Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Yarn-level simulation of woven cloth

Published: 19 November 2014 Publication History

Abstract

The large-scale mechanical behavior of woven cloth is determined by the mechanical properties of the yarns, the weave pattern, and frictional contact between yarns. Using standard simulation methods for elastic rod models and yarn-yarn contact handling, the simulation of woven garments at realistic yarn densities is deemed intractable. This paper introduces an efficient solution for simulating woven cloth at the yarn level. Central to our solution is a novel discretization of interlaced yarns based on yarn crossings and yarn sliding, which allows modeling yarn-yarn contact implicitly, avoiding contact handling at yarn crossings altogether. Combined with models for internal yarn forces and inter-yarn frictional contact, as well as a massively parallel solver, we are able to simulate garments with hundreds of thousands of yarn crossings at practical frame-rates on a desktop machine, showing combinations of large-scale and fine-scale effects induced by yarn-level mechanics.

Supplementary Material

ZIP File (a207.zip)
Supplemental material.

References

[1]
Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of ACM SIGGRAPH 98, 4354.
[2]
Bell, N., and Garland, M., 2012. Cusp: Generic parallel algorithms for sparse matrix and graph computations. Version 0.3.0.
[3]
Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. Graph. 27, 3, 63:163:12.
[4]
Berthouzoz, F., Garg, A., Kaufman, D. M., Grinspun, E., and Agrawala, M. 2013. Parsing sewing patterns into 3D garments. ACM Trans. Graph. 32, 4, 85:1--85:12.
[5]
Boisse, P., Borr, M., Buet, K., and Cherouat, A. 1997. Finite element simulations of textile composite forming including the biaxial fabric behaviour. Composites Part B: Engineering 28, 4, 453--464.
[6]
Breen, D. E., House, D. H., and Wozny, M. J. 1994. Predicting the drape of woven cloth using interacting particles. In Proceedings of ACM SIGGRAPH 94, 365--372.
[7]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer animation 2003, 2836.
[8]
Casati, R., and Bertails-Descoubes, F. 2013. Super space clothoids. ACM Trans. Graph. 32, 4, 48.
[9]
Chen, Y., Lin, S., Zhong, H., Xu, Y.-Q., Guo, B., and Shum, H.-Y. 2003. Realistic rendering and animation of knitwear. IEEE Transactions on Visualization and Computer Graphics 9, 1 (Jan.), 43--55.
[10]
Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. 21, 3, 604--611.
[11]
Daviet, G., Bertails-Descoubes, F., and Boissieux, L. 2011. A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. ACM Trans. Graph. 30, 6, 139:1--139:12.
[12]
de Joya, J. M., Narain, R., O'Brien, J., Samii, A., and Zordan, V. Berkeley garment library. http://graphics.berkeley.edu/resources/GarmentLibrary/.
[13]
Duan, Y., Keefe, M., Bogetti, T. A., and Powers, B. 2006. Finite element modeling of transverse impact on a ballistic fabric. International Journal of Mechanical Sciences 48, 1, 33--43.
[14]
Etzmuss, O., Keckeisen, M., and Strasser, W. 2003. A fast finite element solution for cloth modelling. In Proceedings of Pacific Graphics 2003, 244--251.
[15]
Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. ACM Trans. Graph. 26, 3, 49.
[16]
Goldstein, H., Poole, C. P., and Safko, J. L. 2001. Classical Mechanics (3rd Edition), 3 ed. Addison-Wesley.
[17]
Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer animation 2003, 6267.
[18]
Harmon, D., Vouga, E., Smith, B., Tamstorf, R., and Grinspun, E. 2009. Asynchronous contact mechanics. ACM Trans. Graph. 28, 3, 97.
[19]
Hearle, J. W. S., Grosberg, P., and Backer, S. 1969. Structural Mechanics of Fibers, Yarns, and Fabrics, vol. 1. JohnWiley & Sons Inc., New York.
[20]
Jakob, W., 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
[21]
Kaldor, J. M., James, D. L., and Marschner, S. 2008. Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27, 3, 65:165:9.
[22]
Kaldor, J. M., James, D. L., and Marschner, S. 2010. Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph. 29, 4, 105:1--105:10.
[23]
Kawabata, S., Niwa, M., and Kawai, H. 1973. The finite-deformation theory of plain-weave fabrics part i: The biaxial-deformation theory. Journal of the Textile Institute 64, 1, 21--46.
[24]
King, M. J., Jearanaisilawong, P., and Socrate, S. 2005. A continuum constitutive model for the mechanical behavior of woven fabrics. International Journal of Solids and Structures 42, 13, 3867--3896.
[25]
