDERS 249 RODENTIA HYSTRICOMORPHA OCTODONTOIDEA CTENOMYIDAE Ctenomys mendocinus Tucotuco Survey Results | Test A v. Range No. 1 | PT 2 1 | RW 8.0 7-9 | PTT 34 33-35 2 | RT 56 54-58 2 1 1 KRT 53 50-56 2 | TT 5.5 5-6 2 | I 1 VU 1 | VU 1 vin 1xix 1M 1 | XII 1000* 1 | 250 1 | 1 xiii | AT |cR |TP 6.25 _J 250 OTHER MAMMALIAN ORDERS RODENTIA HYSTRICOMORPHA OCTODONTOIDEA CAPROMYIDAE My ocas ter coy pus Coypu Survey Results 1 Test Av. Range 3 PT 13.25 13.0-13.5 2 3 RW 6.0 42-58 3 PTT 51 47-55 2 \ Test Av. Range Hb 13.9 13.1-14.9 RBC 4.1 3.9-4.2 PCV 48 1 Retics Survey Results 1.8 M>.~| 1 RT 60 MCV 117.0 104-142 3 KRT 27 1 MCH 34.0 32-36 3 | IT 1 MCHC 29.0 23-32 3 I 1 MCD 7.44 WBC 9.2 5.2-11.3 3 1V " 54 47-61 3 VII 34 28-45 3 VIII 8 6-10 3 IX E 4 2-9 3 X B 0 3 XI 1NL 1M Pits 282 1 240-325 3 XII 1 ESR | XIII ELT AT Pg | AF Neutrophils contain eosinophilic granules CR TP 6.5 No. | 1 1 1 6.0-7.0 2 46 1 100 1 20 1 OTHER MAMMALIAN ORDERS RODENTIA HYSTRICOMORPHA CHINCHILLIDAE Lagostomus maximus Plains viscacha Survey Results 1 Test Av. Range |Hb Survey Results No. | Tesi Av. Range 12.5 12-13 2 1 No. | 12.9 12.4-13.5 2 1 1 PT RBC 4.6 4.4-4.8 2 | | RW 8.0 |PCV 39.5 36-43 2 | | PTT 53 52-54 2 0 1 2 | | RT 81 70-92 2 |MCV 84.5 80-89 2 | | KRT 38 36-40 2 1 MCH 28.5 28.1-28.2 2 | | TT 7.0 6-8 |MCHC 32.7 31.4-34.0 2 | 1 iΠ 11.0 7.6-14.4 2 | | Retics |MCD |WBC |N 55 33-72 2 L 43 24-63 2 M 2 1-3 2 E 2 1-3 2 B 2 0 147-364 2 865 805-952 1V 1 | 2 2 1 | VII VIII ix 120 1 1M X 170 1 140-200 2 Pits 255 XII 140 1 |ESR 3 1 | xiii + 2 | ELT 160 1 AT 1 | CR 60 1 | | TP 6.55 Pg |AF 7.45 Neutrophils contain eosihophilic granules For haematology of the chinchilla, see ref. 32 5.7-7.4 PF3 release 58 (1) PF3 total 89 (1) Contact activation index 39 (1) 2 J OTHER MAMMALIAN ORDERS 252 Order: CETACEA The haematology of small cetaceans has been studied to some extent in relation to the use of these mammals in research into the physiology of diving [68-76]. Like seals, dolphins and whales have a relatively high haemoglobin level and packed cell volume. The total red count is low and the mean cell volume large. The relationship between the mean red cell volume and diameter suggests that the cells have a greater average thickness than is normally found, possibly giving rise to a prolongation of the rate of oxygen diffusion out of the cells which may be advantageous during diving. Occasionally, Howell Jolly bodies and nucleated red cells are present in the peripheral blood of the bottle-nosed dolphin (Tursiops truncatus) and the reticulocyte count is high. Intraerythrocytic bodies resembling Heinz bodies have also been found in significant numbers in this species. Red cell rouleau formation is pronounced and the sedimentation rate is rapid. The total white cell count is within the normal human range with neutrophils as the predominant cell type. In acclimatised captive dolphins the eosinophil count is high in the absence of detectable parasitic infection or allergy. In the bottle-nosed dolphins a low eosinophil count has proved to be a useful indication of stress. The total platelet count is often below the normal human range. The blood coagulation mechanism of cetaceans is of great interest because those species which have been tested have no demonstrable factor XII activity [75]. Thus the whole blood clotting time, thrombelastograph pattern (Figure 6.1) and other tests depending on intrinsic prothrombin activation are prolonged and are not affected by contact with activating surfaces. The extrinsic pathway of prothrombin activation is well developed and other clotting factors are present in expected amounts. It has been suggested that lack of factor XII may protect these diving mammals from diffuse intravascular coagulation which has been shown to be a major factor in severe cases of decompression sickness in man [77], possibly triggered by activation of factor XII by acidosis. Although the blood pH of resting and diving cetaceans is within the normal mammalian range, a significant decrease occurs as diving is completed. As with humans with congenital factor XII deficiency, cetaceans apparently do not suffer from a haemorrhagic tendency. In man, factor XII in its activated form has been shown to function as an activator of plasminogen. The finding that fibrinolytic activity can be demonstrated in cetaceans by the euglobulin lysis test confirms that an alternative pathway of plasminogen activation exists. Figure 6.1. Thrombelastograph tracing on the bottle-nosed dolphin. o 1 TIME IN HOURS 2 OTHER MAMMALIAN ORDERS 253 CETACEA ODONTOCETI DELPHINOIDEA DELPHINIDAE Phocoenoides dalli Dall's porpoise Ref. 74 Test Av. ± SD Hb 19.7 ± 1.8 RBC 5.5 ± 0.6 PCV 53 ± 4 Ref. 68 A v. Range 7.48 55.6 53.4-57.9 Retics 74.3 MCV 96.3 MCH 35.8 1 MCHC 37.1 1 MCD 6.9 ± 1 1 WBC 5.5 ± 1.9 1NL 11 M 1BE 1 49 ± 19 43 ± 17 4 ± 2 5 ± 3 0 11 tests on one animal See also ref. 69. No. =1-2 1 254 OTHER MAMMALIAN ORDERS CETACEA ODONTOCETI DELPHINOIDEA DELPHINIDAE Tursiops truncatus Bottlenose dolphin Survey Results Test Hb Av. Range Ref. 74 No. Av. ±SD 15.2 ± 1.5 Ref. 74 Av. ± SD Av. 14.4 ± 1.4 14.6 14.5 11.5-16.4 4 RBC 3.7 3.4-4.1 5 4.14 ± 0.5 3.98 ± 0.4 PCV 39 31-45 5 45 ± 4 43 ± 4 5 Retics 3.2 1.9-5.0 MCV 103 91-110 5 108.6 MCH 38.5 34-41 4 36.7 36.2 MCHC 37.2 30-42 4 33.7 33.5 6.99 6.78-7.11 4 7.1 MCD + ± 0.2 Ref. 75 108.3 7.2 ± 3.35 38.8 115.8 43.5 37.6 ± 0.2 WBC 7.5 6.0-8.6 5 10.7 ± 4.9 9.8 ± 3.1 9.0 N 64 52-80 5 61 ± 13 61 ± 31 52 L 22 9-38 5 22 ± 10 20 ± 11 28 M 3 1-10 5 3 ± 3 2 ± 2 2 E 11 0-22 5 13 ± 9 15 ± 9 23 5 0 97-180 4 B Pits 0 132 ESR 32 13-47 4 ELT 410 120-600 6 Pg AF 5.3 i 0-3 139 2 6.27-7.021 130-180 tests on 10 males See also ref 69. 0 ! 155-165 tests on 11 females 3 animals OTHER MAMMALIAN ORDERS 255 Bottle-nosed dolphin Survey Results Test Ref. 75 Γ Test Av. Range 2 1 |PT 16.2 13.7-18.6| 2 |RVV 12.0 11.6-12.4| PTT 302 240-427 1 No. I Av. Range 1 FT 14.4 14.0-14.8 RW 11.9 11.8-12.0 1 PIT 193 171-225 6 | | RT 360 2 | |RT 6 1 |TT 10.0 9.0-10.5| I 331 279-360 | KRT | TT |I 1Γνn 470 270-770 8.0 4-11 385 370-400 78 65-88 | KRT 6 2 | 6 1 II 88 |v 169 [VII 31.6 6.8-63 1 VIII 468 338-650 1 2 1IX 130 107-142 80-130 6 Ix 48 26-72 75-80 2 1 XI 74 70-81 6 1 XII 0 XIII 100+ 100 2 I Vili 1000+ 2 I IX 425 400-450 104 77.5 VII Ix M 11 XII XIII <1 + 2 1 AT IAT 147 54-110 1 125-238 143-150 I CR |TP No. =3 Note factor XII levels of less than 1 %. OTHER MAMMALIAN ORDERS 256 CETACEA ODONTOCETI DELPHINOIDEA DELPHINIDAE Phocaena phocaena Harbour porpoise Ref. 68 \ Test 1 RBC Range Av. |Hb 14.8-20.0 | 5.0 PCV 4.5-5.5 | 45-55 1 4-12 1 40-75 1 | Retics IMCV 100 IMCH 35 IMCHC 35 IMCD |WBC 8.0 [N II I 20-50 M 0-3 E 0-1 |B [pits IESR IELT Pg IAF No. = 10 257 OTHER MAMMALIAN ORDERS CETACEA ODONTOCETI DELPHINOIDEA DELPHINIDAE Globicephala scammoni (Pacific pilot whale) and G. melaena (North Atlantic pilot whale) Pacific pilot whale Ref. 74 N. Atlantic pilot whale Ref. 71 1 Test Av. ± SD A v. Hb 16.5 ± 1.9 15.8 3.9 ± 0.4 3.71 ± 3.8 46 ± 4 45 ± 3.5 RBC 1 pcv ± SD 1 ± 1.2 1 Retics MCV 117.9 123 8.8 1 MCH 42.3 42.7 ± 2.7 | MCHC 35.8 35.0 ± 0.9 | MCD 6.8 ± 0.1 WBC 11.5 ± 1.6 11.5 ± 3.2 72 ± 10 72.4 1 |M 19 ± 6 18.8 ± 6.2 3 ± 2 2.6 ± 1.5 E 5 ± 4 7 ± 9.2 1 NL B < 1 1 9 - 13 tests on 2 animals No. = 6 1 1 258 OTHER MAMMALIAN ORDERS CETACEA ODONTOCETI DELPHINOIDEA DELPHINIDAE Orcinus orca Killer whale Ref. 74 Ref. 75 Ref. 75 1 Test Av. ±SD 1 Av. Range |Hb 16.2 ±0.9 ' 16.1 15.0-16.8 | 1 Test 1 PT 15.6 14.8-16.3 1 RBC IPCV | Range \ 4.0 ±0.3 3.8 3.7-3.9 | | RW 13.1 12.6-13.8 | 45 ±0.6 43 40-45 1 | PTT 216 144-290 1 Retics | RT |MCV 112.5 113.1 |MCH 40.5 42.3 |MCHC 36.0 37.4 |MCD 6.8 ±0.1 |WBC 10.4 ±3.8 6.1 5.4-7.3 N 81 ±12 59 49-65 |L 15 ±10 28 24-35 IM 3 1-6 | 2 ±1 ±1 3.6 E 6 4-7 | B 0 I Av. | 0 |pits 256 219-310 | | KRT 1 TT 1 I 10.1 9.9-10.4 1 466 399-584 1 1nv 11 VII 80 76-84 1 232 113-375 1 1 VIII 293 267-343 1 91 64-107 1 18 14-20 148 56-314 1Xix xi 1XII 24 22-28 1 0 IESR | XIII 100 + ELT 1 AT 125 cr* 33 18-47 | CTS** 34 25-45 J 6.4-6.5 1 Pg |AF 6 tests on 2 maies No = 3 112-140 | No = 3 *Clotting time in glass tubes. **Clotting time in siliconed tubes. 259 OTHER MAMMALIAN ORDERS CETACEA ODONTOCETI DELPHINOIDEA DELPHINIDAE Lagenorhynchus ob liquid ens Pacific white-sided dolphin Ref. 74 Ref. 74 [ Test Av. + SD Av. ± SD Hb 17.8 + 1.6 19.8 ± 1.9 RBC 1 PCV Ref. 69 Av. Range 5.31 ± 0.5 5.83 ± 0.5 5.9 5.6-6.2 50 ± 5 54 ± 3 48.9 47.3-49.9 | Retics 1 MCV 94.1 92.6 1 MCH | MCHC 33.5 35.6 33.9 36.6 82.8 MCD 6.6 ± 0.2 6.9 1 WBC 7.9 ± 2.3 5.5 ± 1.9 1NL 43 ± 15 48 ± 19 29 ± 14 43 ± 17 5 ± 3 4 ± 2 21 ± 11 5 ± 3 1| M 1 EB 1 | Pits ± 0.1 | ESR | ELT Pg LAF 31-46 tests on 3 males CMH-18 21-33 tests on 2 females No. = 3 260 OTHER MAMMALIAN ORDERS CETACEA ODONTOCETI PLATANISTOIDEA PLATANISTIDAE Inia geoffrensis Geoffroy's dolphin Ref. 74 Test Ref. 74 Av. ±SD Av. ±SD | 14.4 ± 1.4 13.3 ± 0.3 1 RBC 3.9 ± 0.5 3.8 ± 0.3 PCV 42 ± 0.3 40 ± 0.4 Hb | Re tics 1 MCV 107.6 1 MCH 36.9 35.0 MCHC 34.2 33.2 1 MCD 6.9 ± 0.2 6.8 ± 0.1 1 WBC 14.6 70 ± 3.1 ± 16 12.2 70 ± 2.1 ± 14 21 ± 8 20 ± 8 4 ± 3 3 ± 3 5 ± 4 4 ± 3 N L 1 1 1M 1B E 105.2 0 18-20 tests on 5 males 4 tests on 3 females 1 261 OTHER MAMMALIAN ORDERS Order: PINNIPEDIA The small amount of information available from the literature on the haematology of seals and sea lions suggests that, like Cetaceans, these diving mammals have comparatively high levels of haemoglobin and that packed cell volumes and mean red cell volumes are also high [76, 78-82]. Red cell absolute values indicate an increased mean red cell average thickness compared with terrestrial mammals but similar to Cetaceans. The total white count is equivalent to that of man with neutrophils as the predominant cell type. Basophils are rare. The blood clotting mechanism has been studied in detail in only one Baikal seal (Pusa sibirica) and one Californian sea lion (Zalophus calif ornianus ). In these animals both the intrinsic and extrinsic pathways of prothrombin activation are well developed. A rapid whole blood clotting time has been reported in adult elephant seals (Mirounga leonina) [81]. Thus there is no evidence for factor XII deficiency as found in cetaceans. Fibrinlytic activity can be demonstrated by the euglobulin lysis test and in the Californian sea lion the plasminogen level is high. Plasminogen is activated directly by human urokinase and by streptokinase without addition of human serum. 262 OTHER MAMMALIAN ORDERS PINNIPEDIA PHOCIDAE Pagophilus greenlandicus (Harp seal) Halichoerus grypus (Grey seal) Leptonychotes weddelli (Weddell seal) Harp seal Ref. 79 Test Av. Hb 25.2 RBC 4.57 PCV 59.2 Grey seal Survey Results Range 21.8-25.2 [ Test Hb Av. 19.5 Weddell seal Ref. 82 No. [ Test Hb Av. 23.7 Range 22.5-25.0 4.09-5.07 RBC 4.9 RBC 3.73 53.5-65.2 PCV 52 PCV 59 54-65 Retics 0.8 Rtics 167-169 Retics 3.62-3.85 MCV 130.5 119-142 MCV 106 MCV 168 MCH 55.4 49.6-61.3 MCH 40 MCH 63.5 62-65 MCHC 42.3 40.6-43.8 MCHC 37 MCHC 37.8 37.2-38.5 MCD 7.55 MCD MCD WBC 7.8 WBC 6.0 WBC N N 48 N L L 49 L IM M 2 M E E 0 E B B 1 B 5.3-10.1 Pits ESR ELT Pg AF No = 15 Influence of age also discussed No = 2-9 OTHER MAMMALIAN ORDERS 263 PINNIPEDIA PHOCIDAE Phoca vitulina Common seal Survey Results fest Hb Av. Range Ref. 76 Ref. 80 No. Av. ±SD Av. Range 19.2 ±1.3 17.6 13.0-22.3 6.7 4.7-8.5 55.7 48-59 16.6 13.7-19.3 1 RBC 4.5 3.9-4.9 7 5.45 ±0.7 PCV 52.5 45-66 7 52 ±6 1.0 0.5-2.0 7 |MCV 107.6 92-118 7 MCH 35.2 27-39 MCHC 31.4 30.5-33.6 Retics MCD 7.52 WBC 4.4 95.4 83.1 7 35.2 26.2 7 36.9 1 6.4 ±0.3 31.6 2 8.0 IN 60 48-72 4 60 ±1.0 ±20 L 32 16-49 4 33 ±22 M 8 2-12 4 4 ± 2 E 0.5 0-2 4 1 ± 1 B 0 4.5 2.8-6.2 Pits ESR ELT Pg AF Occasional nucleated red cell found. N = 2-6 2-3 animals 264 OTHER MAMMALIAN ORDERS PINNIPEDIA PHOCIDAE Mirounga leonina (Southern elephant seal) and M. angustirostris (Northern elephant seal) Mirounga leonina Ref. 81 Ref. 81 \ Test Av. Range Av. Range Hb 15.77 12.3-19.2 16.23 12.6-18.2 3.13 2.12-4.7 3.06 1.98-4.57 RBC PCV Ref. 81. Av. Range 3.21 2.7-3.72 66 61-71 M. angustirostris Ref. 76 Av. ±SD 25.0 ±1.0 5.55 63.5 ± 0.26 ±4.9 Retics MCV | MCH 205 114 53.0 50.3 45.0 | MCHC 39.3 | MCD | WBC 1 NL 7.6 15.2 10.1-25.2 14.2 6.8-24.5 15.2 12.5-20.7 1M E 1 IB ±0 9.6 ± 1.85 55 ±11 38 ±14 3 ±1 4 ±1 0 14-20 male pups 12-16 female pups 2-5 adults No = 2-3 OTHER MAMMALIAN ORDERS PINNIPEDIA PHOCIDAE Pusa sibirica Baikal seal Survey Results 1 Test 1 Hb Av. Range 5.5 1 pcv 66.5 No. 5.3-5.6 Test | i 1 18.0 1 RBC Survey Results \ PT Av. 2 RW 8.0 1 1 PTT 76 1 1 RT 81 1 Retics 4.0 1 MCV 122 121-123 1 MCH 47.5 46-49 2 1 | 36-40 2 1 11 486 2 1Vn 450 IMCHC 38.0 2 KRT |MCD |WBC N L 1M E 1 |B 5.6 3.4-7.8 | IT 67 VII 20 | vm 13 IX 0 0 1XIx 1 Pits XII IESR 1 XIII IELT Pg |AF 330 No. 12.5 72 7.0 190 130 1 + 1 8.55 1 1 AT 1 CR |TT | 266 OTHER MAMMALIAN ORDERS PINNIPEDIA OTARIIDAE Zalophus californianus Californian sealion Survey Results] Test Av. No. 1 Hb Ref. 76 Survey Results Av. ± SD 1 Test Av. 15.0 ±2.1 PT 14.5 1 RW 7.0 1 FIT 63 1 RBC 4.38 ±0.7 1 PCV 45 ±5 1 No. 1 1 RT | Retics | 102.7 MCV | KRT MCH | TT 11 1 MCHC | I 392 1 MCD 7.1 ±0.2 II 60 1 WBC 9.2 ±1.5 1 V 900 1 IN 58 ± 7 1 VII L 1 28 150 1 68 1 6.78 1 4 M 14 IE ±10 VIII ± 2 | IX ± 41 X XI B Pits 456 XII 