Environmetrics
2012 - 2024
From John Wiley & Sons, Ltd. Bibliographic data for series maintained by Wiley Content Delivery (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 35, issue 5, 2024
- Automatic deforestation detectors based on frequentist statistics and their extensions for other spatial objects
- Jesper Muren, Vilhelm Niklasson, Dmitry Otryakhin and Maxim Romashin
- Scanner: Simultaneously temporal trend and spatial cluster detection for spatial‐temporal data
- Xin Wang and Xin Zhang
- Contamination severity index: An analysis of Bangladesh groundwater arsenic
- Yogendra P. Chaubey and Qi Zhang
- Pointwise data depth for univariate and multivariate functional outlier detection
- Cristian F. Jiménez‐Varón, Fouzi Harrou and Ying Sun
- Bayesian benchmark dose risk assessment with mixed‐factor quantal data
- Mirjana Glisovic‐Bensa, Walter W. Piegorsch and Edward J. Bedrick
Volume 35, issue 4, 2024
- Statistical evaluation of a long‐memory process using the generalized entropic value‐at‐risk
- Hidekazu Yoshioka and Yumi Yoshioka
- Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy data: A Bayesian model approach
- Elliot S. Shannon, Andrew O. Finley, Daniel J. Hayes, Sylvia N. Noralez, Aaron R. Weiskittel, Bruce D. Cook and Chad Babcock
- Penalized distributed lag interaction model: Air pollution, birth weight, and neighborhood vulnerability
- Danielle Demateis, Kayleigh P. Keller, David Rojas‐Rueda, Marianthi‐Anna Kioumourtzoglou and Ander Wilson
- Recursive nearest neighbor co‐kriging models for big multi‐fidelity spatial data sets
- Si Cheng, Bledar A. Konomi, Georgios Karagiannis and Emily L. Kang
- Estimation and selection for spatial zero‐inflated count models
- Chung‐Wei Shen and Chun‐Shu Chen
Volume 35, issue 3, 2024
- Temporal evolution of the extreme excursions of multivariate k$$ k $$th order Markov processes with application to oceanographic data
- Stan Tendijck, Philip Jonathan, David Randell and Jonathan Tawn
- New generalized extreme value distribution with applications to extreme temperature data
- Wilson Gyasi and Kahadawala Cooray
- Structural equation models for simultaneous modeling of air pollutants
- Mariaelena Bottazzi Schenone, Elena Grimaccia and Maurizio Vichi
- Multivariate nearest‐neighbors Gaussian processes with random covariance matrices
- Isabelle Grenier, Bruno Sansó and Jessica L. Matthews
- Fast parameter estimation of generalized extreme value distribution using neural networks
- Sweta Rai, Alexis Hoffman, Soumendra Lahiri, Douglas W. Nychka, Stephan R. Sain and Soutir Bandyopadhyay
Volume 35, issue 2, 2024
- Spatial regression modeling via the R2D2 framework
- Eric Yanchenko, Howard D. Bondell and Brian J. Reich
- Joint species distribution modeling with competition for space
- Juho Kettunen, Lauri Mehtätalo, Eeva‐Stiina Tuittila, Aino Korrensalo and Jarno Vanhatalo
- An extended PDE‐based statistical spatio‐temporal model that suppresses the Gibbs phenomenon
- Guanzhou Wei, Xiao Liu and Russell Barton
- Locally correlated Poisson sampling
- Wilmer Prentius
- Total least squares bias in climate fingerprinting regressions with heterogeneous noise variances and correlated explanatory variables
- Ross McKitrick
Volume 35, issue 1, 2024
- Estimation of change with partially overlapping and spatially balanced samples
- Xin Zhao and Anton Grafström
- Elastic functional changepoint detection of climate impacts from localized sources
- J. Derek Tucker and Drew Yarger
- On the identifiability of the trinomial model for mark‐recapture‐recovery studies
- Simon J. Bonner, Wei Zhang and Jiaqi Mu
- A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency
- F. Marta L. Di Lascio, Andrea Menapace and Roberta Pappadà
- Calibrated forecasts of quasi‐periodic climate processes with deep echo state networks and penalized quantile regression
- Matthew Bonas, Christopher K. Wikle and Stefano Castruccio
Volume 34, issue 8, 2023
- Estimating atmospheric motion winds from satellite image data using space‐time drift models
- Indranil Sahoo, Joseph Guinness and Brian J. Reich
