Nothing Special   »   [go: up one dir, main page]

代数幾何学と可換環論において、ザリスキ位相(英語: Zariski topology)は代数多様体に定義される位相であり、最初はオスカー・ザリスキによって導入された。ザリスキ位相は可換環の素イデアル全体の集合に対しても定義され、その環のスペクトルと呼ばれる。 ザリスキ位相によって、基礎体が位相体でないときでさえ、代数多様体の研究に位相空間論の道具を使うことができるようになる。このような手法はスキーム論の基本的な考えの1つであり、多様体 (manifold) が局所座標系(実アファイン空間の開部分集合)を貼り合わせて構成されるのと同じように、一般の代数多様体はアファイン多様体を貼り合わせて構成される。 代数多様体のザリスキ位相は、多様体の代数的部分集合の全体を閉集合系とする位相である。複素数体上の代数多様体の場合には、ザリスキ位相は通常の位相よりも粗く、任意の代数的集合は通常の位相でも閉集合であるが、逆は一般には正しくない。

Property Value
dbo:abstract
  • 代数幾何学と可換環論において、ザリスキ位相(英語: Zariski topology)は代数多様体に定義される位相であり、最初はオスカー・ザリスキによって導入された。ザリスキ位相は可換環の素イデアル全体の集合に対しても定義され、その環のスペクトルと呼ばれる。 ザリスキ位相によって、基礎体が位相体でないときでさえ、代数多様体の研究に位相空間論の道具を使うことができるようになる。このような手法はスキーム論の基本的な考えの1つであり、多様体 (manifold) が局所座標系(実アファイン空間の開部分集合)を貼り合わせて構成されるのと同じように、一般の代数多様体はアファイン多様体を貼り合わせて構成される。 代数多様体のザリスキ位相は、多様体の代数的部分集合の全体を閉集合系とする位相である。複素数体上の代数多様体の場合には、ザリスキ位相は通常の位相よりも粗く、任意の代数的集合は通常の位相でも閉集合であるが、逆は一般には正しくない。 可換環の素イデアル全体の集合へのザリスキ位相の一般化は、代数閉体上定義されたアファイン多様体の点全体と多様体の正則関数環の極大イデアル全体との間の1:1対応を確立するヒルベルトの零点定理から従う。この定理より、可換環の極大イデアル全体の集合上のザリスキ位相は、ある与えられたイデアルを含む極大イデアルの全体を閉集合とし、かつそのような集合のみが閉集合である、と定めればよいことが示唆される。グロタンディークのスキーム論のもう1つの基本的な考えは、極大イデアルに対応する普通の点のみならず、すべての(既約)代数多様体、これは素イデアルに対応する、をも点として考えることである。したがって、可換環の素イデアル全体の集合(スペクトル)上のザリスキ位相は、ある固定されたイデアルを含むような素イデアル全体の集合の全体を閉集合系とする位相である。 (ja)
  • 代数幾何学と可換環論において、ザリスキ位相(英語: Zariski topology)は代数多様体に定義される位相であり、最初はオスカー・ザリスキによって導入された。ザリスキ位相は可換環の素イデアル全体の集合に対しても定義され、その環のスペクトルと呼ばれる。 ザリスキ位相によって、基礎体が位相体でないときでさえ、代数多様体の研究に位相空間論の道具を使うことができるようになる。このような手法はスキーム論の基本的な考えの1つであり、多様体 (manifold) が局所座標系(実アファイン空間の開部分集合)を貼り合わせて構成されるのと同じように、一般の代数多様体はアファイン多様体を貼り合わせて構成される。 代数多様体のザリスキ位相は、多様体の代数的部分集合の全体を閉集合系とする位相である。複素数体上の代数多様体の場合には、ザリスキ位相は通常の位相よりも粗く、任意の代数的集合は通常の位相でも閉集合であるが、逆は一般には正しくない。 可換環の素イデアル全体の集合へのザリスキ位相の一般化は、代数閉体上定義されたアファイン多様体の点全体と多様体の正則関数環の極大イデアル全体との間の1:1対応を確立するヒルベルトの零点定理から従う。この定理より、可換環の極大イデアル全体の集合上のザリスキ位相は、ある与えられたイデアルを含む極大イデアルの全体を閉集合とし、かつそのような集合のみが閉集合である、と定めればよいことが示唆される。グロタンディークのスキーム論のもう1つの基本的な考えは、極大イデアルに対応する普通の点のみならず、すべての(既約)代数多様体、これは素イデアルに対応する、をも点として考えることである。したがって、可換環の素イデアル全体の集合(スペクトル)上のザリスキ位相は、ある固定されたイデアルを含むような素イデアル全体の集合の全体を閉集合系とする位相である。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 3029893 (xsd:integer)
dbo:wikiPageLength
  • 20065 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91213522 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:author
  • Todd Rowland (ja)
  • Todd Rowland (ja)
prop-ja:title
  • Zariski Topology (ja)
  • Zariski Topology (ja)
prop-ja:urlname
  • ZariskiTopology (ja)
  • ZariskiTopology (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 代数幾何学と可換環論において、ザリスキ位相(英語: Zariski topology)は代数多様体に定義される位相であり、最初はオスカー・ザリスキによって導入された。ザリスキ位相は可換環の素イデアル全体の集合に対しても定義され、その環のスペクトルと呼ばれる。 ザリスキ位相によって、基礎体が位相体でないときでさえ、代数多様体の研究に位相空間論の道具を使うことができるようになる。このような手法はスキーム論の基本的な考えの1つであり、多様体 (manifold) が局所座標系(実アファイン空間の開部分集合)を貼り合わせて構成されるのと同じように、一般の代数多様体はアファイン多様体を貼り合わせて構成される。 代数多様体のザリスキ位相は、多様体の代数的部分集合の全体を閉集合系とする位相である。複素数体上の代数多様体の場合には、ザリスキ位相は通常の位相よりも粗く、任意の代数的集合は通常の位相でも閉集合であるが、逆は一般には正しくない。 (ja)
  • 代数幾何学と可換環論において、ザリスキ位相(英語: Zariski topology)は代数多様体に定義される位相であり、最初はオスカー・ザリスキによって導入された。ザリスキ位相は可換環の素イデアル全体の集合に対しても定義され、その環のスペクトルと呼ばれる。 ザリスキ位相によって、基礎体が位相体でないときでさえ、代数多様体の研究に位相空間論の道具を使うことができるようになる。このような手法はスキーム論の基本的な考えの1つであり、多様体 (manifold) が局所座標系(実アファイン空間の開部分集合)を貼り合わせて構成されるのと同じように、一般の代数多様体はアファイン多様体を貼り合わせて構成される。 代数多様体のザリスキ位相は、多様体の代数的部分集合の全体を閉集合系とする位相である。複素数体上の代数多様体の場合には、ザリスキ位相は通常の位相よりも粗く、任意の代数的集合は通常の位相でも閉集合であるが、逆は一般には正しくない。 (ja)
rdfs:label
  • ザリスキー位相 (ja)
  • ザリスキー位相 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of