1 XIII ESR ELT 600 Pg AF 5.8 1 AT i1 CR 1 ir No. = 8 PF3 release 63 (1) PF3 total 86 (1) Contact activation index 85 (1) 267 OTHER MAMMALIAN ORDERS Order: PROBOSCIDEA Some information on the haematology of elephants is available from the literature. The red cells of these animals are larger than those of most other mammals [84, 85]. This finding, which has been confirmed in the present survey, has led to the suggestion that there is a direct relationship between the overall size of an animal and the size of its red cells. However, this suggestion is not supported by MCV and MCD measurements in small mammals and is undermined by the fact that the largest known red cells are found in amphibians (Chapter 1). Correlated with the large size of red cells in elephants, the total red cell count is low. The haemoglobin level, packed cell volume, red cell diameter and average thickness are within the expected ranges. Adult African elephants apparently have higher red count, PCV, MCV and MCHC than juveniles of the species and higher red cell indices than Indian elephants. Reticulocytes are rare in both species. The red cells show a marked tendency for rouleaux formation and the ESR is high in overtly normal animals. The total white count is higher in juveniles than in adults and in all groups except adult African elephants lymphocytes outnumber neutrophils. Basophils are rare. Elephant blood is notable for the presence of a significant number of morphologically unusual white cells, the origin of which has not yet been determined. These cells have distinctive bilobed nuclei, the two halves of which are connected by a very thin strand, often almost invisible so that the cells appear binucleated. The cytoplasm has staining characteristics intermediate between lymphocytes and monocytes. These cells are present in both African and Indian elephants of all ages and no significant change in their numbers associated with clinical abnormalities has yet been found. The platelets of elephants are small and numerous. No studies on their reactivity have been carried out. Blood coagulation is apparently more rapid in Indian than in African elephants. Fibrinolytic activity as measured by the euglobulin lysis test is absent, the clots showing no signs of lysis after incubation for 72 hours at 37°C. Plasminogen can be demonstrated by activation with human urokinase and by streptokinase in the presence of human serum. 268 OTHER MAMMALIAN ORDERS PROBOSCIDEA ELEPHANTIDAE Elephas maximvs Indian elephant Adults Survey Results 1 Test |HÖ [ RBC |PCV Retics Av. Range Juveniles Survey Results Ref. 84 No. Av. 13.6 11.8-17.1 5 14.5 11.6-16.8 3.3 2.9-3.6 5 3.5 3.2-4.7 3 36-47 5 40.5 36-44 3 | 0-0.4 5 0.15 0-0.5 3 | 114-121 41 0.1 Range No. | 3 |MCV 125 112-136 5 117 MCH 41 36-46 5 50 36-45 3 1 3 1 MCHC 32.5 30-34 5 35 32-38 3 8.5-9.7 3 3 MCD 9.16 WBC 11.4 10.2-14.1 5 20.6 19-22 N 22 19-27 5 19 14-28 L 45 31-53 5 51 40-62 M 4 0-7 5 1 E 3 0-4 5 1 * | Range Av. \ 13.4 12.0-15.5 2.8 1.98-4.01 38.2 30.0-43.31 1 10.16 6.4-14.0| 3 1 1 36 22-50 1 3 | 1 52 40-60 | 0-2 3 | 2.1 0-5 | 0-2 3 1 36 25-49 24 15-36 5 27 24-31 3 | Pits 540 290-815 5 677 300-1000 3 | ESR 36 31-41 5 40 1 ELT 72h+ 5 72h+ 2 Pg AF * Unidentified cells with bilobed nuclei For influence of age, sex and pregnancy on the blood picture, see ref. 86. 13 adults OTHER MAMMALIAN ORDERS 269 Indian elephant Survey Results Test Av. Range 13.5 12-15 7.5 6.0-8.5 1 PTT 49 40-67 |RT 104 |KRT |TT TVoTl 60-145 2 3 3 3 1 1 1 1 45 33-53 3 | 7.5 7.0-8.5 3 I 876 730-1013 3 In 150 |V 270 160-450 3 1 PT RW 1 | | VII |vni liXHH 1 ix |x 280 73-700 205 110-300 3 | 3 1 2 1 | XI XII 1 XIII + 3 IAT CR [TP 8.18 8.15-8.21 PF3 release 72(1) PF3 total 75(1) Contact activation index 87(1) 2 | 270 OTHER MAMMALIAN ORDERS PROBOSCIDEA ELEPHANTIDAE Loxodonta africana African elephant Adults Survey Results Juveniles Survey Results West Av. Hb 17.2 16-18 3 3.8 3.6-4.0 3 RBC PCV 48.5 Range 45-52 0 Retics No. Ref. 83 Av. Range No A Av. Range Av. Range 14.7 10.9-17.5 1 1 15.1 13.6-16.5 14.5 11.5-18.0 3.7 3.2-4.4 1 | 38-49 7 3 43 3 0 128 120-137 3 117 98-124 7 MCH 45.4 43.8-48.0 3 39 33-43 7 MCHC 35.0 32-39 3 33.6 28-38 7 8.88-9.24 3 9.06 WBC 9.0 7.8-10.8 3 17.5 16-24 7 IN 50 23-68 3 25 15-34 7 L 31 23-47 3 50 30-60 M 6 2-8 3 2 E 0 3 2 * 13 10-19 3 21* 14-34 Pits 455 320-600 3 490 300-600 7 ESR 21 12-29 3 28 6-48 7 ELT 72h+ 3 72h+ I 3.68 3.2-4.7 5.02 4.2-6.6 48 44-51 7 MCV MCD Ref. 85 | 41.0 37-44 97 71-121 29 23-36 30 26-37 10.4 17-37 38 27-54 7 40-55 58.2 44-69 1-4 7 | 0.1 0-1 1.5 0-4 0-7 7 2 1-6 2.4 0-6 7 25* 17-33 29 19-40 4 Pg AF *Unidentified cells with bilobed nuclei 6.8-14.3 1 26 1 46 10 elephants in natural habitat lladuLs OTHER MAMMALIAN ORDERS 271 African elephant Survey Results Test | FT RVV Av. 15.3 8.5 Range No. 14.0-16.5 2 8.0-9.0 3 | PTT 81 72-94 3 1 RT 138 100-216 3 47 40-54 3 5-10 3 630-661 3 KRT | TT 8.6 I 641 1nv 11 VII 450 1 | VIII 1000+ 3 1IxX 500 1 170 1 + 3 1XI 1 XII 1 XIII 1 AT |CR [TP | 272 OTHER MAMMALIAN ORDERS References 1. Parer, J. T. and Metcalfe, J. (1967). Respiratory studies of monotremes. II. Blood of the Echidna (Tachyglossus setosus). Resp. Physiol. 3, 143. 2. Fantle, P. (1961). A comparative study of blood coagulation in vertebrates. Aust. J. ex p. Biol. 39, 403. 3. Bartels, H., Reigei, K., Kleinhauer, E. and Lang, E. M. (1966). Comparative studies of the respiratory function of mammalian blood. II. Marsupialia: great grey kangaroo and Tasmanian devil. Resp. Physiol. 1, 145. 4. Maxwell, C. M., Elliott, R. B. and Kneebone, G. M. (1964). Haemodynamics of kangaroos and wallabies. Am. J. Physiol. 206, 967. 5. Ponder, E., Yeager, J. F. and Charipper, H. A. (1928). Studies in comparative haematology. Quart. J. exp. Physiol. 19, 273. 6. Parsons, R. S., Heddle, R. W. L., Flux, W. G. and Guiler, E. R. (1970). Studies on the blood of the Tasmanian devil. Comp. Biochem. Physiol. 32, 345. 7. Andrew, W. (1965). Comparative Haematology. Grune and Stratton, New York and London. 8. Fantle, P. and Ward, H. A. (1957). Comparison of blood clotting in marsupials and man. Aust. J. exp. Biol. med. Sci. 35, 209. 9. Gardner, V. M. (1947). The blood picture of normal laboratory animals. A review of the literature. /. Franklin Inst. Rabbits 243, 2 5 1 ; Rats 243, 77; Mice 243, 434; Hamsters 243, 434; Guinea pigs 243, 498. 10. MacNamee, J. K. and Sheehy, R. W. (1952). The use of the small laboratory animal for repeated clinical pathological studies. Proc. Am. vet. med. Ass. 89th session, p. 138. 11. Scarborough, R. A. (1937). The blood picture of normal laboratory animals. A compila­ tion of published data. Yale J. Biol. Med. Rabbits 3, 64; Rats 3, 267; Mice 3, 272; Guinea pigs 3, 169. 12. Bushnell, L. D. and Bangs, E. F. (1926). A study of the variation in number of blood cells in normal rabbits. /. infect. Dis. 39, 291. 13. Pintor, P. P. and Grassini, V. (1957). Individual and seasonal spontaneous variation of haematological values in normal male rabbits. Statistical survey. A eta haemat. 17, 122. 14. Schalm, O. D. (1967). Veterinary Haematology. Lea and Febiger, Philadelphia. 15. Quick, A. J. (1941). The prothrombin concentration in the blood of various species. Am. J. Physiol. 132,239. 16. Johnson, A. J. and Tillett, W. S. (1952). The lysis in rabbits of intravascular blood clots by the streptococcal fibrinolytic system (Streptokinase). / . exp. Med. 95, 499. 17. Sutherland, G. B., Trapani, I. L. and Campbell, D. H. (1958). Cold adapted animals. II. Changes in the circulating plasma proteins and formed elements of rabbit blood under various degrees of cold stress. /. appi. Physiol. 12, 367. 18. Didisheim, P., Hattori, K. and Lewis, J. H. (1959). Haematologic and coagulation studies in various animal species. /. Lab. clin. Med. 53, 866. 19. Roofe, P. G., Latimer, H. B., Madison, M., Maffet, M. and Wilkinson, P. (1950). Comparison of peripheral blood with heart blood in guinea pigs. Science, 111, 337. 20. Wintrobe, M. M., Shumacker, H. B. and Schmidt, W. J. (1936). Values for number, size and haemoglobin content of normal dogs, rabbits and rats. Am. J. Physiol. 114, 502. 21. Reich, C. and Dunning, W. F. (1943). Studies on the morphology of the peripheral blood of rats. Cancer Res. 3, 248. 22. Cameron, D. G. and Watson, G. M. (1949). The blood counts of adult albino rats. Blood, 4 , 8 1 6 . 23. Russell, E. S., Neufeld, E. F. and Higgins, G. T. (1951). Comparison of normal blood picture of young adults from 18 inbred strains of mice. Proc. Soc. exp. Biol. 78, 761. 24. Stewart, O. M., Florio, L. and Mugrage, E. R. (1944). Haematological findings in the golden hamster./, exp. Med. 80, 189. 25. Desai, R. G. and Fulton, G. P. (1960). Evidence for a vessel wall defect in i m m u n o thrombocytopenic hamsters. Blood, 15, 675. 26. Bilbey, D. L. J. and Nicol, T. (1955). Normal blood picture of the guinea pig. Nature (Lond.) 176, 1218. 27. Burnet, S. H. (1908). The Clinical Pathology of the Blood of Animals. W. F. Humphrey OTHER MAMMALIAN ORDERS 273 Press, Geneva. 28. King, E. S. and Lucas, M. (1941). A study of the blood cells of normal guinea pigs. J.Lab. clin.Med. 26, 1364. 29. Kozma, C. K., Weisbroth, S. H., Stratman, S. L. and Conejeros, M. (1969). Normal biological values for Long-Evans rats. Lab. Anim. Care 19, 746. 30. Mays, A. (1969). Baseline haematological and blood biochemical parameters of the mongolian gerbil (Meriones unguiculatus). Lab. Anim. Care 19, 838. 31. Archer, R. K. (1965). Haematological Techniques for Use on Animals. Blackwell Scientific Publications, Oxford. 32. Newberne, P. M. (1953). A preliminary report on the blood picture of the South American Chinchilla. / . Am. vet. med. Ass. 122, 221. 33. Lord, G. H., Todd, A. C. and Kabat, C. (1954). The blood picture of the Muskrat under pentobarbital sodium. Am. J. vet. Res. 15, 79. 34. Nordoy, A. and Odegaard, A. E. (1963). The influence of citrate and heparin on the adhesiveness of rat and human platelets measured in vitro. Scand. J. clin. Lab. Invest. 14,399. 35. Grüner, O. P. N. and Endresen, G. K. M. (1971). Platelet count and platelet stickiness in the rat. Thromb. Diath. haemorrh. XXVI, 389. 36. Reber, K. and Studer, A. (1965). Influence of certain drugs on the adhesiveness of human, rat and rabbit platelets in vitro. Thromb. Diath. haemorrh. VI, 428. 37. Sinakos, Z. and Caen, J. P. (1966). Le comportement des plaquettes chez le rat. Thromb. Diath. haemorrh. XXI, 163. 38. Sinakos, Z. and Caen, J. P. (1967). Platelet aggregation in mammalians (Human, rat, rabbit, guinea pig, horse, dog). A comparative study. Thromb. Diath. haemorrh. XVII, 99. 39. Constantine, J. W. (1966). Aggregation of guinea pig platelets by adenosine diphosphate. Nature (Lond.) 210, 162. 40. Mills, D. C. B. (1970). Platelet aggregation and platelet nucleotide concentration in different species. Symposium zool. Soc. Lond. 27, 99. 41. Bolton, C. H. and Emmons, P. R. (1967). Adenosine diphosphate breakdown by the plasma of different species and by human whole blood and white cells. Thromb. Diath. haemorrh. XVIII, 799. 42. Nilsson, D. and Waaler, B. A. (1965). Observations on factor VIII (antihaemophilic A factor) stability in rabbit and rat plasma. Estimation of factor VIII in rat blood by a new method. Thromb. Diath. haemorrh. XIV, 374. 43. Abildgaard, C. F., Lewis, J. P. and Harrison, J. (1972). Quantitative coagulation studies in mice. Lab. Anim. Sci. 22, 99. 44. Meier, H., Allen, R. C. and Hoag, W. G. (1961). Normal blood clotting of inbred mice. Am. J. Physiol. 2 0 1 , 3 7 5 . 45. Tschopp, T. B. and Zucker, M. B. (1972). Platelet storage pool disease in rats Blood, 40,217. 46. De Long, E., Uhley, H. and Friedman, M. (1959). Changes in blood clotting time of rats exposed to a particular form of stress. Am. J. Physiol. 196, 429. 47. Friedman, M. and Uhley, H. (1959). Role of the adrenal in hastening blood coagulation after exposure to stress. Am. J. Physiol. 197, 205. 48. Mogenson, G. J. and Jaques, L. B. (1957). The effect of psychological stress procedures on the prothrombin time of rats. Blood, 12, 649. 49. Iversen, J. G. and Waaler, B. A. (1966). The effect of adrenaline infusion and muscular exercise upon the blood levels of factor VIII in rats. Thromb. Diath. haemorrh. XV, 29. 50. Denyes, A. and Carter, J. D. (1961). Clotting time of cold exposed and hibernating hamsters. Nature (Lond.) 190, 450. 51. Houlihan, R. T. (1964). Corrleation of blood clotting time and population density of the vole (Microtus californiens). Proc. Penn. A cad. Sci. 37, 27. 52. Gallimore,M. J., Tyler, H. M.and Shaw, J. T. B. (1971). The measurement of fibrinolysis in the rat. Thromb. Diath. haemorrh. XXVI, 295. 53. Wasantapruek, S. and von Kaulla, K. N. (1966). A serial microfibrinolysis test and its use in rats with liver bypass. Thromb. Diath. haemorrh. XV, 284. 54. Cliffton, E. E. and Mootse, G. (1967). Species variation in fibrinolytic activity. Thromb. Diath. haemorrh. XVIII, 2 9 1 . 274 OTHER MAMMALIAN ORDERS 55. March, N. A. (1970). The kidney and fibrinolysis - a study of aminonucleoside nephrotic rats. Thromb. Diath. haemorrh. XXIV, 26. 56. Latallo, Z., Niewiarowski, S. and Copley, A. L. (1959). Fibrinolytic system of guinea pig serum. A m. J. Physiol 196, 775. 