[1]
|
K. Arasu, J. Dillon and K. Player, Character sum factorizations yield sequences with ideal two-level autocorrelation, IEEE Trans. Inf. Theory, 61 (2015), 3276-3304.
doi: 10.1109/TIT.2015.2418204.
|
[2]
|
M. Buratti, Hadamard partitioned difference families and their descendants, Cryptogr. Commun., 11 (2019), 557-562.
doi: 10.1007/s12095-018-0308-3.
|
[3]
|
M. Buratti, On disjoint $(v, k, k-1)$ difference families, Des. Codes Cryptogr., 87 (2019), 745-755.
doi: 10.1007/s10623-018-0511-4.
|
[4]
|
M. Buratti and D. Jungnickel, Partitioned difference families versus zero-difference balanced functions, Des. Codes Cryptogr., 87 (2019), 2461-2467.
doi: 10.1007/s10623-019-00632-x.
|
[5]
|
M. Buratti, J. Yan and C. Wang, From a 1-rotational RBIBD to a partitioned difference family, Electron. J. Comb., 17 (2010), pp. R139.
|
[6]
|
H. Cai, Z. Zhou, X. Tang and Y. Miao, Zero-difference balanced functions with new parameters and their applications, IEEE Trans. Inf. Theory, 63 (2017), 4379-4387.
doi: 10.1109/TIT.2017.2675441.
|
[7]
|
Y. Chang and C. Ding, Constructions of external difference families and disjoint difference families, Des. Codes Cryptogr., 40 (2006), 167-185.
doi: 10.1007/s10623-006-0005-7.
|
[8]
|
W. Chu and C. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141.
doi: 10.1109/TIT.2004.842708.
|
[9]
|
J. Chung and K. Yang, $k$-fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 2306-2317.
doi: 10.1109/TIT.2011.2112235.
|
[10]
|
C. Ding, Cyclic codes from cyclotomic sequences of order four, Finite Fields Appl., 23 (2013), 8-34.
doi: 10.1016/j.ffa.2013.03.006.
|
[11]
|
C. Ding, Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inf. Theory, 54 (2008), 5766-5770.
doi: 10.1109/TIT.2008.2006420.
|
[12]
|
C. Ding, Optimal and perfect difference systems of sets, J. Comb. Theory, Series A, 116 (2009), 109-119.
doi: 10.1016/j.jcta.2008.05.007.
|
[13]
|
C. Ding and Y. Tan, Zero-difference balanced functions with applications, J. Stat. Theory and Practice, 6 (2012), 3-19.
doi: 10.1080/15598608.2012.647479.
|
[14]
|
C. Ding and J. Yin, Combinatorial constructions of optimal constant-composition codes, IEEE Trans. Inf. Theory, 51 (2005), 3671-3674.
doi: 10.1109/TIT.2005.855612.
|
[15]
|
C. Ding and T. Helleseth, New generalized cyclotomy and its applications, Finite Fields Appl., 4 (1998), 140-166.
doi: 10.1006/ffta.1998.0207.
|
[16]
|
C. Ding and T. Helleseth, Generalized cyclotomic codes of length $p_{1}^{e_{1}}\cdots p_{t}^{e_{t}}$, IEEE Trans. Inf. Theory, 45 (1999), 467-474.
doi: 10.1109/18.748996.
|
[17]
|
C. Fan and G. Ge, A unified approach to Whiteman's and Ding-Helleseth's generalized cyclotomy over residue class rings, IEEE Trans. Inf. Theory, 60 (2014), 1326-1336.
doi: 10.1109/TIT.2013.2290694.
|
[18]
|
R. Fuji-Hara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004), 2408-2420.
doi: 10.1109/TIT.2004.834783.
|
[19]
|
C. F. Gauss, Disquisitiones Arithmeticae, New York, USA: Springer-Verlag, 1986.
|
[20]
|
G. Ge, Y. Miao and Z. Yao, Optimal frequency hopping sequences: Auto- and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879.
doi: 10.1109/TIT.2008.2009856.
|
[21]
|
B. Gordon, W. H. Mills and L. R. Welch, Some new difference sets, Canad. J. Math., 14 (1962), 614-625.
doi: 10.4153/CJM-1962-052-2.
|
[22]
|
Y. Han and K. Yang, On the Sidel'nikov sequences as frequency-hopping sequences, IEEE Trans. Inf. Theory, 55 (2009), 4279-4285.
doi: 10.1109/TIT.2009.2025569.
