Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields
Unn Dahlén,
Johan Lindström and
Marko Scholze
Environmetrics, 2020, vol. 31, issue 4
Abstract:
Atmospheric inverse modeling is a method for reconstructing historical fluxes of green‐house gas between land and atmosphere, using observed atmospheric concentrations and an atmospheric tracer transport model. The small number of observed atmospheric concentrations in relation to the number of unknown flux components makes the inverse problem ill‐conditioned, and assumptions on the fluxes are needed to constrain the solution. A common practice is to model the fluxes using latent Gaussian fields with a mean structure based on estimated fluxes from combinations of process modeling (natural fluxes) and statistical bookkeeping (anthropogenic emissions). Here, we reconstruct global CO2 flux fields by modeling fluxes using Gaussian Markov random fields (GMRFs), resulting in a flexible and computational beneficial model with a Matérn‐like spatial covariance and a temporal covariance arriving from an autoregressive model in time domain. In contrast to previous inversions, the flux is defined on a spatially continuous domain, and the traditionally discrete flux representation is replaced by integrated fluxes at the resolution specified by the transport model. This formulation removes aggregation errors in the flux covariance, due to the traditional representation of area integrals by fluxes at discrete points, and provides a model closer resembling real‐life space–time continuous fluxes.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed
Downloads: (external link)
https://doi.org/10.1002/env.2610
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:31:y:2020:i:4:n:e2610
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().