Lopez-Moreno, J., Cirio, G., Miraut, D., and Otaduy, M. A. 2014. GPU Visualization and Voxelization of Yarn-Level Cloth. Proceedings of the Spanish Computer Graphics Conference.
[26]
McGlockton, M. A., Cox, B. N., and McMeeking, R. M. 2003. A binary model of textile composites: III high failure strain and work of fracture in 3D weaves. Journal of the Mechanics and Physics of Solids 51, 8, 1573--1600.
[27]
Metaaphanon, N., Bando, Y., Chen, B.-Y., and Nishita, T. 2009. Simulation of tearing cloth with frayed edges. Comput. Graph. Forum 7, 1837--1844.
[28]
Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M. A., and Marschner, S. 2012. Data-driven estimation of cloth simulation models. Comp. Graph. Forum 31, 519--528.
[29]
Miguel, E., Tamstorf, R., Bradley, D., Schvartzman, S. C., Thomaszewski, B., Bickel, B., Matusik, W., Marschner, S., and Otaduy, M. A. 2013. Modeling and estimation of internal friction in cloth. ACM Trans. Graph. 32, 6, 212:1--212:10.
[30]
Nadler, B., Papadopoulos, P., and Steigmann, D. J. 2006. Multiscale constitutive modeling and numerical simulation of fabric material. International Journal of Solids and Structures 43, 2, 206--221.
[31]
Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6, 152:1--152:10.
[32]
Ng, S.-P., Tse, P.-C., and Lau, K.-J. 1998. Numerical and experimental determination of in-plane elastic properties of 2/2 twill weave fabric composites. Composites Part B: Engineering 29, 6, 735--744.
[33]
O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of ACM SIGGRAPH 99, 137146.
[34]
Page, J., and Wang, J. 2000. Prediction of shear force and an analysis of yarn slippage for a plain-weave carbon fabric in a bias extension state. Composites Science and Technology 60, 7, 977--986.
[35]
Pai, D. K. 2002. Strands: Interactive simulation of thin solids using cosserat models. Comput. Graph. Forum 21, 3, 347--352.
[36]
Parsons, E. M., Weerasooriya, T., Sarva, S., and Socrate, S. 2010. Impact of woven fabric: Experiments and mesostructure-based continuum-level simulations. Journal of the Mechanics and Physics of Solids 58, 11, 1995--2021.
[37]
Parsons, E. M., King, M. J., and Socrate, S. 2013. Modeling yarn slip in woven fabric at the continuum level: Simulations of ballistic impact. Journal of the Mechanics and Physics of Solids 61, 1, 265--292.
[38]
Peirce, F. T. 1937. The geometry of cloth structure. Journal of the Textile Institute Transactions 28, 3, T45--T96.
[39]
Pfaff, T., Narain, R., de Joya, J. M., and O'Brien, J. F. 2014. Adaptive tearing and cracking of thin sheets. ACM Trans. Graph. 33, 4, 110:1--9.
[40]
Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In In Graphics Interface, 147--154.
[41]
Reese, S. 2003. Anisotropic elastoplastic material behavior in fabric structures. In IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, 201--210.
[42]
Spillmann, J., and Teschner, M. 2007. CoRdE: cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2007, 6372.
[43]
Spillmann, J., and Teschner, M. 2009. Cosserat nets. IEEE Transactions on Visualization and Computer Graphics 15, 2, 325--338.
[44]
Sueda, S., Jones, G. L., Levin, D. I. W., and Pai, D. K. 2011. Large-scale dynamic simulation of highly constrained strands. ACM Trans. Graph. 30, 4, 39:1--10.
[45]
Sullivan, J. M. 2008. Curves of finite total curvature. In Discrete Differential Geometry, A. I. Bobenko, J. M. Sullivan, P. Schröder, and G. M. Ziegler, Eds., vol. 38 of Oberwolfach Seminars. Birkhäuser, Basel, 137--161.
[46]
Tang, M., Tong, R., Narain, R., Meng, C., and Manocha, D. 2013. A GPU-based streaming algorithm for high-resolution cloth simulation. Computer Graphics Forum 32, 7, 21--30.
[47]
Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of ACM SIGGRAPH 87, 205--214.
[48]
Teschner, M., Heidelberger, B., Mueller, M., Pomeranets, D., and Gross, M. 2003. Optimized spatial hashing for collision detection of deformable objects. 47--54.
[49]
Volino, P., Courchesne, M., and Magnenat Thalmann, N. 1995. Versatile and efficient techniques for simulating cloth and other deformable objects. In Proceedings of ACM SIGGRAPH 95, 137--144.
[50]
Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28, 4, 105:1--105:16.
[51]
Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, 4, 71:1--71:12.
[52]
Xia, W., and Nadler, B. 2011. Three-scale modeling and numerical simulations of fabric materials. International Journal of Engineering Science 49, 3, 229--239.
[53]
Yamane, K., and Nakamura, Y. 2006. Stable penalty-based model of frictional contacts. In Proceedings of IEEE International Conference on Robotics and Automation 2006, 1904--1909.