- Modeling temporally misaligned data across space: The case of total pollen concentration in Toronto
- Sara Zapata‐Marin, Alexandra M. Schmidt, Scott Weichenthal and Eric Lavigne
- Bayesian functional emulation of CO2 emissions on future climate change scenarios
- Luca Aiello, Matteo Fontana and Alessandra Guglielmi
- Novel application of a process convolution approach for calibrating output from numerical models
- Maike Holthuijzen, Dave Higdon, Brian Beckage and Patrick J. Clemins
- Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study
- Kehui Yao, Jun Zhu, Daniel J. O'Brien and Daniel Walsh
- A Bayesian spatio‐temporal model for short‐term forecasting of precipitation fields
- S. R. Johnson, S. E. Heaps, K. J. Wilson and D. J. Wilkinson
Volume 34, issue 7, 2023
- Detection of anomalous radioxenon concentrations: A distribution‐free approach
- Michele Scagliarini, Rosanna Gualdi, Giuseppe Ottaviano and Antonietta Rizzo
- Bayesian geostatistical modeling for discrete‐valued processes
- Xiaotian Zheng, Athanasios Kottas and Bruno Sansó
- A hierarchical Bayesian non‐asymptotic extreme value model for spatial data
- Federica Stolf and Antonio Canale
- Spatio‐temporal downscaling emulator for regional climate models
- Luis A. Barboza, Shu Wei Chou Chen, Marcela Alfaro Córdoba, Eric J. Alfaro and Hugo G. Hidalgo
- Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data
- Willams B. F. da Silva, Pedro M. Almeida‐Junior and Abraão D. C. Nascimento
Volume 34, issue 6, 2023
- Multistage hierarchical capture–recapture models
- Mevin B. Hooten, Michael R. Schwob, Devin S. Johnson and Jacob S. Ivan
- Subordinated Gaussian processes for solar irradiance
- Caitlin M. Berry, William Kleiber and Bri‐Mathias Hodge
- Assessing the ability of adaptive designs to capture trends in hard coral cover
- Thilan Awlp, P Menéndez and McGree Jm
- CO2 has significant implications for hourly ambient temperature: Evidence from Hawaii
- Kevin Forbes
- Air pollution estimation under air stagnation—A case study of Beijing
- Ying Zhang, Song Chen and Le Bao
Volume 34, issue 5, 2023
- Nonlinear prediction of functional time series
- Haixu Wang and Jiguo Cao
- CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model
- Antonello Maruotti and Pierfrancesco Alaimo Di Loro
- New estimation methods for extremal bivariate return curves
- C. J. R. Murphy‐Barltrop, J. L. Wadsworth and E. F. Eastoe
- Approximation of Bayesian Hawkes process with inlabru
- Francesco Serafini, Finn Lindgren and Mark Naylor
- Long memory conditional random fields on regular lattices
- Angela Ferretti, L. Ippoliti, P. Valentini and R. J. Bhansali
Volume 34, issue 4, 2023
- Principal component analysis for river network data: Use of spatiotemporal correlation and heterogeneous covariance structure
- Kyusoon Kim, Hee‐Seok Oh and Minsu Park
- Functional forecasting of dissolved oxygen in high‐frequency vertical lake profiles
- Luke Durell, J. Thad Scott, Douglas Nychka and Amanda S. Hering
- Bayesian multiple changepoint detection with missing data and its application to the magnitude‐frequency distributions
- Shaochuan Lu
- Stable sums to infer high return levels of multivariate rainfall time series
- Gloria Buriticá and Philippe Naveau
- A Bayesian time series model for reconstructing hydroclimate from multiple proxies
- Niamh Cahill, Jacky Croke, Micheline Campbell, Kate Hughes, John Vitkovsky, Jack Eaton Kilgallen and Andrew Parnell
- Mitigating spatial confounding by explicitly correlating Gaussian random fields
- Isa Marques, Thomas Kneib and Nadja Klein
Volume 34, issue 3, 2023
- Families of complex‐valued covariance models through integration
- Sandra De Iaco
- Multivariate receptor modeling with widely dispersed Lichens as bioindicators of air quality
- Matthew Heiner, Taylor Grimm, Hayden Smith, Steven D. Leavitt, William F. Christensen, Gregory T. Carling and Larry L. St. Clair
- A Bayesian change point modeling approach to identify local temperature changes related to urbanization
- C. Berrett, B. Gurney, D. Arthur, T. Moon and G. P. Williams
- Smooth copula‐based generalized extreme value model and spatial interpolation for extreme rainfall in Central Eastern Canada