57. Hawkey, C. M.(1970). Fibrinolysis in animals. Symp. zool. Soc. Lond. 27, 133. 58. Ledingham, J. C. G. (1940). Sex hormones and the Foa-Kurloff cell. / . Path. Bact. 50,201. 59. Hovig. T. (1962). The ultrastructure of rabbit blood platelet aggregates. Thromb. Diath. haemorrh. VIII, 455. 60. Hovig, T. (1965). Effect of various enzymes on the ultrastructure, aggregation and clot retraction ability of rabbit blood platelets. Thromb. Diath. haemorrh. XIII, 84. 61. Constantine, J. W. and Hochstein, F. A. (1966). Aggregation of rabbit and guinea pig platelets by oxime esters. Nature (Lond.) 210, 164. 62. Gallimore, M. J., Nulkar, and Shaw, J. T. B. (1965). A comparative study of the inhibitors of fibrinolysis in human, dog and rabbit blood. Thromb. Diath. haemorrh. XIV,144. 63. Svihla, H. (1951). Prolongation of the clotting time of dormant aestivating ground squirrels. Science, 114, 298. 64. MacKenzie, R. D., Henderson, J. G. and Steinbach, J. M. (1971). The evaluation of a method for adenosine diphosphate induced platelet aggregation in the guinea pig. Thromb. Diath. haemorrh. XXV, 30. 65. Harlow, C M . and Selye, H. (1967). The blood picture in the alarm reaction. Proc. Soc. exp. Biol. 36, 141. 66. Martin, K. and Rutty, D. A. (1969). Haematological values of the multi-mammate mouse Praomys (Mastomys) natelensis. Lab. Anim. 3, 27. 67. Godwin, K. O., Frazer, F. J. and Ibbotson, R. N. (1964). Haematological observations on healthy (SPF) rats. Brit. J. exp. Path. 45, 514. 68. Andersen, S. (1966). The physiological range of formed elements in the blood of the harbour porpoise, Phocaena phocaena. Nord. Vet.-Med. 18., 51. 69. Horvath, S. M., Chiodi, H., Ridgway, S. H. and Azar, S. (1968). Respiratory and electrophoretic characteristics of haemoglobin of porpoises and sea lions. Comp. Biochem. Physiol. 24, 1027. 70. Medway, W. and Geraci, J. R. (1964). Haematology of the bottle-nosed dolphin. Am. J. Physiol. 209, 1367. 7 1 . Medway, W. and Moldovan, F. (1966). Blood studies in the north Atlantic pilot whale, Globicephala melaena. Physiol. Zool. 39, 110. 72. Morimoto, Y., Takata, M. and Sudzuki, M. (1921). Untersuchungen über Cetacea. Tohuko J. exp. M ed. 2, 73. Ridgway, S. H. and Johnston, D. G. (1966). Blood oxygen and ecology in porpoises of three genera. Science, 151, 546. 74. Ridgway, S. H., Simpson, D. V. M., Patton, G. S. and Gilmartin, W. G. (1970). Haematoloyc findings in certain small Cetaceans. /. Am. vet. med. Ass. 157, 576. 75. Robinson, A. J., Kropatkin, M. and Aggeler, P. A. (1969). Hageman factor (factor XII) deficiency in marine mammals. Science, 166, 1420. 76. Ridgeway, S. H. (1972). Mammals of the Sea. Biology and Medicine. Thomas, Springfield, Illinois. 77. Holland, J. A. (1969). Discussion of disseminated intravascular coagulation in decompression sickness..U.S. Naval Submarine Medical Center. Report no. 585 Groton, Conn. 78. Eisner, R. (1969). In: The Biology of Marine Mammals (Ed. H. T. Anderson). Academic Press, New York and London. 79. Geraci, J. R. (1971). Functional haematology of the harp seal, Pagophilus groenlandicus. Physiol. Zool. 44, 162. 80. Harrison, R. J. and Tomlinson, J. D. W. (1956). Observations on the venous system of certain Pinnipedia and Cetacea. Proc. zool. Soc. Lond. 126, 205. 81. Bryden, M. M. and Lim, G. H. K. (1969). Blood parameters of the southern elephant seal Mirounga leonina in relation to diving. Comp. Biochem. Physiol. 28, 139. OTHER MAMMALIAN ORDERS 275 83. Jones, R. C. (1972). Personal communication. 84. Simon, K. J. (1961). Haematological studies in elephants. Ind. Vet. J. 38, 2 4 1 . 85. Young, E. (1967). Physiological values of the African elephant, Loxodonta africana. Veterinarian 4, 169. 86. Nirmalan, G., Nair, S. G. and Simon, K. J. (1967). Haematology of the Indian elephant (Elephas maximus). Canad. J. Physio I. Pharmacol. 45, 986. 87. Schermer, S. (1967). The Blood Morphology of Laboratory Animals. F. A. Davis Co., Philadelphia. 88. Gulliver, G. (1854). On the size of the red corpuscles of the blood of the great ant eater Proc. Zool. Soc. Lond. XXII, 24. CMH-19 APPENDIX METHODOLOGY Methods of obtaining blood samples All the results presented have been obtained from study of venous, arterial or heart blood. Peripheral blood has not been used. The use of anaesthetic or tranquillizing drugs is a prerequisite before bleeding many animals. The most usual drugs are listed in Table 1. TABLE 1 ANAESTHETIC AND TRANQUILLIZING DRUGS ANIMAL DRUGS Non-human primates Phencyclidine, Thiopentone Na, Ketamine Phencyclidine, Ketamine Xylazine, Ketamine, Etorphine Etorphine Etorphine, Ketamine Pentobarbitone Na Carnivores Artiodactyls Perissodactyls Marsupials Rodents and rabbits Blood samples were obtained by puncture of a suitable blood vessel using disposable plastic syringes and disposable hypodermic needles. The size of needle and syring was selected according to the site and size of the vessel to be punctured. The most usual routes of sampling are listed in Table 7.2. TABLE 2 MOST USUAL ROUTE OF BLOOD SAMPLING ANIMAL BLOOD VESSEL Non-human primates Carnivores Artiodactyls Perissodactyls Femoral or jugular vein Jugular or cephalic vein Jugular vein Jugular vein or post-auricular vein in rhinoceroses Saphenous or jugular vein Post auricular vein Heart. Marsupials Proboscideans Rabbits, rodents Apparatus Disposable plastic tubes were used for collection and storage of blood samples. New glass tubes were used for clotting and fibrinolytic tests. Blood counts Unless otherwise stated, standard haematological techniques described by Dacie and Lewis [ 1 ] were used. CMH-19* 277 278 APPENDIX Blood sample Blood was collected into plastic tubes containing the dipotassium salt of ethylenediamine tetra-acetic acid (EDTA) at a concentration of 1-2 mg of the dry salt per ml of blood. Blood films were prepared from blood directly from the syringe or as soon as possible from the EDTA sample. They were dried rapidly in air and stained with Leishman stain. Red and white cell counts At the beginning of the survey, blood cells were counted visually using an improved Neubauer counting chamber. Latterly cells have been counted using a Coulter Electronic Particle Counter, model F. Dilutions were prepared in particle-free Eagles solution (Isoton, Coulter Electronics Ltd.). For white cell counts a standard dilution of 1 in 500 was used and the red cells haemolysed by addition of 2% saponin. Red cells were counted at a dilution giving a machine count of 3-8 x 10 6 . Optimum settings for attenuation, aperture and threshold controls were determined for each species. These are listed in Table 3. Counts were corrected for coincidence using the chart supplied by Coulter Electronics Ltd. Haemoglobin concentration This was measured by the cyanmethaemoglobin method. .Standards were obtained from Diagnostic Reagents, Thame, Oxford. Packed cell volume The microhaematocrit technique was used. Centrifugation was standardised at 10,000 for 5 minutes. Reticulocyte count Equal volumes of blood and 1% new méthylène blue in citrate saline were mixed in a small glass tube and incubated at 37°C for 20 minutes. Films were prepared on clean glass slides and examined microscopically without fixation or counterstaining. The number of reticulocytes in 1000 red cells was counted and results recorded as percentage. This method was also useful for observation and enumeration of Heinz bodies. Erythrocyte sedimentation rate The method of Wintrobe was used. Sedimentation was recorded after one hour at room temperature. Stained blood films Air-dried films prepared from native or, occasionally, EDTA blood were stained with Leishman stain. They were examined for the presence of blood parasites, unusual forms of red cells and platelets, the presence of excessive rouleaux etc. For the differential white cell count, 200 white cells were examined. Platelet counts Platelet counts were carried out by phase contrast microscopy using 1% ammonium oxalate as diluent. COAGULATION AND PLATELET FUNCTION TESTS Blood sample The standards set out by Hardisty and Ingram [2] were followed in order to minimise the APPENDIX 279 effects of sampling and storage techniques on the results obtained. Unless otherwise stated, blood was collected into a disposable plastic syringe containing 1 part of 3.8% trisodium citrate to 9 parts of blood. The sample was transferred to a clean plastic tube at 4°C. Further manipulations were carried out without delay. Platelet Poor Plasma (PPP) This was prepared by centrifugation at 4°C for 10 minutes at 6000 rpm. The PPP was separated using a disposable plastic pasteur pipette, taking care to avoid the white cell and platelet layer. The euglobulin lysis test and contact activation test were set up at once. The remaining PPP was distributed in small aliquots in plastic tubes and stored at —35°C. A freshly thawed aliquot was used for each subsequent test. Platelet Rich Plasma (PRP) Citrated blood was centrifuged at 800 rpm for 10 minutes at room temperature. For animals with small red cells some modifications of this regime was necessary. The PRP was separated by means of a plastic pipette and tested at once. One-Stage Prothrombin Time Unless otherwise specified, a saline extract of human brain was used [2]. This was preserved by addition of 0.5% phenol and standardised using normal human plasma. The laboratory reagent was compared with British Comparative Thromboplastin [3]. Clotting time with Russell's Viper Venom (R VV) Russell's Viper Venom (Stypven, Burroughs Wellcome Ltd.) was reconstituted with 0.25% ovolecithin in veronal buffer, pH 7.35. Once prepared the reagent could be stored at 4°C for one week without loss of activity. Volumes each of 0.1 ml of test plasma and RVV reagent were mixed in a clean glass tube and incubated at 37°C for 30 seconds. A stop­ watch was started on addition of 0.1 ml 0.025 M CaCl2 and the clotting time recorded. Partial Thromboplastin Time Cephalin was prepared from acetone extracted human brain by the method of Bell and Alton [4], and standardised using normal human plasma. The test was carried out by the method of Rodman, Barrow and Graham [5]. Recalcification Time This test was carried out as described by Biggs and Macfarlane [6]. Kaolin Clotting Time Light kaolin 1% in Owren's buffer was used. The test was carried out according to Hardisty and Ingram [2]. Thrombin Time Bovine thrombin (Leo Laboratories Ltd.) was used at a concentration of 50 NIH units/ml saline. Fibrinogen (Factor 1) Fibrinogen was measured as clottable protein by a modification of the method of Ratnoff and Menzie [7]. The results, corrected for initial dilution by citrate, were expressed in mg/100 ml of plasma. 280 APPENDIX Contact Activation Test The activity of factors XI and XII was measured by the contact activation test of Margolis [8] as modified by Biggs and McFarlane [6]. The ability of contacted plasma to shorten the partial thromboplastin time of non-contacted plasma of the same animal was recorded. The results were calculated from the following formula: A *· *· A ,ΛΛ CT of contacted rplasma irkrk Activation index = 100 - ■ c , , . - x 100 CT of non-contacted plasma Platelet Factor 3 (PF3) Activity The total and available PF3 was measured by a modification of the method of Hardisty and Hutton [9]. From freshly collected citrated blood, PRP and PPP were prepared. Platelet counts were carried out and, by dilution with a calculated volume of PPP, the number of platelets in the PRP was adjusted to 300 x 103/c.mm. The following mixtures were prepared: i) Test PRP Human PPP Saline 0.1ml 0.1 ml 0.1 ml ii) Test PPP Human PPP Cephalin 0.1ml 0.1 ml 0.1 ml Each mixture was treated with kaolin (0.2 ml. of 5 mg/ml suspension in Owren's buffer, pH 7.35) for 20 minutes at 37°C, mixing frequently to resuspend the kaolin. After exactly 20 minutes, 0.2 ml of prewarmed 0.025 M CaCl2 was added to each tube and the clotting time recorded. To determine the total PF3 present, the test was repeated on standardised PRP in which the platelets had been disrupted by several times immersing the tube alternately in liquid N2 and water at 37°C. PF3 activity was calculated from the formula: DC, .. .. CT with cephalin ■ PF3 activity = C T o f p R p x 100 Platelet Aggregation By dilution with homologous PPP, the platelet count of freshly collected PRP was adjusted to 375-400 x 103 per c.mm. Aggregation on addition of adenosine diphosphate (ADP) was measured by continuous recording of changes in optical density by the method of Born [23]. Plasma ADP-inhibitor This was estimated by the method of Hawkey and Symons [19]. Clot Retraction Platelet rich plasma, 1 ml was mixed with 0.2 ml 0.1 M CaCl2 in a pyrex test tube, internal bore 8 mm, previously heated to red heat in a bunsen flame. After two hours at 37°C the length of the retracted clot and height of liquid in the tube were measured. Percentage retraction was calculated from the formula. Clot retraction % = 100 - ^ " g t h o f c l o t height of serum x 100 APPENDIX 281 Antithrombin Activity The ability of PPP to neutralise the effect of bovine