Cited By

View all
  • (2024)Digitally Creating Garmentsデジタルで衣服をつくるJournal of Japan Society of Kansei Engineering10.5057/kansei.22.1_322:1(3-10)Online publication date: 31-Mar-2024
  • (2024)BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEMEBeykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi10.20854/bujse.139503217:1(1-16)Online publication date: 12-Jul-2024
  • (2024)Yarn-level modeling and simulation of fancy weft-knitted fabricTextile Research Journal10.1177/0040517524123595094:17-18(2063-2078)Online publication date: 28-Mar-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 6
November 2014
704 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2661229
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 November 2014
Published in TOG Volume 33, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. cloth
  2. physically based simulation
  3. yarns

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)148
  • Downloads (Last 6 weeks)6
Reflects downloads up to 28 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Digitally Creating Garmentsデジタルで衣服をつくるJournal of Japan Society of Kansei Engineering10.5057/kansei.22.1_322:1(3-10)Online publication date: 31-Mar-2024
  • (2024)BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEMEBeykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi10.20854/bujse.139503217:1(1-16)Online publication date: 12-Jul-2024
  • (2024)Yarn-level modeling and simulation of fancy weft-knitted fabricTextile Research Journal10.1177/0040517524123595094:17-18(2063-2078)Online publication date: 28-Mar-2024
  • (2024)Virtual Measurement Garment for Per-Garment Virtual Try-OnProceedings of the 50th Graphics Interface Conference10.1145/3670947.3670957(1-10)Online publication date: 3-Jun-2024
  • (2024)More Than Killmonger Locs: A Style Guide for Black Hair (in Computer Graphics)ACM SIGGRAPH 2024 Courses10.1145/3664475.3664535(1-251)Online publication date: 27-Jul-2024
  • (2024)Contact detection between curved fibres: high order makes a differenceACM Transactions on Graphics10.1145/365819143:4(1-23)Online publication date: 19-Jul-2024
  • (2024)Differentiable Geodesic Distance for Intrinsic Minimization on Triangle MeshesACM Transactions on Graphics10.1145/365812243:4(1-14)Online publication date: 19-Jul-2024
  • (2024)Efficient Deformation Learning of Varied Garments with a Structure-Preserving Multilevel FrameworkProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36512867:1(1-19)Online publication date: 13-May-2024
  • (2024)Digital Three-dimensional Smocking DesignACM Transactions on Graphics10.1145/363194543:2(1-17)Online publication date: 3-Jan-2024
  • (2024)Computational Smocking through Fabric‐Thread InteractionComputer Graphics Forum10.1111/cgf.1503043:2Online publication date: 30-Apr-2024
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media