Nothing Special   »   [go: up one dir, main page]

アルゴリズム解析とは、アルゴリズムの実行に必要とされるリソース(時間や記憶領域)量を見積もることである。多くのアルゴリズムは任意長の入力を受け付けるよう設計されている。アルゴリズムの「効率」や「複雑さ」は一般に、入力長からそのアルゴリズムを実行するのに必要なステップ数(時間複雑性)や記憶領域サイズ(空間複雑性)への関数として表される。 アルゴリズム解析は計算複雑性理論の重要な一分野である。計算複雑性理論では、与えられた計算問題を解くアルゴリズムが必要とするリソースを理論的に見積もる。この見積もりにより効率的なアルゴリズムを設計する指針が得られることがある。 アルゴリズム解析ではふつう、漸近的(asymptotic)な意味で複雑性を見積もる。すなわち、ある程度大きな入力長の際の複雑性関数を見積もる。このためにO記法、Ω記法、Θ記法が用いられる。例えば、二分探索のステップ数は入力サイズの対数に比例し、これを O(log(n)) と表記したり、「対数時間」と称したりする。このような漸近的な見積もりを用いるのは、同じアルゴリズムでも実装の違いにより差が出るのを捨象するためである。異なる妥当な実装による効率の違いは定数倍に留まる。この定数を隠れた定数(hidden constant)と呼ぶ。

Property Value
dbo:abstract
  • アルゴリズム解析とは、アルゴリズムの実行に必要とされるリソース(時間や記憶領域)量を見積もることである。多くのアルゴリズムは任意長の入力を受け付けるよう設計されている。アルゴリズムの「効率」や「複雑さ」は一般に、入力長からそのアルゴリズムを実行するのに必要なステップ数(時間複雑性)や記憶領域サイズ(空間複雑性)への関数として表される。 アルゴリズム解析は計算複雑性理論の重要な一分野である。計算複雑性理論では、与えられた計算問題を解くアルゴリズムが必要とするリソースを理論的に見積もる。この見積もりにより効率的なアルゴリズムを設計する指針が得られることがある。 アルゴリズム解析ではふつう、漸近的(asymptotic)な意味で複雑性を見積もる。すなわち、ある程度大きな入力長の際の複雑性関数を見積もる。このためにO記法、Ω記法、Θ記法が用いられる。例えば、二分探索のステップ数は入力サイズの対数に比例し、これを O(log(n)) と表記したり、「対数時間」と称したりする。このような漸近的な見積もりを用いるのは、同じアルゴリズムでも実装の違いにより差が出るのを捨象するためである。異なる妥当な実装による効率の違いは定数倍に留まる。この定数を隠れた定数(hidden constant)と呼ぶ。 漸近的でない正確な効率がわかる場合もあるが、そのためには「計算モデル」と呼ばれるアルゴリズムの特定の実装を仮定する必要がある。計算モデルはチューリング機械のような抽象化された機械を使うか、個々の命令の実行時間が変化しないと仮定することが多い(例えば実際のコンピュータではキャッシュにヒットするかしないかでは大きく実行時間が異なるが、アルゴリズム解析では一般にそれを無視する)。例えば、二分探索で N 個のソートされた数から探索する場合、1回の参照を一定の単位時間でできるとした場合、回答を得るまでに最大で log2 N+1 単位時間を要する。 (ja)
  • アルゴリズム解析とは、アルゴリズムの実行に必要とされるリソース(時間や記憶領域)量を見積もることである。多くのアルゴリズムは任意長の入力を受け付けるよう設計されている。アルゴリズムの「効率」や「複雑さ」は一般に、入力長からそのアルゴリズムを実行するのに必要なステップ数(時間複雑性)や記憶領域サイズ(空間複雑性)への関数として表される。 アルゴリズム解析は計算複雑性理論の重要な一分野である。計算複雑性理論では、与えられた計算問題を解くアルゴリズムが必要とするリソースを理論的に見積もる。この見積もりにより効率的なアルゴリズムを設計する指針が得られることがある。 アルゴリズム解析ではふつう、漸近的(asymptotic)な意味で複雑性を見積もる。すなわち、ある程度大きな入力長の際の複雑性関数を見積もる。このためにO記法、Ω記法、Θ記法が用いられる。