thrombin (Leo Pharmaceutical Co.) was measured by the method of Astrup& Darling [10] as modified by Biggs & MacFarlane [6]. Factor XIII A non-quantitative test for factor XIII was carried out by exposing a standard clot prepared by reclacification of citrated plasma to the action of 5M urea. Failure of the clot to dissolve indicates that fibrin-i, which requires the presence of factor XIII for its formation, is present [11]. Clotting Factor Assays Calibration curves. The activity of factors II, V, VIII, IX, X, XI and XII have been expressed with reference to calibration curves prepared from human plasma. In each case the curve was prepared from a pool of plasma collected from 10 normal humans or from a single donor known from previous tests to have 100% of the factor in question. Values of greater than 100% were obtained by extrapolating the curve and checked by dilution of the test sample. Expression of the results of factor VII assays is discussed later. Factor II (Prothrombin) The absolute level of prothrombin was measured by a modification of the method of Pechet [12] and by the Taipan venom method of Denson [13]. In the first method, standardised human brain extract was used as a source of thromboplastin and in order to mask the species specificity between this reagent and heterologous factors VII and X, these factors were supplied by the inclusion of incubated normal human serum in the test mixture. Because surprisingly low levels of factor II were found in some animals in spite of this precaution, many estimations were carried out in parallel using Taipan venom. This venom converts prothrombin directly to thrombin and should react equally well with prothrombin of all mammals. Results obtained with this method were similar to those from the conventional method, suggesting that the low levels of factor II activity found in many species may be a true representation of physiological levels. Factor V Factor V activity was assayed by the method of Stefanini [14] using incubated, oxalated human plasma as a source of factor V — free substrate [15], and standardised human brain extract as thromboplastin. Factor VII Factor VII activity was measured by the method of Dische [16]. For primates, human brain extract was used as a source of thromboplastin and factor Vll-free plasma was obtained from a patient with congenital factor VII deficiency. This plasma contained less than 1% of factor VII. For carnivore assays factor Vll-free substrate was prepared as follows. Four Putorius furo (ferrets) were given intramuscular injections of 60mg Warfarin Na. This exceptionally high dose was found to be necessary in order to obtain the required effect. Blood samples were collected from these animals 24 and 36 hours after the injection and animals with prothrombin times of greater than 60 seconds (control 12 seconds) were exsanguinated and the citrated plasma pooled. Assays of factors Π, V and X on this plasma gave values of greater than 80% in each case. It was therefore concluded that this plasma was deficient in factor VII. With this plasma carnivore brain extract was used as a source of thromboplastin. Because of the difficulty in obtaining species specific substrate 282 APPENDIX plasma, factor VII assays have not yet been attempted on other groups of animals. Factors VIII and IX These factors were assayed by the one-stage method of Hardisty & Macpherson [IT] using human brain cephalin [4] as a source of platelet substitute and substrate plasma from a severe human haemophiliac or patient with Christmas disease as appropriate. Factor X Factor X was assayed by the method of Denson [18]. Russell's viper venom (RVV) which is used as a source fo thromboplastin in this test reacts equally well with clotting factors of most other mammals [19]. The influence of the depressed reaction between R W and monkey plasma [19] on this assay does not influence the result since factors II and V are bovine in origin. Factors XI and XII The activity of these factors was assayed by the one-stage method described by Denson [20] using human brain cephalin as a source of platelet substitute and substrate plasma from human individuals specifically deficient in the factor to be measured. FIBRINOLYTIC TESTS Euglobulin lysis time This test was set up on freshly prepared PPP within 30 minutes of obtaining the blood sample. Plasma 0.1 ml was added to 0.4 ml ice cold distilled water and the pH adjusted to pH 5.3 by addition of 0.1% acetic acid. The euglobulin precipitate was obtained by centrifugation at 4°C for 10 minutes at 6000 rpm and redissolved in 0.3 ml phosphate buffer, pH 7.3. Thrombin 0.1 ml of a solution containing 50 NIH units/ml was added and the tube placed in a waterbath at 37°C. The contents were examined after 1 minute to ensure that clotting had occurred and thereafter at intervals for lysis. The lysis time was the interval between addition of thrombin and complete dissolution of the clot. Clots were discarded after 24 hours in most cases. Plasminogen Assay Plasminogen was measured by the caseinolytic method of Alkjaersig, Fletcher and Sherry [21]. Activation was achieved by human urokinase. Antiflbrinolysins These were measured by the method of Blix. [22]. 283 APPENDIX TABLE 3 SETTINGS FOR COULTER ELECTRONIC PARTICLE COUNTER, MODEL F, USING 1 O O p APERTURE TUBE B PRIMATES Ring-tailed Lemur Thick-tailed Bushbaby Owl Monkey Capuchin Monkey Squirrel Monkey Woolly Monkey Rhesus Monkey Barbary Ape Mangabeys Patas Monkey Mona Monkey Vervet Monkey Baboons Gibbons Orang Utan Chimpanzee Mountain Gorilla Man CARNIVORES Timber Wolf Domestic Dog Bushdog Arctic Fox Bat-eared Fox Spectacled Bear Coati Giant Panda Stoat Tayra Palm civet Hyaena Lion Leopard Wild Cat Tiger Cheetah Jaguar Golden Cat Domestic Cat Leopard Cat ARTIODACTY LS Bush Pig Collared Peccary Alpaca Bactrian Camel Axis Deer Hog Deer Wapiti Pere Davids Deer Swamp Deer Moose Reindeer Chinese Water Deer .5 .35 .5 .5 .5 .5 .5 .5 .5 $35 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .35 .35 .5 .35 .35 .5 .35 .5 .35 .35 .35 .35 .35 .35 .35 .3s .35 .5 .5 .35 .35 .35 .35 .35 .35 .35 .35 .35 .35 Red Cells D T 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 8 16 16 8 16 16 16 16 16 16 16 16 16 16 16 15 15 15 15 15 10 15 10 10 15 10 10 15 15 10 15 10 10 10 15 10 1 1 1 16 16 8 8 16 16 16 16 16 16 16 16 10 10 10 10 10 10 10 15 10 10 15 10 1 1 1 B 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 White Cells D T 32 32 32 15 15 10 16 16 20 32 20 10 32 32 15 10 16 20 32 32 32 32 32 32 32 15 10 15 15 10 15 10 16 20 16 16 16 16 16 20 20 20 32 10 15 10 16 20 32 32 12 10 16 16 16 20 32 32 32 15 10 15 15 15 15 15 15 16 16 16 20 20 20 16 20 32 1 32 32 32 32 10 15 15 10 15 15 15 1 1 16 16 10 10 1 1 1 1 1 1 1 1 32 32 16 16 16 APPENDIX 284 ARTIODACTY LS (Cont.) Kudu Eland Nilgai Anoa Gnu Bison Yak Blackbuck Musk Ox Goat Ibex Sheep Mouflon Barbary Sheep B D T B D T .35 .35 16 16 16 16 16 16 16 8 8 8 15 1 1 1 1 1 1 1 1 7 1 1 1 1 1 16 16 15 15 10 .5 .35 .35 .35 .35 .5 .35 .35 .35 .35 .35 .35 PERISSODACTYLS Domestic Horse Wild Horse Zebra White Rhinoceros Tapir RODENTS Hamster Lemming Gerbil Spiny Mice Viscdcha Chinchilla Capybara COYPU Guineapig .35 .35 .35 .35 .5 .5 .5 .35 .35 .5 .5 .5 .5 .5 OTHERS Common Seal Elephants Sealion Rabbit Kangaroos Wallabies Dolphins .5 .5 .707 .5 .5 .5 .707 B = Attenuation D = Aperture T = Threshold 8 8 8 8 10 10 10 15 15 10 15 15 10 10 15 15 15 16 16 16 16 16 10 10 10 16 16 16 16 16 10 16 16 16 10 10 10 15 15 15 16 16 16 16 16 16 16 32 16 16 16 16 16 32 16 16 16 16 16 32 10 16 16 16 10 32 10 15 10 15 15 15 10 15 10 15 15 15 15 10 1 1 16 16 I 32 15 15 10 16 16 15 15 32 32 20 16 20 16 16 20 15 15 20 10 15 15 15 10 1 1 1 20 1 15 15 10 15 10 32 32 32 32 32 10 20 15 15 15 285 APPENDIX References 1. Dacie, J. V. and Lewis, S. M. (1968). PracticalHaematology. J. and A. Churchill, London. 2. Hardisty, R. M. and Ingram, G. I. C. (1964). Bleeding Disorders. Investigation and Management. Blackwell Scientific Publications, Oxford. 3. Poller, L. (1964). Standardization of anticoagulant treatment; the Manchester Regional Thromboplastin Scheme. Brit. Med. J. 2, 565. 4. Bell, W. N. and Alton, H. G. (1954). A brain extract as a substitute for platelet suspensions in the thromboplastin generation test. Nature, 174, 880. 5. Rodman, N. F., Barrow, E. M. and Graham, J. B. (1958). Diagnosis and control of the haemophiloidstates with the partial thromboplastin time (P.T.T.) test. Am. J. clin. Path. 29, 525. 6. Biggs, R. and Macfarlane, R. G. (1962). Human Blood Coagulation and Its Disorders. Blackwell Scientific Publications, Oxford. 7. Ratnoff, O. D. and Menzie, C. (1951). A new method for the determination of fibrin in small samples of plasma. J. Lab. clin. Med. 37, 316. 8. Margolis, J. (1957). Initiation of blood coagulation by glass and related surfaces. / . Physiol. 1 3 7 , 9 5 . 9. Hardisty, R. M. and Hutton, R. A. (1965). The kaolin clotting time of platelet-rich plasma: a test of platelet factor-3 availability. Brit. J. Haemat. 11, 258. 10. Astrup, T. and Darling, S. (1942). Measurement and properties of antithrombin. Acta Physiol. Scand. 4, 293. 11. Josso, F., Prou-Wartelle, O., Alagille, D. et Soulier, J. P. (1964). Le déficit congénital en facteur stabilisant de la fibrine (facteur XIII). Etude de deux cas. Nouv. Rev. franc Hémat. 4, 267. 12. Pechet, L. (1964). One-stage specific determination of factor II (prothrombin). In: Blood Coagulation, Haemorrhage and Thrombosis, (Eds. Tocantins and Kazal). Grune and Stratton, London and New York. 13. Denson, K. W., Borrett, R. and Biggs, R. (1971). The specific assay of prothrombin using the Taipain snake venom. Brit. J. Haemat. 2 1 , 2 1 9 . 14. Stefanini, M. (1951). Activity of plasma làbile factor in disease. Lancet, i, 606. 15. Wolf, P. (1955). A modification of Stefanini's method of estimating factor V activity using human oxalated plasma. /. clin. Path. 6, 34. 16. Dische, F. E. and Benfield, V. (1959). Congenital factor VII deficiency. Haematological and genetic aspects. Acta haemat. 2 1 , 257. 17. Hardisty, R. M. and MacPherson, J. C. (1962). A one-stage factor VIII (antihaemophilic globulin) assay and its use on venous and capillary plasma. Thromb. Diath. haemorrh. 7,215. 18. Denson, K. W. (1961). The specific assay of Prower-Stuart factor and factor VII. Acta. haemat. 25, 105. 19. Hawkey, C. and Symons, S. (1966). Coagulation of primate blood by Russell's viper venom. Nature (Lond.) 210, 141. 20. Denson, K. W. (1972). In: Human Blood Coagulation Haemostatis and Thrombosis, (Ed. R. Biggs). Blackwell Scientific Publications, Oxford. 21. Alkjaersig, N., Fletcher, A. P. and Sherry, S. (1959). The mechanism of clot dissolution by plasmin. /. clin. Invest. 38, 1086. 22. Blix, S. (1964). The quantitative determination of fibrinolytic inhibitors in plasma or serum by means of the fibrin plate. Scand. J. clin. lab. Invest. 16, 403. 23. Born, G. V. R. (1962). Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature (London) 194, 927. AUTHOR INDEX Abildgaard, C. F., 84,273 Ackart, R. J., 137 Adams, L., 83 Adval, S. C, 214 Afonsky,D., 137 Aggarwala, A. C, 213 Aggeler, P., 14, 274 Ahlgren, S. A., 82 Aitken, G. J., 156 Alagille, D., 285 Alekseeva, L. V., 81 Alencar, R. A., 215 Alexander, E. R., 82 Aliakbari, S., 139 Alkjaersig, N., 285 Allen, B.V., 15,157 Allen, J. R., 81,82, 84 AUen, R. C, 273 Alton, H. G., 285 Andersen, S., 14, 274 Anderson, A. C, 137 Anderson, E. T., 83 Anderson, L., 137 Andoo, K., 81 Andrew, W., 14, 272 Anwar, A., 213 Archer, R. K., 156, 157, 215, 273 Arkel,C, 215 Astrup, T., 215,285 Azar, S., 274 Baker, J. A., 214 Bal, H., 81 Banerjee, S., 81,213 Bangs, E. F., 272 Barber, T. L., 214 Barkham, P., 156 Barnstein, N. J., 80 Barrow, E. M., 285 Bartels, H., 80, 272 Basser, W., 138 Becker, D. E., 212 Behrman, R. E., 81 Beischer, D. E., 83 Belamarich, F. A., 14 Beihausen, L. P., 139 Bell,W. N., 156, 285 Benfield, V., 285 Bennet, D. G., 214 Bentink-Smith, J., 215 Benyesh-Melnick, M., 82 Berchelmann, M. L., 82 Berman, A. R., 80 Betke,K.,213 Bhalla,N.P.,215 Bhalla, R. C, 215 Bhattacharjee, R. C, 213 Bidwell,E. R., 214 Biggs, R., 285 Bigland, C. H., 15 Bilbey, D. L. J., 272 Bilimoria, H. S., 80 Bird, R. M., 138 Birndorf, N. I., 83 Bischoff, 213 Bishop, G. W., 137 Blackwell, L. G., 82 Blitslein, L, 82 Blix, S., 285 Blofield, B. A., 14 Blomback, B., 214 Blomback, M., 214 Bogart, R., 214 Bolton, C. H., 273 Born, G. V. R., 14, 285 Borrett, R., 285 Botti, R. E., 157 Bottiger, L., 14, 157 Bowie, E. J., 214 Bowman, H., 137 Bowman, L. G., 213 Brenon, H. C, 156 Brett, I. J., 83 Breukink, H. J., 215 Brinkhous, K.M., 138, 214 Britton, J. W., 212 Brock, W. E., 138 Bronsdon, A., 81 Brown, D. G., 156 Brown, J. G., 214 Brown, R. B., 156 Brown, R. C, 214 Bryan, F. T., 15 Bryden, M. M., 274 Buchanana, R. D., 80 Buckner, R. G., 138 Bullock, B. C, 83 Buluk, K., 215 Bunce, S. A., 213 Bunting, D. L., 138 Burns, K. F., 80 Burnet, S. H., 272 Burton, L. K., 139 Bushby, S. R. M., 82, 137 Bushneil, L. D., 272 Buttav, H. S., 215 Cady, B. J., 157 Caen, J. P., 273 Cameron, D. J., 272 Campbell, D. H., 272 Capel-Edwards, K., 83, 139 288 Carlisle, C. H., 137 Carr, D. T., 138 Carstens, L. A., 84 Carter, J. D., 273 Carter, J. R., 213, 214 Cartwright, T., 15,214 Cawein, M., 156 Cerilli, G. J., 82 Chaffee, R., 84 Chakrabarty, A. S., 81 Chalifoux, L., 80 Chamberlin, W. E.,212 Chan, J. Y. S., 214 Chardome, M., 80 Charipper, H. A., 80, 213,272 Chattopadhyay, S. K., 215 Cherkovich, G. M., 80, 81 Chernigovskaya, 84 Chiodi, H., 274 Christoph, H. J., 138 Cintra, L. C , 215 Clark, B. B., 137 Clark, P. F., 81 Clawson, A. B., 212 Clevenger, A. B., 84 Clifford, D. H., 138 Cliffton, E. E., 273 Cole, K. W., 214 Colo vos, N. F., 213 Conejeros, M., 273 Conning, D. M., 139 Conrad, M., 84 Constantine, J. W., 273, 274 Coombes, A. L, 137 Cooper, R. G., 84, 214 Copley, A. L., 274 Cornell, C. N., 214 Couturier, M. A., 138 Cranmer, M., 83 Creager, J. G., 82 Crook, I. G., 156 Cross, F. H., 156 Dacie, J. V., 285 Dack, G. M.,81 Darling, S., 285 Das Gupta, C. R., 82 Davidson, H. A., 137 Day, P. L., 81 DeBoer, B., 137 Delaune, E., 212 Del Favero, J. E., 82 De la Pena, A., 80, 84 De Long, E., 273 Dennis, L. H., 84 Denson, K. W. E., 14, 285 Denyes, A., 273 Depaoli, J. R., 83 Desai, R. G., 272 Desowitz, R. S., 80 Deutsch, E., 214 Dew, S. M., 213 Dhanda, M. R., 156 Diâs Rivera, R. S., 82 Didisheim, P., 138, 139, 214, 215, 272 AUTHOR INDEX Dieterich, R. A., 137 Dike, G. W. R., 138,214 Dillingham, L. A., 81 Dimock, W. W.,212 Dische, F. E., 285 Dodds, W. J., 139 Doolittle, R. F., 14 Dougherty, R. W., 213 Downie, H. G., 138, 139 Doyle, C , 214 Duke, K. L., 14,213 Dunning, W. F., 272 Easterday,B. C.,214 Ederstrom, H. E., 137 Edington, G. M.,81 Eichelberger, J. W., 84 Einheber, A., 82 Elliott, R. B., 272 Eisner, R., 274 Elvehjem, C. A., 81 Emmons, P. R., 273 Endresen, G. K. M., 273 Erickson, A. W., 138 Esnouf, M. P., 14 Essex, H. E., 138 Ewald, B. H., 137 Fantle, P., 15, 143, 157,272 Fegley,H. C , 81 Feldner, M. A., 83 Ferguson, F. G., 80 Fernbach, D. J., 82 Field, M. A., 138 Field, R. A., 138 Fiennes, R. N. T.