Nothing Special   »   [go: up one dir, main page]

数学、とくに群論において、群 G における部分群 H の指数 (index) は G における H の「相対的な大きさ」である。同じことだが、G を埋め尽くす H の「コピー」(剰余類) の個数である。例えば、H が G において指数 2 をもてば、直感的には G の元の「半分」は H の元である。H の G における指数は通常 |G : H| あるいは [G : H] あるいは (G:H) で表記される。 正式には、H の G における指数は H の G における剰余類の個数として定義される。(H の G における左剰余類の個数はつねに右剰余類の個数と等しい。)例えば、Z を整数のなす加法群とし、2Z を偶数全体からなる Z の部分群とする。すると 2Z は Z において2つの剰余類(すなわち偶数全体と奇数全体)をもち、したがって 2Z の Z における指数は 2 である。一般化すると、任意の正の整数 n に対して である。 N が G の正規部分群であれば、G における N の指数はまた商群 G / N の位数にも等しい、なぜならばこれは G における N の剰余類の集合における群構造の言葉で定義されるからである。 G が無限であれば、部分群 H の指数は一般には 0 でない基数になる。上の例が示すように、それは有限 - つまり、正の整数 - かもしれない。

Property Value
dbo:abstract
  • 数学、とくに群論において、群 G における部分群 H の指数 (index) は G における H の「相対的な大きさ」である。同じことだが、G を埋め尽くす H の「コピー」(剰余類) の個数である。例えば、H が G において指数 2 をもてば、直感的には G の元の「半分」は H の元である。H の G における指数は通常 |G : H| あるいは [G : H] あるいは (G:H) で表記される。 正式には、H の G における指数は H の G における剰余類の個数として定義される。(H の G における左剰余類の個数はつねに右剰余類の個数と等しい。)例えば、Z を整数のなす加法群とし、2Z を偶数全体からなる Z の部分群とする。すると 2Z は Z において2つの剰余類(すなわち偶数全体と奇数全体)をもち、したがって 2Z の Z における指数は 2 である。一般化すると、任意の正の整数 n に対して である。 N が G の正規部分群であれば、G における N の指数はまた商群 G / N の位数にも等しい、なぜならばこれは G における N の剰余類の集合における群構造の言葉で定義されるからである。 G が無限であれば、部分群 H の指数は一般には 0 でない基数になる。上の例が示すように、それは有限 - つまり、正の整数 - かもしれない。 G と H が有限群であれば、H の G における指数は 2 つの群の位数の商に等しい: これはラグランジュの定理であり、この場合商は必ず正の整数である。 (ja)
  • 数学、とくに群論において、群 G における部分群 H の指数 (index) は G における H の「相対的な大きさ」である。同じことだが、G を埋め尽くす H の「コピー」(剰余類) の個数である。例えば、H が G において指数 2 をもてば、直感的には G の元の「半分」は H の元である。H の G における指数は通常 |G : H| あるいは [G : H] あるいは (G:H) で表記される。 正式には、H の G における指数は H の G における剰余類の個数として定義される。(H の G における左剰余類の個数はつねに右剰余類の個数と等しい。)例えば、Z を整数のなす加法群とし、2Z を偶数全体からなる Z の部分群とする。すると 2Z は Z において2つの剰余類(すなわち偶数全体と奇数全体)をもち、したがって 2Z の Z における指数は 2 である。一般化すると、任意の正の整数 n に対して である。 N が G の正規部分群であれば、G における N の指数はまた商群 G / N の位数にも等しい、なぜならばこれは G における N の剰余類の集合における群構造の言葉で定義されるからである。 G が無限であれば、部分群 H の指数は一般には 0 でない基数になる。上の例が示すように、それは有限 - つまり、正の整数 - かもしれない。 G と H が有限群であれば、H の G における指数は 2 つの群の位数の商に等しい: これはラグランジュの定理であり、この場合商は必ず正の整数である。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3096813 (xsd:integer)
dbo:wikiPageLength
  • 8696 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90772640 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Normality of subgroups of prime index (ja)
  • Normality of subgroups of prime index (ja)
prop-en:urlname
  • NormalityOfSubgroupsOfPrimeIndex (ja)
  • NormalityOfSubgroupsOfPrimeIndex (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学、とくに群論において、群 G における部分群 H の指数 (index) は G における H の「相対的な大きさ」である。同じことだが、G を埋め尽くす H の「コピー」(剰余類) の個数である。例えば、H が G において指数 2 をもてば、直感的には G の元の「半分」は H の元である。H の G における指数は通常 |G : H| あるいは [G : H] あるいは (G:H) で表記される。 正式には、H の G における指数は H の G における剰余類の個数として定義される。(H の G における左剰余類の個数はつねに右剰余類の個数と等しい。)例えば、Z を整数のなす加法群とし、2Z を偶数全体からなる Z の部分群とする。すると 2Z は Z において2つの剰余類(すなわち偶数全体と奇数全体)をもち、したがって 2Z の Z における指数は 2 である。一般化すると、任意の正の整数 n に対して である。 N が G の正規部分群であれば、G における N の指数はまた商群 G / N の位数にも等しい、なぜならばこれは G における N の剰余類の集合における群構造の言葉で定義されるからである。 G が無限であれば、部分群 H の指数は一般には 0 でない基数になる。上の例が示すように、それは有限 - つまり、正の整数 - かもしれない。 (ja)
  • 数学、とくに群論において、群 G における部分群 H の指数 (index) は G における H の「相対的な大きさ」である。同じことだが、G を埋め尽くす H の「コピー」(剰余類) の個数である。例えば、H が G において指数 2 をもてば、直感的には G の元の「半分」は H の元である。H の G における指数は通常 |G : H| あるいは [G : H] あるいは (G:H) で表記される。 正式には、H の G における指数は H の G における剰余類の個数として定義される。(H の G における左剰余類の個数はつねに右剰余類の個数と等しい。)例えば、Z を整数のなす加法群とし、2Z を偶数全体からなる Z の部分群とする。すると 2Z は Z において2つの剰余類(すなわち偶数全体と奇数全体)をもち、したがって 2Z の Z における指数は 2 である。一般化すると、任意の正の整数 n に対して である。 N が G の正規部分群であれば、G における N の指数はまた商群 G / N の位数にも等しい、なぜならばこれは G における N の剰余類の集合における群構造の言葉で定義されるからである。 G が無限であれば、部分群 H の指数は一般には 0 でない基数になる。上の例が示すように、それは有限 - つまり、正の整数 - かもしれない。 (ja)
rdfs:label
  • 部分群の指数 (ja)
  • 部分群の指数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of