|
[23]
|
T. Helleseth and G. Gong, New nonbinary sequences with ideal two-level autocorrelation, IEEE Trans. Inf. Theory, 48 (2002), 2868-2872.
doi: 10.1109/TIT.2002.804052.
|
[24]
|
H. Hu, S. Shao, G. Gong and T. Helleseth, The proof of Lin's conjecture via the decimation-Hadamard transform, IEEE Trans. Inf. Theory, 60 (2013), 5054-5064.
doi: 10.1109/TIT.2014.2327625.
|
[25]
|
L. Hu and Q. Yue, Gauss periods and codebooks from generalized cyclotomic sets of order four, Des. Codes Cryptogr., 69 (2013), 233-246.
doi: 10.1007/s10623-012-9648-8.
|
[26]
|
A. Klapper, $d$-form sequence: Families of sequences with low correlaltion values and large linear spans, IEEE Trans. Inf. Theory, 51 (1995), 1469-1477.
doi: 10.1109/18.370143.
|
[27]
|
S. Li, H. Wei and G. Ge, Generic constructions for partitioned difference families with applications: A unified combinatorial approach, Des. Codes Cryptogr., 82 (2017), 583-599.
doi: 10.1007/s10623-016-0182-y.
|
[28]
|
H. A. Lin, From cyclic Hadamard difference sets to perfectly balanced sequences, Ph.D. thesis, University of Southern California, 1998.
|
[29]
|
J. Liu, Y. Jiang, Q. Zheng and D. Lin, A new construction of zero-difference balanced functions and two applications, Des. Codes Cryptogr., 87 (2019), 2251-2265.
doi: 10.1007/s10623-019-00616-x.
|
[30]
|
Y. Luo, F. Fu, A. Vinck and W. Chen, On constant-composition codes over ${{\mathbb{Z}}_{q}}$, IEEE Trans. Inf. Theory, 49 (2003), 3010-3016.
doi: 10.1109/TIT.2003.819339.
|
[31]
|
J.-S. No, New cyclic difference sets with Singer parameters constructed from $d$-homogeneous functions, Des. Codes Cryptogr., 33 (2004), 199-213.
doi: 10.1023/B:DESI.0000036246.52472.81.
|
[32]
|
T. Storer, Cyclotomy and Difference Sets, Chicago: Markham Pub. Co., 1967.
|
[33]
|
Q. Wang and Y. Zhou, Sets of zero-difference balanced functions and their applications, Adv. Math. Commun., 8 (2014), 83-101.
doi: 10.3934/amc.2014.8.83.
|
[34]
|
X. Wang and J. Wang, Partitioned difference families and almost difference sets, J. Stat. Plan. Inference, 141 (2011), 1899-1909.
doi: 10.1016/j.jspi.2010.12.002.
|
[35]
|
A. L. Whiteman, A family of difference sets, Illinois J. Math., 6 (1962), 107-121.
doi: 10.1215/ijm/1255631810.
|
[36]
|
R. M. Wilson, Cyclotomic and difference families in elementary abelian groups, J. Number Theory, 4 (1972), 17-47.
doi: 10.1016/0022-314X(72)90009-1.
|
[37]
|
Y. Yang, Z. Zhou and X. Tang, Two classes of zero-difference balanced functions and their optimal constant composition codes, in Proceedings of 2016 IEEE International Symposium on Information Theory, (2016), 1327–1330.
doi: 10.1109/TIT.2008.2006420.
|
[38]
|
Z. Yi, Z. Lin and L. Ke, A generic method to construct zero-difference balanced functions, Cryptogr. Commun., 10 (2018), 591-609.
doi: 10.1007/s12095-017-0247-4.
|
[39]
|
J. Yin, X. Shan and Z. Tian, Constructions of partitioned difference families, Eur. J. Comb., 29 (2008), 1507-1519.
doi: 10.1016/j.ejc.2007.06.006.
|
[40]
|
X. Zeng, H. Cai, X. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248.
doi: 10.1109/TIT.2013.2237754.
|
[41]
|
Z. Zha and L. Hu, Cyclotomic constructions of zero-difference balanced functions with applications, IEEE Trans. Inf. Theory, 61 (2015), 1491–1495.
doi: 10.1109/TIT.2014.2388231.
|
[42]
|
Z. Zhou, X. Tang, D. Wu and Y. Yang, Some new classes of zero-difference balanced functions, IEEE Trans. Inf. Theory, 58 (2012), 139-145.
doi: 10.1109/TIT.2011.2171418.
|