-W., 215 Fineg, J., 80 Finlayson, R., 15, 139 Florio, L., 272 Flute, P. T., 156 Flux, W. G., 272 Fo Penha, A. M., 215 Foy, H., 80, 82 Fraser, A.C., 212 Frazer, F. J., 274 Friedman, M., 273, 274 Fufacheva, A. A., 81 Fujiwara, T., 81 Fulton, G. P., 14, 272 Furry, D. E., 83 Gagnon, J., 82 Gajewski, J., 213 Gallimore, M. J., 273, 274 Gangwar, P. C , 214 Garb, S., 214 Garcia, F. G., 83 Gardner, M. B., 80 Gardner, V. M.. 272 Gargus, J. L., 81 Garner, R., 139 Gautam, O. P., 215 Gee, W., 137 Geever, E. F., 82 Genovese, R. L., 137 AUTHOR I N D E X Geraci, J. R., 274 Gibbs, H.C., 213 Gibson, W. S., 15 Gillespie, J. H., 214 Gillson, R. E., 14 Gillmartin, W. G., 274 Girod,C,82 Godfrey, D. G., 80 Godwin, K. O., 274 Goldzieher, J. W., 80, 84 Good, A. L., 138 Gorski,T. W., 137 Go wer Smith, S., 137 Graham, J. B., 138,285 Grassini, V., 272 Greatorix, J. C , 212 Greenberg, L. D., 81 Greenley, F.,213 Gresham, G. A., 80 Griffiths, P. R., 138, 156,215 Gropalan, C , 82 Grüner, O. P. N., 273 Grunsell, C. S., 212 Guiler, E. R., 272 Gulliver, G., 1 4 , 2 1 3 , 2 7 5 Hackett, E., 14, 15 Haines, D. E„ 83 Hall, D. E., 83, 139 Hall, F. G., 213 Hammerton, A. E., 214 Hammon, W. D., 137 Hampton, J. W., 8 3 , 8 4 , 138 Hampton, S. H., 80 Hanley, W. C , 80 Hann,0., 14, 15 Hansen, M. F., 156 Hardisty, R. M., 285 Haring,C M., 157 Harlow, C. M., 274 Harrison, J., 84, 273 Harrison, R. J., 274 Hart, H., 215 Hartroft, W. S., 83 Hathaway, H. S., 139 Hathaway, W. E., 139 Hathout, A. F., 212 Hattori, K., 1 3 9 , 2 1 5 , 2 7 2 Hawkey, C. M., 14, 15, 83, 84, 138, 274 Hay, D., 137 Heddle, R. W. L., 272 Hedgradt,G., 138 Henderson, J. G., 274 Henschen, A., 214 Hensley, J. C , 82 Herbert, C. N., 212, 213 Hermoso-Perez, C , 139 Hernândes Morales, F., 82 Heuschele,W. P., 214 Heyns, H., 212 Higgins, G. T., 272 Hill, W. C. Osman, 84 Hoag, W. G., 273 Hochstein, F. A., 274 Hock, R. J., 138 Hodgetts,V. E.,213 Hodson, H. H., 80 Hoeksema,T. D., 138, 139 Hogan, A. G., 214 Holland, J. A., 274 Hollingsworth, K. P., 156 Holman, H. H., 156, 157, 212, 213 Holmes, K. R., 83 Honjo, S., 80 Horvath, S. M., 8 4 , 2 7 4 Houlihan, R. T., 273 Hovig,T.,274 Howard, A. N., 80 Hughes, C. D., 215 Hull, F. E., 156 Humphrey, J. H., 14 Hunt, R. D., 80, 83 Huntsman, R. G., 14 Hum, M. M., 14 Huser, H. J., 80 Hutchins, D. R., 157 Hutt,F. B., 138 Hutton, R. A., 285 Ibbotson, R. N., 274 Iglesia, F. A. de la, 83 Imaizumi, K., 81 Ingram, G. I. C , 285 Inoue, M., 81 Irfan, M., 137,138 Irsigler, K., 214 Itakura, C.,81 Iversen, J. G., 273 Ives, M., 81 Jackson, C. H., 81 Jacobs, G.I., 137 Jaques, L. B., 137 Jennings, A. R., 137 Jochim, M. M., 214 Johnson, A. J., 83 Johnson, A. J. J., 272 Johnson, C. A., 84 Johnston, D. G., 274 Jones, R. C., 275 Jones, W. H., 215 Jordan, P., 138 Josso, F., 285 Judd,J. M., 81 Kabat,C.,273 Kahn, R. A., 214 Kalter, S. S., 80, 82 Kaneko, J. J., 214 Katz, E. M., 215 Katz, S., 83, 84 Kein, M., 14 Kekwick, R. G. O., 214 Kelley,G. W., 156 Kennedy, A. H., 137, 138 Killick-Kendrick, R., 80 Kimball, A. W., 156 King, E. S., 273 King, T. O., 81 Kirkland, J. L., 214 290 Kitchen, H., 213 Kleihauer, E., 80, 272 Klüver, C , 83 Kneebone, G. M., 272 Kociba,G. J., 215 Kohli, R. N., 213 Kondi, A., 80, 82 Kordich, L., 84 Kozma,C. K., 273 Kraft, H., 138,214 Krise, G. M., 8 1 , 8 2 Kropatkin, M., 14, 274 Krumbhaar, E. B., 82 Kubin,R., 138 Kuksova, M. I., 80, 81 Kull, J. E., 139 Kuo, C. C , 82 Kushner, H. F., 213 LalKaldra, S., 81 Landaverde, M., 137 Lang, E. M., 80, 272 Lang, R. E., 84 Langbehn, H. R., 83 Langdell, R. D., 15 Langston, W. C.,81 Langham,W. H., 82 Lansberg, J. W., 137 Lapin, B., 80, 8 1 , 8 2 Latallo, 2, 274 Latimer, H. B., 272 Law, R. G., 138 Lawrence, J. H., 137 Lawrence, W. C , 138 Lechler, E., 214 Lechner, K., 214 Ledingham, J. C. G., 274 Lee, B. D., 80 Lehmann, H., 14, 213 Lehner, N. D., 83 Le Page, R., 14 Lepherd, E. E., 157 Lewis, J. H., 1 3 9 , 2 1 5 , 2 7 2 Lewis, J. P., 83, 273 Lewis, S. M., 285 Lifshitz, F., 137 Lim, G. H. K., 274 Link, K. P., 214 Littlejohn, A., 156 Lord, G. H., 273 Lovett, R. L., 80 Lucas, M., 273 Lucey, J. F., 81 Luedke, A. J.,214 McCall, K. B., 81 McGee,W. R., 156 McLeod, J., 156 McTaggart,H. S.,212 Mackenzie, R. D., 274 MacNamee, J. K., 277 MacPherson, J. C , 285 Macfarlane, R. G., 157, 285 Madison, M., 272 AUTHOR INDEX Maffet, M., 272 Mairs, R. E., 157 Majumder, D. N., 82 Malhotra, O. P . , 2 1 3 , 2 1 4 Malinow, M. R., 83, 84 Mann, F . D . , 14 Mann, G. N., 83 Manning, P. J., 83 Manrisa, M., 213 March, N. A., 274 Margolis, J., 285 Marr, A. G., 143, 157 Marsh, W. L., 84 Martin, K., 274 Martinez, R. S., 81 Mason, M. M., 138 Mason, R. G., 83, 139,215 Mastrangelo, P., 213 Mathur, P. B., 215 Matthews, C , 83 Matthijssen, C , 84 Maynard, F. L., 14 Mays, A., 273 Maxwell, C M . , 272 Mbaya, K., 80, 82 Medway, W.,274 Mehlhorn, G., 138 Meier, H., 275 Melnick, J. L., 82 Melville, G. S., 81 Ménaché, D., 14 Menzie, C , 285 Meredith, J. H., 212 Mertz, E. T., 214 Metcalfe, J., 272 Miller, L. G., 80 Miller, M., 83 Miller, W. C., 156 Müls, D. C.B., 14, 138,273 Mircovic, R. R., 82 Mitchell, G. B., 214 Moberg, R., 212 Mogenson, G. J., 273 Moldovan, F., 274 Mole, R. H., 81 Moon, H. J., 213 Moore, C. P., 80 Moore, V. A., 157 Moor-Jankowski, J., 80 Mootze,G., 273 Morag, M., 212 More, T. K., 215 Morimoto, Y., 274 Morris, D., 2 Morris, P. G., 156 Morrow, A. C., 81 Mugrage, E. R., 272 Muhrer, M. E.,214 Müller, E. R., 212 Müllertz, S., 15 Murphy, L. C., 214 Musacchia, X. J., 137 Musser, J. H., 82 Mustard, J. F., 138, 139 Myers, J. H., 82 AUTHOR Nafez, E. S.,213 Naguchi, Y.,81 Nair, S.G., 2 1 5 , 2 7 5 Nakagawa, M., 81 Napier, J. R., 2 Napier, P. H., 2 Neser,C. P., 157 Neufeld, E. F., 272 New, A. E., 83 Newberne, P. M., 273 Newsome, F. E., 81 Nicol, T., 272 Niewiarowski, S., 274 Nigi, H., 81 Nilsson, D., 273 Nirmalan,G.,215,275 Nordoy, A., 273 Norkina, L. N., 81 Norris, J. H., 212 Nossel, H., 157 Nulkar, 274 Nurden, A. T., 15 Odegaard, A. E., 273 Ogawa, H., 81 Ollendorf, P., 156 Onkley, J. L., 14 O'Roke, E. C , 213 Osbaldiston, G. W., 138, 156, 213, 215 Osborne, J. C , 212 Oser, F., 84 Overman, R. R., 81 Owen, C. A., 214 Oxnard,C.E., 8 1 , 8 2 Pace, N., 80 Pallotta, A. J., 80 Parer, J. T., 80, 272 Parrà, A., 137 Parsons, R. S., 272 Passovoy, M., 83 Patel, B. M.,212, 214 Patton, G. S., 274 Peacock, R., 139 Pearson, J. D., 83 Pearson, R., 137 Pechet, L., 285 Peery, T. M., 84 Penny, R. H. C , 137 Peoples, A., 83 Perk, K., 213 Permpanich, B., 80 Persson, S., 156 Phillips, C. F., 82 Pilling, T., 139 Pintor, P. P., 272 Poller, L., 285 Ponder, E., 80, 1 5 6 , 2 1 3 , 2 7 2 Pope, B. L., 83 Poppen, K. J., 81 Porta, E. A., 83 Porter, J. A., 83 Potkay, S., 137 Povar, M. L., 213 Powell, T. L., 137 INDEX Pridgen,W. A . , 8 1 Prine, J. R., 80 Prou-Wartelle, O., 285 Putnam, F. W., 213 Quick, A. J., 272 Rahlmann, D. F., 80 Rann, B., 139 Ranken, J. D., 213 Rao, G. N., 84 Rao, M. N., 81 Rao, M. V . R . , 81 Ratnoff, O. D., 157,285 Ray, A. P., 81 Read, M. S., 83, 139,215 Reber, K., 273 Reda, H., 212 Reece,W. O., 137 Rees, Evans, E. T., 213 Reich, C., 272 Reid, J . T . , 212 Reigei, K., 272 Richards, W. H. G., 84 Richard, C. G., 138 Ridgway, S. H., 14,274 Ridley, D., 84 Rieber, E. E., 80 Riegel, K., 80 Riley, J. F., 14 Rinehart, J. F., 81 Riser, W. H., 137 Robbins, M.,212 Roberts, D. J., 215 Robertson Smith, D., 212 Robinson, A. J., 14, 274 Robinson, G. A., 138 Robinson, F. R., 81 Rodman, N. F., 285 Rodriguez, A. R., 80 Roofe, P. G., 272 Rosen, ?, 213 Rosenblum, L. A., 83 Rowntree, P. G. M.,212 Rowsell, H. C , 138 Roy, A., 215 Russell, E. S., 272 Rust, J. H., 156 Rutty, D. A., 274 Ryan, G. M., 212 Sadun, E. H., 83 Salsbury, R. L., 212 Sanger, V . L . , 157 Sastry, G. A., 156 Sauer, R. M., 81 Scarborough, R. A., 137, 157, 212, 272 Schermer, S., 84, 275 Schmidt, W. L, 1 3 7 , 2 7 2 Schofield, F.W., 214 Schumacher, H. B., 137, 272 Seal, U . S . , 138 Seaman, A. J., 83 Sears, H. S., 213 Secord, D., 138 291 292 Seigfried, L. M.,81 Selye, H., 274 Setzler, E.,81 Seymour-Jones, E., 81 Shaker, M., 215 Shalm, O. W., 14, 137, 138, 156, 212, Sharp, A. A., 138 Shaw, J. S., 137 Shaw, J. T. B., 273, 274 Sheehy, R. W., 272 Sheehy, T. W., 80 Shepro, D., 14 Shermer, S., 15 Shipley, F. G., 84 Shukers, C. F., 81 Shulka, P. C , 214 Siddons, R., 82 Simon, K. J., 275 Simpson, G. G., 2 Simpson, D. V. M., 274 Sinakos, Z., 273 Singh, T. I., 213 Sjolin, K. E., 156 Smith, I. M., 212 Smith, P. K., 82 Smith, R., 84, 138 Smith, S. E., 212 Smith, W. T., 82 Soliman, M. K., 215 Soni, B. K., 213 Sorenson, M. W., 84 Soulier, J. P., 14, 285 Spicer, E. J. F., 81 Spitzer, E. H., 137 Spurling, N., 139 Srikantia, S. G., 82 Stafford, J. L., 14 Starr, R. M., 15 Stefanini, M., 285 Steinbach, J. M., 274 Stewart, J., 157 Stewart, O. M., 272 Stopforth, A., 15 Stormorken, H., 139, 157 Storz, J., 214 Stowe, C M . , 138 Stowe, E.C., 1 3 8 , 1 5 6 , 2 1 5 Stratman, S. L., 273 Stratsev, V. G., 81 Straughn, W., 214 Studer, A., 273 Suârez, R. M., 82 Sudzuki, M., 274 Surgenor, D. M., 14 Sutherland, G. B., 272 Svilha,A., 137 Svilha, H., 274 Swain,W. R., 138 Sweet, M., 137 Swenson, M. J., 215 Switzer, J. W., 8 1 , 8 2 Symons, C , 83, 84, 285 Takahashi, R., 81 Takasaka, M., 81 AUTHOR INDEX Takata, M., 274 Takemura, N., 81 Taliaferro, W. H., 83 Tanaka,T., 81 Taylor, W. J., 213 Teeri, A. E.,213 Thakore,V. R., 214 Thompson, H. H., 214 Thompson, M. C , 212 Tillet, W. S., 272 Todd, A. C , 156,273 Toh, C. C , 14 Tomlin, S.C., 156 Tomlinson, J. D. W., 274 Torres, L. M., 82 Trapani, I. L., 272 Trapp, A. L., 157 Trobaugh, F. E., 83 Trum, B. F., 156, 157 Tschopp, Th B., 138, 273 Turner, A. W., 213 Tuttle,A. H., 81 Tyler, H. M., 273 Uhley, H., 273 Undritz, E.,213 Upcott, D.H., 212, 213 Uvarova, 84 van den Berghe, L., 82 vanLoon, E. J., 137 van Oye, E., 80 von Doenhoff, A., 84 von Hauser, P., 137 von Kaulla, K. N., 139,273 Vaghari, P.M., 212 Vaida,M. B., 212 Vaikya,M. B., 214 Velasco, M., 137 Velden, N. A., 215 Vice, T. E., 80, 82 Virchow,W., 213 Vogel, J.A., 137,215 Vogel, L., 215 Vogin, E. E., 84 Voiler, A., 84 Vondruska, J. F., 82 Waaler, B. A., 273 Wada, E. M., 214 Wagner, R. H., 214 Wahlstrom, J. D., 137 Ward, A. H., 81 Ward, G. M., 212 Ward, H. A., 272 Warshaw, A. L., 81 Wartelle, O., 14 Wasantapruek, S., 273 Watering, C. C , 215 Watson, D. F., 212 Watson, G. M., 272 Watson, P. L., 83 Weiner, A. S., 80 Weisbroth, S. H., 273 Wellde, B. T., 83 AUTHOR INDEX Welsch, R. S., 84 West, G. B., 14 Whitaker, M. W., 156 Whitcomb,W. H., 81 Whitehead, W. H., 137 Whitlock, S. C , 213 Whitton,C. F., 213 Wilbur, G G., 33, 137 Wüding, J. L., 156 Wükinson, P., 272 Williams, J. S., 83 Wüliams, W. T., 14 Wilson, R., 137 Windle, W. F., 137 Wintrobe, M. M., 14, 83, 137, 272 Wisecup, W. G., 80 Wisnicky,W., 137 Wolf, P., 285 Wredman, A., 83 Wulz,C. E., 138 Wurzel, H.A., 138 Wyant, Z. N., 156 Yakovleva, L. A . , 8 1 Yang, C. S., 82 Yasukawa, J. J., 84 Yeager, J. F . , 8 0 , 213, 272 York, C. J., 214 Youatt,W. H., 138 Young, E. Yuthastrokosol, V., 80 Ziegler, R. F., 81 Zinn,R. D., 137 Zollman, P. E., 214 Zucker, M. B., 273 SUBJECT INDEX Absolute values, 17 Acinonyx jubatus, 12, 136 Acquired coagulation defects, 18, 165, 233 Actinopterigii coagulation in, 10 red cells in, 3 Adenine nucleotides, 8 Adenosine, 88 inhibition of platelet aggregation by, 229, 232 Adenosine diphosphate, see