数学の群論における輪積(りんせき、英: wreath product; リース積)は、半直積をもとにして定義される二つの群の特殊化された積である。置換群の分類においてリース積は重要な道具であり、またリース積から群の興味深い例がさまざまに構成される。 二つの群 A および H が与えられたとき、それら輪積には非制限輪積 A Wr H (あるいは A ≀ H) と制限輪積 A wr H の二種類が考えられる。さらに H-作用を持つ集合 Ω が与えられれば、A WrΩ H あるいは A wrΩ H で表されるそれぞれの輪積の一般化が存在する。
Property | Value |
---|---|
dbo:abstract |
|
dbo:thumbnail | |
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
prop-en:title |
|
prop-en:urlname |
|
prop-en:wikiPageUsesTemplate | |
dct:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:depiction | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is owl:sameAs of | |
is foaf:primaryTopic of |