Product of rings
In mathematics, it is possible to combine several rings into one large product ring. This is done as follows: if I is some index set and Ri is a ring for every i in I, then the cartesian product Πi ∈ IRi can be turned into a ring by defining the operations coordinate-wise.
The resulting ring is called a direct product of the rings Ri. The direct product of finitely many rings coincides with the direct sum of rings.
Examples
An important example is the ring Z/nZ of integers modulo n. If n is written as a product of prime powers (see fundamental theorem of arithmetic):
where the pi are distinct primes, then Z/nZ is naturally isomorphic to the product ring
This follows from the Chinese remainder theorem.
Properties
If R = Πi ∈ IRi is a product of rings, then for every i in I we have a surjective ring homomorphism pi: R → Ri which projects the product on the ith coordinate. The product R, together with the projections pi, has the following universal property:
This shows that the product of rings is an instance of products in the sense of category theory. However, despite also being called the direct sum of rings when I is finite, the product of rings is not a coproduct in the sense of category theory. In particular, if I has more than one element, the inclusion map Ri → R is not ring homomorphism as it does not map the identity in Ri to the identity in R.