ADP ADP-induced platelet aggregation, 8, 19, 142, 164 in Artiodactyla, 163, 164 in Carnivora, 88, 89, 164 in man, 19 in Perissodactyla, 142 in Primates, 18, 19 in rabbit, 229 in rat, 232 ADP-inhibitor, 8 in Carnivora, 88 measurement of, 280 in Perissodactyla, 142 in Primates, 18 in rabbit, 229 in rat, 232 species variation, 8 Adrenaline activation of fibrinolysis, 89, 165 aggregation of platelets, 88, 229, 232 effect on spleen, 141 Afibrinogenaemia, goats, 165 Age, 1, 2 influence on blood count in Artiodactyla, 160, 163 elephants, 267 Perissodactyla, 141 Primates, 17, 18 rabbit, 229 Rodentia, 232 Agouti, 232 Alopex lagopus, 96 Alouatta caraya, 34 Alpaca, 159, 160,171 Altitude, 6 effect on red cells, 6, 85, 160 Amphibia blood cells of, 3 coagulation in, 8, 10 fibrinolysis in, 11 Anaemia, 17, 86 in Artiodactyla, 160 in Carnivora, 86 in mink, 86 in pigs, 160 in Primates, 17, 18 haemorrhagic, 86 CMH-20 iron deficient, 160 macrocytic, 218 nutritional, 86 parasitic, 160 pernicious, 86 Anaesthetics, 2, 277 effect on blood picture, 2, 17, 141 Anisocytosis, 17 Anteater, 228, 227 Antelope Pronghorn, 159, 759 Saiga, 202 Antilocapra americana, 189 Antilocapridae, 159, 189 Antilope cervicapra, 201 Antelopinae, 159,207 Anthropoidea, 17,26-79 Anticoagulants, 89 circulating in Reptilla, 8, 10 horses, 143 drugs, 164, 233 Antithrombin in Aotus trivirgatus, 20 in Artiodactyla, 164 in horse, 143 in Primates, 20 measurement, 281 Aotus trivirgatus, 28 antithrombin, 20 eosinophils, 7, 18 thrombelastography, 12 thrombocytopenia, 18 Ape Barbary, 44 Black, 51 Great, 17 Artiodactyla, 159-165, 166-215 acquired coagulation defects, 165 activation of fibrinolysis by streptokinase, 11, 165 urokinase, 11, 165 anaesthetics, 277 antithrombin, 164 basophils, 7, 163 classification, 159 clot retraction, 163 coagulation, 164-165 congenital coagulation defects, 164, 165 contact activation, 164 coulter counter settings for 284-285 distribution, 159 erythrocyte sedimentation rate, 161 factors influencing blood count, 160, 163 fibrinogèn, 164 fibrinolysis, 165 296 SUBJECT Artiodactyla-cottf. fibrinolytic activity of blood vessels, 165 fibrinolytic inhibitors, 165 haemoglobin, 160 intrinsic prothrombin activation, 164 leucopenia, 163 leukaemia, 163 neutrophils, 163 osmotic fragility, 161-163 plasminogen, 165 platelets, 142, 163-164 proactivator, 165 prothrombin time, 164 red cells, 159-163 reticulocytes, 160 rouleaux, 160 route of blood sampling, 277 sickle cells, 160-161 species specificity, 164 stress, 160 white cells, 163 Ass, 141, 148 Ateles paniscus, 33 Atherosclerosis, 89 Atherus, sp., 248 Aves-see birds Axis axis, 1 79 sickle cells, 161 thrombelastography, 12 A. porcinus, 180 sickle cells, 161 Baboon Gelada, 70 Guinea, 53, 56 Olive, 52-53 Sacred, 57 Yellow 52, 54-55 platelet aggregation, 19 platelets, 9 Baboons folic acid in, 18 neutrophil/lymphocyte ratio in, 18 plasminogen in, 21 vitamin Bl2 in, 18 Bacterial infections, 163 Badger, 85 Basophils, 7 in Artiodactyla, 163 in Carnivora, 87 in elephants, 267 in Mammalia, 7 in Perissodactyla, 142 in Pinnipedia, 261 in rabbit, 7, 229 relationship with tissue mast cells, 7 Bear, 85,103-106 American black, 106 Asiatic black, 104 Brown, 105 Polar, 105 Sloth, 106 Spectacled, 103 Sun, 106 INDEX Birds blood cells, 3 coagulation, 10 fibrinolysis, 11 Bison, 159, 196 Bison bonasus, 196 Blackbuck, 159,207 Bleeding techniques, 277 time in pigs, 165 Blesbok, 159, 199 platelet aggregation, 164 Blood cells of vertebrates, 3, 7-9 coagulation-see Coagulation samples, 277, 278, 279 vessels, fibrinolytic activity of, 165 Bone marrow changes, 18, 86 Boselephas tragocamelus, 190 Bos grunniens, 194 B. taunts, 192-193 Bovidae, 7, 159, 163, 190-211 classification, 159 erythrocyte sedimentation rate, 7 white cells, 163 Bovinae, 159, 163,190-196 classification, 159 white cells, 163 Bovoidea, 159, 189-211 classification, 159 Brain extract, 20 carnivore, 281 human, 20, 281 monkey, 20 rabbit, 229 species specificity of, 20 Breed effect on blood picture, 160, 163, 229 Bubalus bubalus, 195 Buffalo Asiatic, 195 Coagulation, 164 fibrinolysis, 165 white cells, 163 Burro, 141 Bushbaby, 17,24 Cabot's rings in camels, 7, 160 Callitrichidae, 26-27 Callithrix jaccus, 26 Calves bleeding disorder in, 165 Camel, 3,7, 159-163,7 74-7 77 Arabian, 7 76-7 77 red, cells, 160 white cells, 163 Bactrian, 174-175 Cabot's rings, 160 osmotic fragility, 162 red cells, 160 white cells, 163 Cabot's rings, 7, 160 osmotic fragility, 161-163 red cells, 3, 7, 160 rouleaux, 161 SUBJECT INDEX Camelidae, 170-1 77 osmotic fragility, 161-163 rouleaux, 161 Camelus bactrianus, 174-1 75 cabot's rings, 160 osmotic fragility, 162 C. dromedarius, 176-177 Canidae, 85, 90-102 Activation of fibrinolysis by streptokinase, 89 ADP inhibitor, 88 Classification, 85 eosinophils, 87 platelets, 88 Canis adustus, 94 C aureus, 94 C familiaris, 92-93 C. familiaris dingo, 95 C latrans, 91 C lupus, 90 Canoidea, 85, 90-114 Capra falcon eri, 203 C hircus, 206-207 C ibex, 205 Caprinae, 202-211 classification, 159 plasminogen, 165 platelets, 163-164 white cells, 163 Capromyidae, 250 Capuchin monkeys, 29-32 Tufted, 30 White-fronted, 31 White-throated, 29 Weeper, 32 thrombelastography in, 12 Capybara, 232, 245 pseudoeosinophils in, 232 red cells in, 232 Cardiovascular disease, 11 Caribou, 187. See also Reindeer Carnivora, 85-89, 90-136 activation of fibrinolysis by streptokinase in, 11, 89 urokinase in, 11, 89 anaemia in, 86 anaesthetic agents for, 277 classification of, 85 clot retraction in, 88 coagulation in, 88-89 Coulter counter settings for, 284 crenated red cells in, 86 distribution of, 85 erythrocyte sedimentation rate in, 86 fibrinolysis in, 89 Heinz bodies in, 86 Howell Jolly bodies in, 86 hypercoagulation in, 88-89 platelets in, 88-89, 163 red cells in, 85-97 reticulocytes in, 86 route for blood sampling for, 277 sickle cells in, 86-87 white cells in, 87 Cat, 85 domestic, 120-121 297 European wild, 122 jungle, 123 leopard, 124 Cat, domestic erythrocyte sedimentation rate in, 86 factor x in, 88 factor XII deficiency in, 88 Heinz bodies in, 86 Howell Jolly bodies in, 86 neutrophil/lymphocyte ratio in, 7, 87 platelets in, 88 Cattle, 192-193 Ankole, 193 domestic, domestic, 192-193 Zebu, 193 Cattle, 7, 160-165 Coagulation in, 164-165 Erythrocyte sedimentation rate in, 161 Factors influencing red count, 160 fibrinogen in 164 fibrinolysis in, 165 Neutrophil/lymphocyte ratio in, 7, 163 White cells in, 163 Caviidae, 246-247 Cavia porcellus, 246-24 7 Cavoidea 245-247 Cavy, 232 Cebidae, 20, 28-37 Coagulation in, 20 fibrinolysis in, 21 Red cells in, 7, 17 Ceboidea, 17,26-57 Ce bus albifrons, 31 C apella, 30 C. capucinus, 29 C nigrivittatus, 32 Ceratomorpha, 141, 154-155 classification of, 141 platelets in, 142 white cells in, 142 Cercocebus torquatus, 71 Cercopithecoidea, 17, 38-71 Cercopithecidae, 38-71 coagulation in, 20 red cells in, 17 Cercopithecus albigularis, 66 C aethiops, 62 C. ascaneus, 20 C. diana, 67 C Vhoesti, 68 C mona, 63 C. pygerethrus, 60 C sabeus, 61 C sclateri, 65 C talapoin, 64 Cervidae, 178-187 sickle cells in, 161 species specificity of clotting factors in, 164 white cells in, 163 Cervoidea, 178-187 classification, 159 euglobulin lysis time, 165 plasminogen, 165 Cervus canadensis, 161,755 C. elephas, 159, 161,183 298 SUBJECT INDEX C. equinus, 161 C. mexicanus, 161 C. nippon, 161, 182 C. reevsii, 161 C timoremis, 181 Cetacea, 252, 253-260 red cells, 6, 7, 252 Chaenithidae, 3 Cheetah, 136 Heinz bodies, 86 thrombelastograph, 12 Chevrotàins, 159 Chicken, 10 Chimpanzee, 17,14-75 Chinchillidae, 251 Chipmunk, 232 Chi tal, 179. See also Axis deer Chondrichthyes, 3 Christmas disease in dogs, 88 Circulating anticoagulants in Reptilia, 8, 10 Circulatory system of vertebrates, 3 Civet, 88 common palm, 115 Classification, 2 Artiodactyla, 159 Carnivora, 85 Perissodactyla, 141 Primates, 17 Rodentia, 232 Climate-effect on blood count of Artiodactyla, 160 Clot retraction in Artiodactyla, 163 in Carnivora, 88 in Perissodactyla, 142 measurement of, 280 Clotting factor assays, 281-282 Clotting time whole blood in Cetacea, 252 in elephant seal, 261 in Perissodactyla, 143 in Rodentia, 233 in Vertebrata, 10 Effect of hibernation on, 233 population density on, 233 -stress on, 233 Coagulation in Amphibia, 8, 10 in Artiodactyla, 164, 165 in Birds, 8, 10 in Carnivora, 88 in Cetacea, 8, 252 in dolphin, 6, 8, 252 in echidna, 218 in Edentata, 227 in elephant, 267 in fish, 8, 10 in Mammalia, 8, 10-11 in man, 8 in Marsupialia, 221 in Monotremata, 218 in Perissodactyla, 143 in Pinnipedia, 261 in Primates, 17, 18, 20, 21 in rabbit, 229 in Reptilia, 8, 10 in Rodentia, 233 in Vertebrata, 8, 10, 11 Coagulation defects, 8, 10, 11, 20, 88, 143, 265 tests for, 279-282 Coagulation tests, 2, 279-282 in Cetacea in Primates methods, 279-282 Coati, 85, 107 Collagen, 229 Collection of blood samples, 2, 277, 278, 279 effect on blood picture 17, 232 Congenital coagulation defects in Artiodactyla, 165 in Carnivora, 88 in cat, 88 in cattle, 165 in dog, 88 in goat, 165 in horse, 143 in kudu, 10, 11, 164 in pig, 165 in Primates, 20 Congenital platelet defect, 232 Connochaetes gnou, 198 C. taurinus, 198 Contact activation test, 280 Coulter counter, 278, 283-284 Coumarin, 165 effect in rodents, 233 Coyote, 85, 91 Coy pu, 250 Crenated red cells, 86, 134 in carnivores, 86 Cricetidae, 235-239 Ctenomyidae, 249 Ctenomys mendocinus, 249 Cynopithecus niger, 51 Dama dama, 178 sickle cells, 161 Damaliscus dorcas, 199 Decompression sickness, 252 Deer, 159, 160-164,178-186 Axis, 12, 161,7 79 Blacktailed, 159, 161 Chinese water, 186 Fallow, 161, 162,7 75 Hog, 161,180 Mule, 159, 184 Père David's, 161, 185 Red, 159, 161, 163,755 Reindeer, 159, 161,187 Sika, 161,182 Spotted, 12, 161,779 Timor, 181 White-tailed, 159, 161, 163, 184 classification, 159 factor XI, 164 in Perissodactyla, 143 SUBJECT Oeei-cont. thrombelastographs, 12 white cells, 163 Delphinidae, 253-259 Delphinoidea, 253-259 Dendrolagusgoodfellowi, 224 Dicero s b icorn is, 141,7 55 D. Simus, 154 Heinz bodies, 7 thrombelastograph, 12 Diaemus youngi, 11 Dingo, 85, 95 Diet, 1, 17, 18 Diffuse intravascular coagulation, 252 Distribution Artiodactyla, 159 Carnivora, 85 Primates, 17 Rodentia, 232 Diving mammals, 6, 252-266 Dog, 85 Bush, 100 Domestic, 92-93 Hunting, 101 Dog, 85 activation of fibrinolysis. 89 congenital coagulation defects, 88 eosinophils, 87 erythrocyte sedimentation rate, 86 plasminogen, 89 platelets, 88 thrombelastography, 12 white cells, 7, 87 Dohle bodies, 8, 18 Drumstick appendages, 142, 163 Dolphin, 252 Bottle-nose, 254-255 Geoffroy's 260 Pacific white-sided, 259 Dolphin, 6-8, 252 coagulation, 252 Coulter counter setting for, 284 eosinophils, 7, 252 fibrinolysis, 252 Heinz bodies, 7, 252 platelets, 8, 252 red cells, 6, 252 thrombelastograph, 252 Donkey, 141, 148 Douroucouli, 28 See also Aotus trivirgatus Drill, 59 Echidna, 218 Australian, 219 Bruijn's, 220 Tasmanian, 219 Edentata, 227, 228 activation of fibrinolysis by streptokinase, 11 urokinase, 11 Eosinophils of Aotus trivirgatus, 7 of Artiodactyla 163 of Canidae, 87 INDEX of Carnivora, 87 of dolphins, 7, 252 of horse, 142 of mammalia, 7 of Perissodactyla, 142 of Primates, 18 of rabbit, 229 of Rodentia, 232 count as an indicator of stress, 252 influence of age on, 163 parasites on, 87, 163 Eira barbara, 114 Eland, 159, 194 Elaphuras davidianus, 185 sickle cells in, 161 Elephantidae, 268-271 Elephant, 6, 267 African, 261,270-271 Indian, 261,268-269 platelets, 8, 267 red cells, 6, 267 Elephas maximus, 268-269 Elk sickle cells in, 161 Equidae, 144-151 Equoidea, 144-151 Equus asinus, 148, 149 E. burchelli, 151 E. caballus, 144-145, 149 E. grevyi, 151 E. hemionus, 147 E. przewalski, 146 E. zebra, 150 Erythrocebus patas, 69 platelet aggregation, 19 prothrombin time, 20 Erythrocyte sedimentation rate, 2, 7 in Artiodactyla, 7, 161 in Camelidae, 161 in Carnivora, 86 cat, 86 in Cetacea, 252 in dog, 86 in domestic ruminants, 7, 161 in elephants, 267 in Mammalia, 7 in man, 7 in man, 7 in Perissodactyla, 7, 142 in Primates, 18 clinical significance of, 7, 18, 142, 161 factors affecting, 7, 18 Etorphine, 277 Euglobulin lysis test, 2, 282 in Artiodactyla, 165 in Cervoidea, 165 in dolphins, 252 in elephants, 287 in Pinnipedia, 261 in Perissodactyla, 143 in rabbit, 229 in sheep, 165 effect of adrenaline on, 165 300 SUBJECT INDEX Euglobulin lysis test-cont. stress on, 165, 229 method for, 282 Exercise effect on blood count of horses, 141, 142 factor VIII of rats, 233 fibrinolysis, 89 Extrinsic prothrombin activation, 2, 8, 10 in Artiodactyla, 164 in Carnivora, 88 in Cetacea, 252 in Mammalia, 8, 10 in Marsupialia, 221 in Pinnipedia, 261 in Primates, 20 in rabbit, 229 in Rodentia, 233 in Vertebrata, 8, 10 Factor l-see also fìbrinogen in Artiodactyla, 164 in Carnivora, 88 in Marsupialia, 221 in Perissodactyla, 143 in Primates, 20 in Vertebrata, 3, 8 measurement of, 279 Factor II in Artiodactyla, 164 in Carnivora, 88 in Marsupialia, 221 in Primates, 20 in Vertebrata, 3, 8 assay of, 281 Taipan venom and, 10, 281 Factor II deficiency in calves, 165 in Marsupialia, 221 Factor V in Amphibia, 10 in Artiodactyla, 164 in birds, 10 in Carnivora, 88 in