例えば、二分探索のステップ数は入力サイズの対数に比例し、これを O(log(n)) と表記したり、「対数時間」と称したりする。このような漸近的な見積もりを用いるのは、同じアルゴリズムでも実装の違いにより差が出るのを捨象するためである。異なる妥当な実装による効率の違いは定数倍に留まる。この定数を隠れた定数(hidden constant)と呼ぶ。 漸近的でない正確な効率がわかる場合もあるが、そのためには「計算モデル」と呼ばれるアルゴリズムの特定の実装を仮定する必要がある。計算モデルはチューリング機械のような抽象化された機械を使うか、個々の命令の実行時間が変化しないと仮定することが多い(例えば実際のコンピュータではキャッシュにヒットするかしないかでは大きく実行時間が異なるが、アルゴリズム解析では一般にそれを無視する)。例えば、二分探索で N 個のソートされた数から探索する場合、1回の参照を一定の単位時間でできるとした場合、回答を得るまでに最大で log2 N+1 単位時間を要する。 (ja)
dbo:wikiPageID
  • 737058 (xsd:integer)
dbo:wikiPageLength
  • 12965 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 89043559 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • アルゴリズム解析とは、アルゴリズムの実行に必要とされるリソース(時間や記憶領域)量を見積もることである。多くのアルゴリズムは任意長の入力を受け付けるよう設計されている。アルゴリズムの「効率」や「複雑さ」は一般に、入力長からそのアルゴリズムを実行するのに必要なステップ数(時間複雑性)や記憶領域サイズ(空間複雑性)への関数として表される。 アルゴリズム解析は計算複雑性理論の重要な一分野である。計算複雑性理論では、与えられた計算問題を解くアルゴリズムが必要とするリソースを理論的に見積もる。この見積もりにより効率的なアルゴリズムを設計する指針が得られることがある。 アルゴリズム解析ではふつう、漸近的(asymptotic)な意味で複雑性を見積もる。すなわち、ある程度大きな入力長の際の複雑性関数を見積もる。このためにO記法、Ω記法、Θ記法が用いられる。例えば、二分探索のステップ数は入力サイズの対数に比例し、これを O(log(n)) と表記したり、「対数時間」と称したりする。このような漸近的な見積もりを用いるのは、同じアルゴリズムでも実装の違いにより差が出るのを捨象するためである。異なる妥当な実装による効率の違いは定数倍に留まる。この定数を隠れた定数(hidden constant)と呼ぶ。 (ja)
  • アルゴリズム解析とは、アルゴリズムの実行に必要とされるリソース(時間や記憶領域)量を見積もることである。多くのアルゴリズムは任意長の入力を受け付けるよう設計されている。アルゴリズムの「効率」や「複雑さ」は一般に、入力長からそのアルゴリズムを実行するのに必要なステップ数(時間複雑性)や記憶領域サイズ(空間複雑性)への関数として表される。 アルゴリズム解析は計算複雑性理論の重要な一分野である。計算複雑性理論では、与えられた計算問題を解くアルゴリズムが必要とするリソースを理論的に見積もる。この見積もりにより効率的なアルゴリズムを設計する指針が得られることがある。 アルゴリズム解析ではふつう、漸近的(asymptotic)な意味で複雑性を見積もる。すなわち、ある程度大きな入力長の際の複雑性関数を見積もる。このためにO記法、Ω記法、Θ記法が用いられる。例えば、二分探索のステップ数は入力サイズの対数に比例し、これを O(log(n)) と表記したり、「対数時間」と称したりする。このような漸近的な見積もりを用いるのは、同じアルゴリズムでも実装の違いにより差が出るのを捨象するためである。異なる妥当な実装による効率の違いは定数倍に留まる。この定数を隠れた定数(hidden constant)と呼ぶ。 (ja)
rdfs:label
  • アルゴリズム解析 (ja)
  • アルゴリズム解析 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of