Cyclic permutation
In mathematics, and in particular in group theory, a cyclic permutation is a permutation of the elements of some set X which maps the elements of some subset S of X to each other in a cyclic fashion, while fixing (i.e., mapping to themselves) all other elements of X. For example, the permutation of {1, 2, 3, 4} that sends 1 to 3, 3 to 2, 2 to 4 and 4 to 1 is a cycle, while the permutation that sends 1 to 3, 3 to 1, 2 to 4 and 4 to 2 is not (it separately permutes the pairs {1, 3} and {2, 4}).
A cycle in a permutation is a subset of the elements that are permuted in this way. The set S is called the orbit of the cycle. Every permutation on finitely many elements can be decomposed into a collection of cycles on disjoint orbits. In some contexts, a cyclic permutation itself is called a cycle.
Definition
A permutation is called a cyclic permutation if and only if it consists of a single nontrivial cycle (a cycle of length > 1).
Example:
Some authors restrict the definition to only those permutations which have precisely one cycle (that is, no fixed points allowed).