Mammalia, 8 in Marsupialia, 221 in Perissodactyla, 143 in Primates, 20 in Vertebrata, 8 assay of, 281 deficiency of, in calves, 164 Factor VII in Amphibia, 10 in Artiodactyla, 164 in birds, 10 in Mammalia, 8, 10 in Marsupialia, 221 in Perissodactyla, 143 in Primates, 20 in Vertebrata, 8, 10 assay of, 281-282 deficiency in calves, 165 dogs, 88 Perissodactyla, 143 Factor VIII in Amphibia, 10 in Artiodactyla, 164 in birds, 10 in Carnivora, 88 in horse, 143 in Marsupialia, 221 in Perissodactyla, 143 in pigs, 165 in Primates, 20 in rabbit, 229 and exercise in rats, 233 deficiency in dog, 88 horse, 143 pig, 165 assay of, 282 Factor IX in Amphibia, 10 in Artiodactyla, 164 in birds, 10 in Carnivora, 88 in Perissodactyla, 143 in Primates, 20 deficiency in calves, 165 dog, 88 horse, 143 assay of, 282 Factor X in Amphibia, 10 in Artiodactyla, 164 in Carnivora, 88 in Mammalia, 8, 10 in Marsupialia, 221 in Perissodactyla, 143 in Primates, 20 in Vertebrata, 8 deficiency in calves, 165 Felidae, 88 Marsupialia, 221 assay of, 282 Factor XI in Artiodactyla, 164 in birds, 10 in Carnivora, 88 in deer, 164 in Primates, 20 in Tylopoda, 164 deficiency in cattle, 164 dog, 88 horse, 143 kudu, 11, 164 assay of, 282 Factor XII in Artiodactyla, 164 in birds, 10 in Carnivora, 88 in Perissodactyla, 143 in Primates, 20 in seals, 261 deficiency in cat, 88 SUBJECT INDEX Factor Xll-cont. Cetacea, 11, 252 horse, 143 assay of, 282 Factor XIII, 164 measurement of, 281 Factors influencing blood count, 1, 2 of Artiodactyla, 160, 163 of Carnivora, 85 of elephant, 267 of Perissodactyla, 141, 142 of Primates, 17, 18 of rabbit, 229 of Rodentia, 232 Felidae, 120-136 classification, 85 coagulation, 88 crenated red cells, 86 erythrocyte sedimentation rate, 86 fibrinolysis, 89 Heinz bodies, 7, 86 Ho well Jolly bodies, 86 platelets, 88 Felis bengalensis, 124 F caracal, 125 F. catus, 120-121 F chaus, 123 F. concolor, 131 F leo, 128-129 F. lynx, 126 F pardalis, 130 F. serval, 127 F. silv estris, 122 Feloidea, 85,115-136 Ferret, 111, 281 Fibrinogen—see also Factor I in Artiodactyla, 164 in Vertebrata, 3, 8 deficiency of, in calves, 165 goats, 165 peptide mapping of, 164 Fibrinolysis in Amphibia, 11 in Artiodactyla, 165 in birds, 11 in buffalo, 165 in Carnivora, 89 in Cetacea, 252 in echidna, 218 in Edentata, 227 in elephant, 267 in fish, 11 in guinea pig, 233 in Marsupialia, 221 in Perissodactyla, 143 in Pinnipedia, 261 in Primates, 21 in rabbit, 229 in rat, 233 in Reptilia, 11 measurement of, 282 pharmacological activation of, 89 Fibrinolytic inhibitors in Artiodactyla, 165 in Carnivora, 89 in Primates, 21 measurement of, 282 Fish Blackfish, 10 blood cells, 3 Catfish, 10 coagulation, 10 fibrinolysis, 11 Ice fish, 3 Folic acid, 19 Fox, 85, 96-98 Arctic, 85, 96 Bat-eared, 102 Grey, 98 Red, 97 Silver, 85, 99 C^ago crassicandatus, 24 G. senegelensis, 25 Genet, 85 Gerbil, 238 Cerbillus unguiculatus, 238 Giant panda thrombelastography, 12 Gibbon, 17, 72, 73 Hoolock gibbon, 73 Lar gibbon, 72 Giraffa camelopardalis, 188 Giraffe, 159, 188 Giraffidae, 188 Giraffoidea, 159,188 Globicephala melaena, 257 G. scammoni, 257 Glycoproteins, 8 Gnu, 159 Brindled, 198 White-bearded, 198 Goat, 159,206-207 congenital afibrinogenaemia, 165 red cells, 6 white cells, 163 Gorilla, 17, 76-77 Gorilla gorilla, 17, 76-77 Guanaco, 172 red cells, 160 Guinea pig, 246-247 coagulation, 232, 233 fibrinolysis, 233 Kurloff bodies, 232 platelets, 232 pseudoeosinophils, 232 Haematocrit-see packed cell volume Haemoglobin in Artiodactyla, 160 in Carnivora, 85, 86 in Cetacea, 252 in diving mammals, 252, 261 in elephant, 267 in hot and cold blooded horses, 141 in mammalia, 6 in Marsupialia, 221 in Pinnipedia, 261 in Primates, 17 302 SUBJECT Haemoglobin-cottf. in sickle cells, 161 in Vertebrata, 6 measurement of, 278 Haemostatic cells, 3, 8, 9, 218 relationship with platelets, 8 Halichoerus grypus, 26 2 Hamster, 232, 236-237 extrinsic prothrombin activation, 233 hibernating, 233 red cells, 232 Heinz bodies, 7, 86, 141, 252 in Felidae, 86 in dolphins, 252 in rhinoceros, 7, 141 Helarctos malayanis, 106 Herpestes auropunctatus, 117 H sanguineus, 116 sickle cells, 86, 87 H. urva, 117 Heterophils-see pseudoeosinophils Hibernation, 233 Hippomorpha, 141, 142, 144-151 Hippopotamus, 159 Hippotraginae, 197-200 classification, 159 Histamine, 8 Hominidae, 79 Hominoidea, 17, 7 7-79 Homo sapiens, 20, 79 See also man Horse, 141,144-145 coagulation, 143 cold-blooded, 141 fibrinolysis, 143 haemophilia, 143 hot-blooded, 141 neutrophil/lymphocyte ratio, 7 platelets, 142 Przewalski's wild, 146 red cells, 141 Howell Jolly bodies, 7 in Cetacea, 252 in Felidae, 7, 86 in Marsupialia, 7, 221 in Monotremata, 218 in Perissodactyla, 141 in Primates, 7, 17 in Prosimii, 7, 17 in Rodentia, 232 Hyaena, 85 brown, 118 striped, 119 Hyaena brunnea, 118 H hyaena, 119 Hyaenidae, 85,118-119 Hydrochoerus hydrochaeris, 245 Hydropotes inermis, 186 5-hydroxytryptamine, 8, 88, 229 Hylobates hoolock, 73 H lar, 72 Hylobatidae, 72, 73 Hypercoagulation, 21, 88, 89 Hypofibrinogenaemia, 88, 165 Hyracoidea, 11 INDEX Hystricidae, 248 Hystricoidea, 248 Hystricomorph rodents, 245-251 extrinsic prothrombin activation, 233 pseudoeosinophils, 7, 232 Hystricomorpha, 245-251 Ibex, 205 thrombelastograph, 12 Indanedione, 165, 233 Inia geoffrensis, 260 Insectivora, 11 Intrinsic prothrombin activation, 8, 10 in Artiodactyla 164 in Carnivora, 88 in Cetacea, 252 in dolphins, 10, 252 in kudu, 10, 164 in Mammalia, 10 in Marsupialia, 221 in Pinnipedia, 261 in Primates, 20 in rabbit, 229 in seals, 261 in Vertebrata, 8, 10 Iron deficiency, 17, 18, 160 Jackal, 85 Asiatic, 94 Side-striped, 94 Jaguar, 135 Kangaroo Goodfellow's, 224 Kaolin activation, 164 measurement of, 279 Ketamine, 277 Kinkajou, 85,110 Kitten, 87 Kobus ellipsiprymnus, 200 Kudu, 159,191 factor IX deficiency, 11, 164 prothrombin activation, 10 thrombelastograph, 12 Kurloff bodies, 232 Laboratory reagents, 164, 229 Laboratory rodents, 232 Lagenorhynchus obliquidens, 259 Lagomorpha, 229, 230-231 activation of fibrinolysis by streptokinase, 11 urokinase, 11 Lagostomus maximus, 251 Lagothrix lagothrica, 35 Lama glama, 170 L. guanaco, 172 L. pacos, 171 Lemmussp., 235 Lemming, 235 Lemur, 17, 23 Lemus catta, 23 Lemuridae, 17, 23 Leopard, 134 Clouded, 132 SUBJECT Leporidae, 230-231 Leptonychotes weddelli, 262 Leucocytes-ree under white cells Leucopenia, 18, 163 Leukaemia in Artiodactyla, 163 in Primates, 18 Lion, 85, 128-129 Heinz bodies, 86 thrombelastograph, 12 Liver disease, 20 Lizard, 10 Llama, 159, 160, 170 Loris, 17 Lorisidae, 17, 24-25 Loxodonta africana, 270-271 Lycaon pictus, 101 Lymphocytes in Artiodactyla, 163 in elephants, 267 in guinea pigs, 232 in kittens, 87 in Mammalia, 7 in Perissodactyla, 142 Lymphopenia, 163 Lynx, 125, 126 Caracal, 125 Northern, 126 thrombelastograph, 12 Macaca assamensis, 45 M. fascicularis, 40-41 M. irus, 40-41 M. maurus. 20, 48 M. mulatta, 18-20, 42-43 M. hemestrina, 38-39 M. silenus, 49 M. sinica, 50 M. speciosa, 46-47 M. sylvana, 44 Macaques, 38-50 Assamese, 45 Crab-eating, 40-41 Lion-tailed, 49 Moor, 48 Pig-taüed, 38-39 Rhesus, 42-43 Stump-tailed, 46-47 Macrocytosis, 18, 218 Macropodidae, 222-225 Macropus agilis, 223 M. ualabatus, 223 Malaria, 18 Malay chevrotain, 6, 60 Mammals activation of fibrinolysis by streptokinase, 11 urokinase, 11 coagulation, 8, 10-11 fibrinolysis, 11, 13 haemoglobin, 6 haemostatic cells, 3 marine, 6 red cells, 3, 6-7 platelets, 3, 8 INDEX thrombelastographs, 12 white cells, 7-8 Man, 17, 79 coagulation, 20 platelet aggregation, 19 sickle cells, 160, 161 thrombelastograph, 11 Mandrill, 58 Mandrillus leucophaeus, 59 M. sphinx, 58 Mangabey, 71 Marine mammals, 6, 252-266 Marine toad, 10 Markhor, 203 Marmoset, 26 Marmot, 232 Marsupialia, 221, 222-226 activation of fibrinolysis by streptokinase, 11 urokinase, 11 anaesthetic agents, 277 Coulter counter settings for, 284 Howell Jolly bodies, 7, 221 route of blood sampling, 277 Marten, 85, 113 Marten americana, 113 Mast cells, 7 Mean cell diameter (MCD), 3, 6, 86 in Amphibia, 3 in Artiodactyla, 160 in birds, 3 in Cetacea, 252, 261 in Carnivora, 86 in diving mammals, 6, 252, 261 in echidna, 218 in elephant, 267 in fish, 3 in Mammalia, 3, 6 in Perissodactyla, 141 in Pinnipedia, 261 in Primates, 17 in Repfilia, 3 in Vertebrata, 3 relationship with red cell count, 6, 86, 267 Mean cell haemoglobin (MCH) in Artiodactyla, 160 in Carnivora, 86 in Perissodactyla, 141 Mean cell haemoglobin concentration (MCHC) in Artiodactyla, 160 in camels, 160 in Carnivora, 86 in elephants, 267 in Primates, 17 Mean cell thickness (MCT) in Cetacea, 6, 252, 261 in elephants, 267 in marine mammals, 6, 252, 261 in Pinnipedia, 6, 261 Mean cell volume (MCV), 3 in Amphibia, 3 in anteater, 227 in Artiodactyla, 160 in birds, 3 in Carnivora, 86 303 304 SUBJECT INDEX Mule, 141,149 Mean cell volume (MCV)-cont. Muntjack, 161 in Cetacea, 252 Muridae, 240-244 in echidna, 281 Muroidea, 235-244 in elephant, 267 Mus musculus, 242-243 in fish, 3 Musk ox, 204 in Mammalia, 3 Muskrat, 239 in Pinnipedia, 261 Mustela ermina, 113 in Primates, 17 M. putorius furo, 111, 281 in Tylopoda, 160 M. vison, 86, 112 in Vertebrata, 3 Mustelidae, 85,111-115 Methodology, 2, 277-285 Myocaster coy pus, 250 Melurus ursin us, 106 Myomorpha, 232, 235-244 Mephitis mephitis, 113 Myrmecophaga tridactyla, 228 Mesocricetus auratus, 236-237 Myrmecophagidae, 228 Mice, 242-243 extrinsic prothrombin activation, 233 neutrophils, 7 Nasua nasua, 107 red cells, 232 Neofelis nebulosa, 132 Micro tus californicus, 233 Neutropenia Mink, 8 5 , 1 1 2 in Artiodactyla, 163 anaemia, 86 Neutrophils Mirounga angustirostris, 264 in Artiodactyla, 163 M. leonina, 261, 264 in Carnivora, 87 Mongoose, 85,116, 117 in Hystricomorpha, 232 Crab-eating, 117 in Mammalia, 7 Indian, 117 in Myomorpha, 232 Slender, 116 in Perissodactyla, 142 sickle cells, 86, 87 in Pinnipedia, 261 Monkey, 17 in Primates, 18 Assamese, 45 in Rodentia, 232 Capuchin, 12, 20, 29-32. See also capuchin in Vertebrates, 7 monkeys granulation in Cebus, 12, 20, 29-32 Hystricomorpha, 7, 232 Crab-eating, 40-41 rabbits, 7, 229 Cynomologous, 40-41 Neutrophil/lymphocyte ratio, 7, 8 Diana, 67 in Artiodactyla, 7, 163 Grass, 62 in cats, 7, 87 Green, 61 in dogs, 7, 87 in elephants, 267 Howler, 34 in Mammalia, 7, 8 l'hoest's, 68 in man, 7 Lion-tailed, 49 Mona, 63 in Marsupialia, 221 Moor, 20, 48 in Primates, 18 Owl, 28. See also Aotus trivirgatus Neutrophil morphology, 7 Patas, 12, 69. See also Erythrocebus patas in Artiodactyla, 163 Pig-tail, 38-39 in Carnivora, 87 Rhesus, 42-43. See also Macaca mulatta in echidna, 218 Spider, 33 in Marsupialia, 221 Spotnosed, 65 in Perissodactyla, 142 Stump-tail, 46-4 7 in Primates, 18 Syke's, 66 in rabbits, 7, 229 Talapoin, 64 in Rodentia, 7, 232 Toque, 50 New World monkeys-see Ceboidea Vervet, 60 Nicotinic acid, 89 Woolly, 35 Nilgai, 190 Monocytes Non-human primates, 7, 18 in Artiodactyla, 164 Normal animals, 1 in elephants, 267 Normoblasts-see nucleated red cells in Mammalia, 7 Nucleated red cells, 3, 17 in Perissodactyla, 142 in Cetacea, 252 Monotremata, 218, 219-220 in ruminants, 160 Mo ose-see Elk in turkey, 4 Moutlon, 210 in Vertebrata, 3, 4 Mouse, 242-243 lack of, in echidna, 218 multimammate, 244 rarity of, in Perissodactyla, 141 SUBJECT INDEX Ocelot, 130 Octodontoidea, 249-250 Odocoileus columbianus, 159, 161 O. hemionus, 159, 184 O, virginianus, 159, 161, 184 Odontoceti, 252-259 Okapi, 159 Old World monkeys-see Cercopithecoidea Onager, 142,147 Ondatra sp., 239 Orang utan, 17, 78 thrombelastograph, 12 Orcinus orca, 258 Oryctolagus cuniculus, 229, 230-231 Oryx, 159 Arabian, 197 Scimitar-horned, 797 Oryx leucoryx, 197 O. tao, 197 Osmotic fragility, 161 camels, 161-163 Otariidae, 266 Otocyon mégalotis, 102 Ovibos moschatus, 204 Ovis aries, 208-209 O. canadensis, 203 O. musimon, 210 O. tragelaphus, 211 Ox, 159—see also under cattle Oxygen diffusion, 6, 252 Perissodactyla, 141-143,144-157 Activation of fibrinolysis by streptokinase, 11 urokinase, 11 Anaesthetic agents for, 277 classification, 141 clot retraction, 142 Coulter counter settings for, 285 coagulation, 143 erythrocyte sedimentation rate, 7, 142 factors affecting blood count, 141-142 fibrinolysis, 143 platelets, 8, 142 red cells, 7, 142 route for blood sampling, 277 white cells, 7, 142 Phacochoerus aethiopicus, 168 Phalangeroidea, 222-226 Phencyclidine, 277 Phoca vitulina, 263 Phocaena phocaena, 256 Phocidae, 262-265 Pig, 159,167, 168 Bush, 168 Domestic, 167 Pigs coagulation, 164-165 congenital bleeding disease, 165 fibrinolysis, 165 leukaemia, 163 red cells, 160 white cells, 7, 8, 163 Pine marten, 113 Pinnipedia, 261, 262-266 activation of fibrinolysis by streptokinase, 11 urokinase, 11 Plasminogen, 11 in Artiodactyla, 165 in baboons, 21 in Carnivora, 89 in dogs, 89 in elephants, 267 in Perissodactyla, 143 in Primates, 21 in sea lion, 261 in Vertebrata, 11 Assay of, 282 Plasminogen activation, 11 in Cetacea, 252 in Vertebrata, 11, 13 Plasminogen activator in Artiodactyla, 165 in Carnivora, 89 in elephants, 267 in Perissodactyla, 143 in Primates, 21 in Rodentia, 233 Euglobulin lysis test for, 282 Platelet constituents, 8 morphology in Artiodactyla, 164 echidna, 