Μη-γραμμική διάχυση στην όραση υπολογιστών και στατιστικά μοντέλα σχήματος με εφαρμογές στην ανάλυση εικόνων αρθρωτών φωνητικού και νοημ...
Στην παρούσα έρευνα, αναπτύσσονται μοντέλα Μερικών Διαφορικών Εξισώσεων τύπου Μη-γραμμικής Διάχυσης για την απλοποίηση και την βελτίωση της ποιότητας εικόνων. Χρησιμοποιούνται επίσης μεθοδολογίες Στατιστικών Μοντέλων Σχήματος για τον οπτικό εντοπισμό και αναγνώριση αντικειμένων. Οι κύριες εφαρμογές που μελετώνται αφορούν την ανάλυση οπτικών δεδομένων των αρθρωτών λόγου, σε δύο διαφορετικές μορφές του: τον φωνητικό λόγο, του οποίου οι αρθρωτές βρίσκονται στην φωνητική οδό, και τον νοηματικό λόγο, του οποίου οι αρθρωτές είναι κυρίως τα χέρια, τα χείλη και τα μάτια. Η ανάλυση τέτοιων οπτικών δεδομένων συνεισφέρει στην έρευνα και την τεχνολογία που σχετίζονται με την ομιλία και την νοηματική γλώσσα.
Πιο συγκεκριμένα, σχεδιάζεται μία μέθοδος μη-γραμμικής διάχυσης για την βελτίωση της ευκρίνειας διανυσματικών εικόνων, η οποία αποδίδει αποτελέσματα υψηλής ακρίβειας, με περιορισμένα ανεπιθύμητα ψεύδεργα (artifacts). Επίσης, εισάγεται ένα θεωρητικό πλαίσιο το οποίο βασίζεται στον δομικό τανυ ...
περισσότερα
In this work, Nonlinear Diffusion models for image simplification and image restoration are developed. In addition, the framework of Statistical Shape Models is used for object detection and recognition. The main applications that are studied are related o the image analysis of speech articulators, for two different speech types: voiced speech, whose articulators are located in the vocal tract, and signed speech, whose main articulators are the hands, lips and eyes. This kind of image analysis contributes to the voiced and signed speech research and technology.
More precisely, we design a nonlinear diffusion method for vector-valued image interpolation, which yields accurate results with reduced artifacts. In addition, we introduce a theoretical framework that is based on the image structure tensor and generalizes several variational methods of nonlinear diffusion for image restoration. Based on this framework, we propose some new diffusion methods that combine the advantages of var ...
περισσότερα
Κατεβάστε τη διατριβή σε μορφή PDF (9.65 MB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.