- Fatima Palacios‐Rodriguez, Elena Di Bernardino and Melina Mailhot
- Comparing emulation methods for a high‐resolution storm surge model
- Grant Hutchings, Bruno Sansó, James Gattiker, Devin Francom and Donatella Pasqualini
Volume 34, issue 2, 2023
- Intersection between environmental data science and the R community in Latin America
- Natalia da Silva
- Framing data science, analytics and statistics around the digital earth concept
- E. Marian Scott
- Data science and climate risk analytics
- Stephan R. Sain
- Emulation of greenhouse‐gas sensitivities using variational autoencoders
- Laura Cartwright, Andrew Zammit‐Mangion and Nicholas M. Deutscher
- Pesticide concentration monitoring: Investigating spatio‐temporal patterns in left censored data
- Clément Laroche, Madalina Olteanu and Fabrice Rossi
- On the selection of an interpolation method with an application to the Fire Weather Index in Ontario, Canada
- Kevin Granville, Douglas G. Woolford, C. B. Dean, Dennis Boychuk and Colin B. McFayden
- Spatiotemporal modeling of mature‐at‐length data using a sliding window approach
- Yuan Yan, Eva Cantoni, Chris Field, Margaret Treble and Joanna Mills Flemming
- Shooting for abundance: Comparing integrated multi‐sampling models for camera trap and hair trap data
- Mehnaz Jahid, Holly N. Steeves, Jason T. Fisher, Simon J. Bonner, Saman Muthukumarana and Laura L. E. Cowen
- Flood hazard model calibration using multiresolution model output
- Samantha M. Roth, Ben Seiyon Lee, Sanjib Sharma, Iman Hosseini‐Shakib, Klaus Keller and Murali Haran
- A Bayesian framework for studying climate anomalies and social conflicts
- Ujjal Kumar Mukherjee, Benjamin E. Bagozzi and Snigdhansu Chatterjee
- Estimating functional single index models with compact support
- Yunlong Nie, Liangliang Wang and Jiguo Cao
- Environmental data science: Part 2
- Wesley S. Burr, Nathaniel K. Newlands and Andrew Zammit‐Mangion
- The role of data science in environmental digital twins: In praise of the arrows
- Gordon S. Blair and Peter A. Henrys
Volume 34, issue 1, 2023
- Uncertainty: Nothing is more certain
- Sally Cripps and Hugh Durrant‐Whyte
- Conjugate sparse plus low rank models for efficient Bayesian interpolation of large spatial data
- Shinichiro Shirota, Andrew O. Finley, Bruce D. Cook and Sudipto Banerjee
- Scalable spatio‐temporal smoothing via hierarchical sparse Cholesky decomposition
- Marcin Jurek and Matthias Katzfuss
- Detecting changes in mixed‐sampling rate data sequences
- Aaron Paul Lowther, Rebecca Killick and Idris Arthur Eckley
- A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution
- Oliver Baerenbold, Melanie Meis, Israel Martínez‐Hernández, Carolina Euán, Wesley S. Burr, Anja Tremper, Gary Fuller, Monica Pirani and Marta Blangiardo
- Stochastic tropical cyclone precipitation field generation
- William Kleiber, Stephan Sain, Luke Madaus and Patrick Harr
- Decisions, decisions, decisions in an uncertain environment
- Noel Cressie
- Large‐scale environmental data science with ExaGeoStatR
- Sameh Abdulah, Yuxiao Li, Jian Cao, Hatem Ltaief, David E. Keyes, Marc G. Genton and Ying Sun
- A double fixed rank kriging approach to spatial regression models with covariate measurement error
- Xu Ning, Francis K. C. Hui and Alan H. Welsh
- An illustration of model agnostic explainability methods applied to environmental data
- Christopher K. Wikle, Abhirup Datta, Bhava Vyasa Hari, Edward L. Boone, Indranil Sahoo, Indulekha Kavila, Stefano Castruccio, Susan J. Simmons, Wesley S. Burr and Won Chang
- The scope of the Kalman filter for spatio‐temporal applications in environmental science
- Jonathan Rougier, Aoibheann Brady, Jonathan Bamber, Stephen Chuter, Sam Royston, Bramha Dutt Vishwakarma, Richard Westaway and Yann Ziegler
- REDS: Random ensemble deep spatial prediction
- Ranadeep Daw and Christopher K. Wikle
- Data science applied to environmental sciences
- Paulo Canas Rodrigues and Elisabetta Carfagna
- Environmental data science: Part 1
- Andrew Zammit‐Mangion, Nathaniel K. Newlands and Wesley S. Burr
| |