Nothing Special   »   [go: up one dir, main page]

数学において、双対性(双線型形式 ⟨,⟩)を持つ位相線型空間の対 E, F に関する双直交系(そうちょっこうけい、英: biorthogonal system; 二重直交系)とは、 を満たす(I は適当な添字集合で、δ はクロネッカーのデルタ)ベクトルの族の対 ({vi ∈ E}, {ui ∈ F}) を言う。E = F かつ vi = ui (∀i∈ I) なるときの双直交系は、すなわち正規直交系である。 において、函数族 および は二重直交系を構成する。その他の例として、行列の、固有値によって添字付けられる左固有ベクトルの集合と右固有ベクトルの集合の対は双直交系である。

Property Value
dbo:abstract
  • 数学において、双対性(双線型形式 ⟨,⟩)を持つ位相線型空間の対 E, F に関する双直交系(そうちょっこうけい、英: biorthogonal system; 二重直交系)とは、 を満たす(I は適当な添字集合で、δ はクロネッカーのデルタ)ベクトルの族の対 ({vi ∈ E}, {ui ∈ F}) を言う。E = F かつ vi = ui (∀i∈ I) なるときの双直交系は、すなわち正規直交系である。 において、函数族 および は二重直交系を構成する。その他の例として、行列の、固有値によって添字付けられる左固有ベクトルの集合と右固有ベクトルの集合の対は双直交系である。 (ja)
  • 数学において、双対性(双線型形式 ⟨,⟩)を持つ位相線型空間の対 E, F に関する双直交系(そうちょっこうけい、英: biorthogonal system; 二重直交系)とは、 を満たす(I は適当な添字集合で、δ はクロネッカーのデルタ)ベクトルの族の対 ({vi ∈ E}, {ui ∈ F}) を言う。E = F かつ vi = ui (∀i∈ I) なるときの双直交系は、すなわち正規直交系である。 において、函数族 および は二重直交系を構成する。その他の例として、行列の、固有値によって添字付けられる左固有ベクトルの集合と右固有ベクトルの集合の対は双直交系である。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2835074 (xsd:integer)
dbo:wikiPageLength
  • 1739 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 62486182 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学において、双対性(双線型形式 ⟨,⟩)を持つ位相線型空間の対 E, F に関する双直交系(そうちょっこうけい、英: biorthogonal system; 二重直交系)とは、 を満たす(I は適当な添字集合で、δ はクロネッカーのデルタ)ベクトルの族の対 ({vi ∈ E}, {ui ∈ F}) を言う。E = F かつ vi = ui (∀i∈ I) なるときの双直交系は、すなわち正規直交系である。 において、函数族 および は二重直交系を構成する。その他の例として、行列の、固有値によって添字付けられる左固有ベクトルの集合と右固有ベクトルの集合の対は双直交系である。 (ja)
  • 数学において、双対性(双線型形式 ⟨,⟩)を持つ位相線型空間の対 E, F に関する双直交系(そうちょっこうけい、英: biorthogonal system; 二重直交系)とは、 を満たす(I は適当な添字集合で、δ はクロネッカーのデルタ)ベクトルの族の対 ({vi ∈ E}, {ui ∈ F}) を言う。E = F かつ vi = ui (∀i∈ I) なるときの双直交系は、すなわち正規直交系である。 において、函数族 および は二重直交系を構成する。その他の例として、行列の、固有値によって添字付けられる左固有ベクトルの集合と右固有ベクトルの集合の対は双直交系である。 (ja)
rdfs:label
  • 双直交系 (ja)
  • 双直交系 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of