218 size, 7, 164 Platelets in Artiodactyla, 163-164 in Caprinae, 164 in Carnivora, 88 in echidna, 218 in elephants, 267 in Perissodactyla, 142 in Primates, 18, 19 in Rodentia, 232 and stress, 88 Relationship with thrombocytes, 8 Platelet adhesion in sheep, 163 reduced in pigs, 164 rodents, 232 Platelet aggregation in Artiodactyla, 142, 163, 164 in blesbok, 164 in Carnivora, 88, 89, 164 in Erythrocebus patas, 19 in horse, 142 in Macaca mulatta, 19 in man, 19 in Onager, 142 in Papio cynocephalus, 19 in Perissodactyla, 142 in Primates, 18, 19, 163 in rabbit, 229 in Rodentia, 232 in tapir, 142 in wild boar, 164 in zebra, 142 306 SUBJECT INDEX Platelet aggregation -co nt. by adrenaline, 88 Measurement of, 280 Platelet count in Artiodactyla, 164 in Carnivora, 88 in dolphin, 8, 252 in elephants, 8, 262 in Equidae, 8, 142 in Mammalia, 8 in rabbit, 229 in rats, 8, 232 Effect of folate deficiency on, 18 malaria on, 18 methods for, 278 Species variation in, 8 Platelet defects, 18, 232 Platelet factor, 3 in Artiodactyla, 164 Measurement of, 280 Platelet phospholipid-see platelet factor, 3 Platelet storage pool disease, 232 Poikilocytosis, 17 Polychromatic cells, 229, 232 Pongidae, 74-78 coagulation, 20 red cells, 17 Pongo pygmaeus, 78 Porcupine, 232, 2 3 3 , 2 4 * Porpoise, 252, 253, 256 Dall's, 253 Harbour, 256 Potamochoerus porcus, 168 Potosflavus, 110 Praomys natalensis, 244 Packed cell volume (PCV), 6 in Artiodactyla, 160 in Carnivora, 85-86 in Cetacea, 6, 252 in diving mammals, 6, 252, 261 in elephants, 267 in hot and cold blooded horses, 141 in mammalia, 6 in Marsupialia, 221 in Perissodactyla 141 in Pinnipedia, 6, 252, 261 in Primates, 17 Method for, 278 PagophHits greenlandicus, 26 2 Pant h era onca, 135 P. pardus, 134 P. tigris, 133 Pan troglodytes, 74-75 Papio anubis, 12,52-53 P. cynocephalus, 19, 52, 54-55 P. hamadryas, 57 P. papio, 53 56 Paradoxurus hermaphroditus, 115 Parasitic infections, 18, 8 6 , 1 6 0 effect on blood count in Carnivora, 86-87 Primates, 18 sheep, 160 Eosinophils in, 86, 160, 163 Partial thromboplastin time (PTT) in Carnivora, 88 in Primates, 88 Measurement of, 279 Parturition Effect on blood picture of Artiodactyla, 160, 163 Peccary, 159 collared, 169 Pentobarbitone Na, 277 Pregnancy-effect on blood picture of Artiodactyla, 163 Primates, 17 ESR of Primates, 18 Primates, 17-21,22-79 activation of fibrinolysis by streptokinase, 11, 21 urokinase, 11, 21 anaemia, 17 anaesthetic agents, 277 classification, 17 coagulation, 17, 18, 20, 21 Coulter counter settings for, 283 distribution, 17 Dohle bodies, 18 erythrocyte sedimentation rate, 18 factors influencing blood count, 17, 18 fibrinolysis, 21 folic acid, 18 haemoglobin levels, 17 haemorrhage, 20, 21 Howell Jolly bodies, 17 hypercoagulation, 21 liver disease, 20 malaria, 18 neutrophil morphology, 18 packed cell volume, 17 platelets, 18-19, 163 prothrombin time, 20 red cells, 17-18 route for blood sampling, 277 Russell's viper venom, 20 species specificity, 18 thrombelastography, 12 vitamin B 1 2 , 18 vitamin K, 20-21 white cells, 18 Proactivator, 13 in Artiodactyla, 165 in Carnivora, 89 in Edentata, 227 in elephants, 267 in Marsupialia, 221 in Perissodactyla, 143 in Primates, 21 in rabbits, 229 in Rodentia, 233 Proboscidea, 267, 268-271 activation of fibrinolysis by streptokinase, 11 urokinase, 11 Coulter counter setting for, 284 route for blood sampling, 277 SUBJECT Procyonidae, 85,107-110 Procyon lotor, 108-109 Prosimii, 17, 22-25 Heinz bodies, 7 red cells, 17 Protemnodon rufogrisea, 222 Prothrombin-see Factor II Prothrombin time, 10 in Actinopterigii, 10 in Amphibia, 10 in Artiodactyla, 164 in birds, 10 in Carnivora, 88 in Mammalia, 10 in Marsupialia, 221 in Primates, 20 in rabbits, 229 in Reptilia, 10 Effect of human brain extract on, 10, 20, 279 Influence of species specificity on, 2, 10 Measurement of, 279 Przewalski's wild horse, 146 Pseudoaxis hortulorum, 161 Pseudoeosinophils, 7 in Hystricomorpha, 7, 232 in rabbits, 7, 229, 232 in Rodentia, 229, 232 Puma, 131 Pusa sibrica, 265 Putorius furo, 281 Quality control, 2 Quokka, 225 Rabbit, 229, 230-231 Lop-eared, 229, 231 New-Zealand white, 229, 230-231 Rabbits, 229 anaesthetic for, 227 Coulter counter settings for, 284 route for blood sampling, 277 white cell morphology, 7, 229 Racoon, 85 North American, 108-109 Rangifer, tarandus, 159, 187 Rat fawn hooded, 232 musk, 239 Norway, 240-241 Wistar, 240-241 Rat Coagulation, 232-233 Congenital platelet defect, 232 factors affecting blood count, 232 platelets, 8, 232 red cells, 232 Rattus norvegicus, 240-241 Recalification time in Artiodactyla, 164 Measurement of, 279 Red cell efficiency, 3 inclusion bodies, 7, 252 life span, 7 loss of nuclei, 3 INDEX size, 3 shape, 3 Red cells, 3-6 in Alapaca, 5 in Amphibia, 3 in Artiodactyla, 159-163 in birds, 3 in Camels, 3, 160, 161 in Carnivora, 85, 86 in Cetacea, 252 in deer, 160-161 in dolphins, 6, 252, 261 in echidna, 218 in Edentata, 227 in elephants, 6, 267 in fish, 3 in goat, 6 in Malay chevrotain, 6, 160 in marine mammals, 6, 252, 261 in Marsupialia, 221 in palm civet, 4 in Perissodactyla, 141 in Primates, 17, 18 in Reptilia, 3 in Rodentia, 6, 232 in seals, 6, 261 in sheep, 6, 160 in turkey, 4 in Vertebrata, 3-5 Red cells Nucleated, 3, 4, 17, 141, 160, 218, 252 Oval, 3, 7, 160 Sickled, 86, 160-162,232 Red cell count, 3 in Amphibia, 3 in Artiodactyla, 160 in birds, 3 in Carnivora, 85-86 in elephants, 267 in fish, 3 in hot and cold blooded horses, 141 in Mammalia, 3 in Perissodactyla, 141 in Primates, 17 in Reptilia, 3 in Vertebrata, 3 Factors affecting, 6, 160, 232 Method for, 278 Relationship with MCD, 6 Red cell inclusion bodies, 7 in cats, 86 in Cetacea, 252 in dolphins, 7, 252 in Felidae, 7, 86 in Marsupialia, 7 in Perissodactyla, 141 in Prosimii, 7 in rhinoceros, 7, 141 Red cell life span, 7, 232 Red cell size in Amphibia, 3 in Artiodactyla, 159, 160 in birds, 3 in Cetacea, 6, 252 in Carnivora, 85, 86 307 308 Red cell size-cont. in diving mammals, 6, 252 in dolphins, 6, 252 in echidna, 218 in elephant, 6, 267 in fish, 3 in Malay chevrotain, 6 in Mammalia, 3, 6, in Perissodactyla, 141 in Primates, 17, 18 in Reptila, 3 in rhinoceros, 141 in Rodentia, 6, 232 in Ruminantia, 160 in seals, 6, 252 in suidae, 160 in tapir, 141 in Tylopoda, 160 in Vertebrata, 3 Relationship with body size, 6, 267 count, 6, 86 Red cell thickness, 6, 252, 267 Reeves muntjak, 161 Reindeer, 1 5 9 , 7 5 7 thrombelastograph, 12 white count, 163 Reptilia blood cells, 3 circulating anticoagulant in, 8, 10 coagulation, 8 fibrinolysis, 11 Reticulocytes in Artiodactyla, 160 in black rhinoceros, 141 in Cetacea, 252 in Carnivora, 86 in elephants, 267 in Mammalia, 7 in Marsupialia, 221 in Perissodactyla, 141 in Primates, 17 in rabbits, 229 in Rodentia, 232 in Ruminantia, 160 in suckling pigs, 160 in zebra, 141 Clumping, 232 Method for counting, 278 Rhinoceros, 141 Black, 755 Indian, 155 White, 154 Heinz bodies in, 7 thrombelastograph, 12 Rhinoceros unicornis, 155 Rhinocerotidae, 154-155 Rhinocerotoidea, 141,154-155 Ringtailed lemur, 23 Rodentia, 232-233, 234-251 activation of fibrinolysis by streptokinase, 11 urokinase, 11 anaesthetic agents for, 277 classification, 232 coagulation, 233 SUBJECT INDEX Coulter counter settings for, 284 distribution, 232 fibrinolysis, 233 platelets, 232 route for blood sampling, 277 Rouleaux in Camelidae, 161 in Carnivora, 86 in dolphins, 252 in elephants, 267 in Perissodactyla, 7, 141-142 Oval cells and, 161 Ruminantia, 159,178-211 classification, 159 erythrocyte sedimentation rate, 161 factor XI, 164 red cells, 159-161 sickle cells, 161 Russell's Viper venom Effect on coagulation in Marsupialia, 221 Primates, 20 Method for, 279 Saiga tatarica, 202 Saimiri sciureus, 36-37 Sanguinius geffroyi, 27 Sciuridae, 234 Sciuroidea, 234 Sciuromorpha, 232, 234 Sciurus sp 234 Seal, 261,262-265 Baikal, 265 Common, 263 elephant, 261, 264 Grey, 262 Harp, 262 Weddell, 262 Seals, 261 Coulter counter settings for, 284 red cells, 6, 261 Seal lion, 2 6 1 , 2 6 6 Californian, 261, 266 Selenarctos thibetanns, 104 Serval, 727 Thrombelastograph, 12 Setonix brachyuris, 225 Sex Influence on blood picture in Artiodactyla, 160 Primates, 17, 18 Rodentia, 232 Sex hormones and Kurloff bodies, 232 Sheep, 159 Barbary, 277 Bighorn, 203 Clun forest, 161 Domestic, 208-209 Soay, 161 Sheep, 159 Coagulation, 164 factors influencing red count, 160 fibrinolysis, 165 platelets, 163 red cells, 6, 161 SUBJECT Sheep-cont. sickle cells, 161 white cells, 163 Sickle cells in capybara, 232 in Clun forest sheep, 161 in deer, 86, 160-161, 162 in goats, 161 in man, 161 in mongoose, 86, 87 in sheep, 161 Factors producing, 86, 161 Skunk,85,113 Snake venoms, 10, 164 in clotting tests, 10, 279, 281, 282 Species specificity, 2, 10, 281 of brain extract in Artiodactyla, 1.64 Marsupialia, 221 Primates, 18, 20 rabbits, 229 Rodentia, 233 Speothos venaticus, 100 Squirrel, 232, 234 ground squirrel, 232 hibernation, 233 Staining technique, 278 Streptokinase Plasminogen activation in Amphibia, 11 in Artiodactyla, 11, 165 in birds, 11 in Carnivora, 11, 89 in Edentata, 11, 227 in elephants, 11, 267 in fish, 11 in Marsupialia, 11, 221 in Perissodactyla, 11, 143 in Pinnipedia, 11,261 in Primates, 1 1 , 2 1 in rabbits, 11, 229 in Rodentia, 11, 233 in Vertebrata, 11, 13 Stress, 2 effect on blood picture in Artiodactyla, 160 Carnivora, 85 Perissodactyla, 141, 142 Primates, 17, 18 Rodentia, 232 and clotting time in rats, 233 and eosinophils in dolphins, 252 and fibrinolysis in Carnivora, 85, 86 Primates, 21 sheep, 165 rabbits, 229 and prothrombin time in rats, 232 Suckling animals, 160 Suidae, 160,166-168 Suiformes, 159-160,166-169 Suoidea, 166-169 Sus scrofa, 166,167 Tachyglossidae, 219-220 INDEX Tachyglossus se to sus, 219 T. aculeatus, 219 Taipan snake venom, 10, 281 Tamarin, 27 Tapir, 141 Malay, 142,152 South American, 141, 153 Tapiridae, 152-153 Tapiris indicus, 152 T. terres tris, 141, 153 Tapiroidea, 141, 152-153 platelet aggregation, 142 Taurotragus oryx, 194 Tayassu tajacu, 169 Tayassuidae, 169 Tayra, 114 Temperature effect on blood picture in Rodentia, 232 Thalarctos maritimus, 105 Therapeutic materials, 164 Theropithecus gelada, 70 Thiopentone Na, 277 Thrombelastography, 11, 12, 252 Thrombin time in Carnivora, 88 in Primates, 20 Method for, 279 Thrombocytes, 8, 281 Thrombosis, 11, 89 Tiger, 133 thrombelastograph, 12 Tissue thromboplastin, 20, 281 Toad, 10 Tortoise, 10 Toxic granulation, 8, 18, 87 Tragalus javanicus, 6, 160 Tragelephas strepsiceros, 191 factor XI deficiency, 11, 164 Tragulo idea, 159 Tranquillizing drugs, 2, 277 Tree shrews, 1 7 , 2 2 Tremarctos ornatus, 103 Tucotuco, 249 Tupaia glis, 22 Tupaiidae, 22 Turkey Red cells, 4 Thrombocytes, 9 Tylopoda, 170-177 classification, 159 factor XI, 164 osmotic fragility, 161-163 red cells, 159, 160 Ungulates, 141 Urocyon einereoargenteus, 98 Urokinase, 11 Plasminogen activation in Amphibia, 11 Artiodactyla, 11, 165 birds, 11 Carnivora, 1 1 , 8 9 Edentata, 1 1 , 2 2 7 elephants, 11, 267 310 SUBJECT INDEX Urokinase-corcf. fish, 11 Mar su pialla, 11, 221 Perissodactyla, 11, 143 Pinnipedia, 11, 261 Primates, 11, 21 rabbits, 11,229 Rodentia, 11,233 Vertebrata, 11, 13 Ursidae, 85,705-706 Ursus am eric anus, 106 U. arctos, 105 Vampire bat, 11 Vertebrates, 3-13 blood cells, 3, 7-9 circulatory system, 3 coagulation, 3, 8, 11, 12 fibrin ogen, 3 fibrin oly sis, 11, 13 haemoglobin, 6 haemostasis, 3, 8, 9 haemostatic cells, 3, 8, 9 platelets, 8, 9 Vicugna vicugna, 173 Vicuna, 160,173 Virus infections, 163 Viscacha, 251 Vitamin B 12 , 18 Vitamin K, 20, 21 Vitamin K-dependent clotting factors, 233 Viverridae,85,775-77 7 Vole, 233 Vombatidae, 226 Vombatus ursinus, 226 Von Willebrand's disease in dogs, 88 in pigs, 165 Vulpes fulva, 99 V. vulpes, 97 Wallaby Agile, 223 Bennets, 222 Swamp, 223 Wapiti, 185 sickle cells, 161 Wart hog, 168 Water balance, 160 Waterbuck, 200 Weazel,85,113 Warfarin, 233, 281 Whale, 252,257,258 Killer, 258 North Atlantic pilot, 257 Pacific pilot, 257 White cells, 7 of Artiodactyla, 7, 163 of camel, 163 of Carnivora, 7, 87 of cat, 7 of Cetacea, 252 of dog, 7 of echidna, 218 of elephant, 267 of Marsupialia, 221 of Perissodactyla, 142 of Pinnipedia, 261 of Primates, 7, 18 of rabbit, 229 of Rodentia, 232 of Vertebrata, 3,7-8 Wallaby, 221 response to infection, 163 White cell count, 7 of Carnivora, 7, 87 of deer, 7, 163 of elephants, 267 of Mammalia, 7 of Perissodactyla, 142 of Primates, 7, 18 of Vertebrata, 7 Factors influencing, 18, 87, 142, 163, 267 Method for, 278 White cell morphology, 7, 18, 87, 142 in Artiodactyla, 163 in Carnivora, 87 in elephants, 267 in Perissodactyla, 142 in Primates, 18 in rabbits, 229 in Rodentia, 229, 232 as indicator of disease, 8 Whole blood clotting time in Cetacea, 252 in elephant seal, 261 in Perissodactyla, 143 in Rodentia, 233 in Vertebrata, 10 Effect of hibernation on, 233 population density on, 233 stress on, 233 Wild boar, 166 platelet aggregation in, 164 Wolf, 85, 90 Wombat, 226 Xenopus toad, 10 Xylazine, 277 Yak, 159,794 Zaglossus bruijni, 220 Zalophus californianus, 261,266 Zebra Common, 757 Grevy's, 757 mountain, 150 platelet aggregation, 142 reticulocytes, 141 thrombelastograph, 12