Nothing Special   »   [go: up one dir, main page]

October 20, 2017

Search for Habitable Worlds

Search for Habitable Worlds

New NASA research is helping to refine our understanding of candidate planets beyond our Solar System that might support life.

“Using a model that more realistically simulates atmospheric conditions, we discovered a new process that controls the habitability of exoplanets and will guide us in identifying candidates for further study,” said Yuka Fujii of NASA’s Goddard Institute for Space Studies (GISS), New York, New York and the Earth-Life Science Institute at the Tokyo Institute of Technology, Japan.

Previous models simulated atmospheric conditions along one dimension, the vertical. Like some other recent habitability studies, the new research used a model that calculates conditions in all three dimensions, allowing the team to simulate the circulation of the atmosphere and the special features of that circulation, which one-dimensional models cannot do. The new work will help astronomers allocate scarce observing time to the most promising candidates for habitability.

Liquid water is necessary for life as we know it, so the surface of an alien world (e.g. an exoplanet) is considered potentially habitable if its temperature allows liquid water to be present for sufficient time (billions of years) to allow life to thrive. If the exoplanet is too far from its parent star, it will be too cold, and its oceans will freeze. If the exoplanet is too close, light from the star will be too intense, and its oceans will eventually evaporate and be lost to space. This happens when water vapor rises to a layer in the upper atmosphere called the stratosphere and gets broken into its elemental components (hydrogen and oxygen) by ultraviolet light from the star. The extremely light hydrogen atoms can then escape to space. Planets in the process of losing their oceans this way are said to have entered a “moist greenhouse” state because of their humid stratospheres.

In order for water vapor to rise to the stratosphere, previous models predicted that long-term surface temperatures had to be greater than anything experienced on Earth – over 150 degrees Fahrenheit (66 degrees Celsius). These temperatures would power intense convective storms; however, it turns out that these storms aren’t the reason water reaches the stratosphere for slowly rotating planets entering a moist greenhouse state.

“We found an important role for the type of radiation a star emits and the effect it has on the atmospheric circulation of an exoplanet in making the moist greenhouse state,” said Fujii. For exoplanets orbiting close to their parent stars, a star’s gravity will be strong enough to slow a planet’s rotation. This may cause it to become tidally locked, with one side always facing the star – giving it eternal day – and one side always facing away –giving it eternal night.

When this happens, thick clouds form on the dayside of the planet and act like a sun umbrella to shield the surface from much of the starlight. While this could keep the planet cool and prevent water vapor from rising, the team found that the amount of near-Infrared radiation (NIR) from a star could provide the heat needed to cause a planet to enter the moist greenhouse state. NIR is a type of light invisible to the human eye. Water as vapor in air and water droplets or ice crystals in clouds strongly absorbs NIR light, warming the air. As the air warms, it rises, carrying the water up into the stratosphere where it creates the moist greenhouse.

This process is especially relevant for planets around low-mass stars that are cooler and much dimmer than the Sun. To be habitable, planets must be much closer to these stars than our Earth is to the Sun. At such close range, these planets likely experience strong tides from their star, making them rotate slowly. Also, the cooler a star is, the more NIR it emits. The new model demonstrated that since these stars emit the bulk of their light at NIR wavelengths, a moist greenhouse state will result even in conditions comparable to or somewhat warmer than Earth's tropics. For exoplanets closer to their stars, the team found that the NIR-driven process increased moisture in the stratosphere gradually. So, it’s possible, contrary to old model predictions, that an exoplanet closer to its parent star could remain habitable.

This is an important observation for astronomers searching for habitable worlds, since low-mass stars are the most common in the galaxy. Their sheer numbers increase the odds that a habitable world may be found among them, and their small size increases the chance to detect planetary signals.

The new work will help astronomers screen the most promising candidates in the search for planets that could support life. “As long as we know the temperature of the star, we can estimate whether planets close to their stars have the potential to be in the moist greenhouse state,” said Anthony Del Genio of GISS. “Current technology will be pushed to the limit to detect small amounts of water vapor in an exoplanet’s atmosphere. If there is enough water to be detected, it probably means that planet is in the moist greenhouse state.”

In this study, researchers assumed a planet with an atmosphere like Earth, but entirely covered by oceans. These assumptions allowed the team to clearly see how changing the orbital distance and type of stellar radiation affected the amount of water vapor in the stratosphere. In the future, the team plans to vary planetary characteristics such as gravity, size, atmospheric composition, and surface pressure to see how they affect water vapor circulation and habitability.

Image Credit: NASA Goddard Space Flight Center
Explanation from: https://www.nasa.gov/feature/goddard/2017/nasa-improves-search-for-habitable-worlds

Elliptical Galaxy NGC 4993

Elliptical Galaxy NGC 4993

The elliptical galaxy NGC 4993 is located about 130 million light-years from Earth. On 17 August 2017 the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo Interferometer both detected gravitational waves from the collision of two neutron stars within this galaxy. The event also resulted in a flare of light, called a kilonova, which is visible to the upper left of the galactic centre in this image from the NASA/ESA Hubble Space Telescope.

Image Credit: NASA and ESA
Explanation from: https://www.spacetelescope.org/images/heic1717c/

Fomalhaut Debris Disk

Fomalhaut Debris Disk

Fomalhaut is one of the brightest stars in the sky. At roughly 25 light-years away the star lies especially close to us, and can be seen shining brightly in the constellation of Piscis Austrinus (The Southern Fish). This image from the Atacama Large Millimeter/submillimeter Array (ALMA) shows Fomalhaut (centre) encircled by a ring of dusty debris — this is the first time this scene has been captured at such high resolution and sensitivity at millimetre wavelengths.

Fomalhaut’s disc comprises a mix of cosmic dust and gas from comets in the Fomalhaut system (exocomets), released as the exocomets graze past and smash into one another. This turbulent environment resembles an early period in our own Solar System known as the Late Heavy Bombardment, which occurred approximately four billions years ago. This era saw huge numbers of rocky objects hurtle into the inner Solar System and collide with the young terrestrial planets, including Earth, where they formed a myriad of impact craters — many of which remain visible today on the surfaces of planets such as Mercury and Mars.

Fomalhaut is known to be surrounded by several discs of debris — the one visible in this ALMA image is the outermost one. The ring is approximately 20 billion kilometers from the central star and about 2 billion kilometers wide. Such a relative narrow, eccentric disc can only be produced by the gravitational influence of planets in the system, like Jupiter’s gravitational influence on our asteroid belt. In 2008 the NASA/ESA Hubble Space Telescope discovered the famous exoplanet Fomalhaut b orbiting within this belt, but the planet is not visible in this ALMA image.

Image Credit: ALMA (ESO/NAOJ/NRAO)
Explanation from: https://www.eso.org/public/images/potw1721a/

October 19, 2017

An Atmosphere Around the Moon?

An Atmosphere Around the Moon?

Looking up at the Moon at night, Earth’s closest neighbor appears in shades of gray and white; a dry desert in the vacuum of space, inactive and dead for billions of years. Like many things, though, with the Moon, there is so much more than what meets the eye.

Research completed by NASA Marshall Space Flight Center planetary volcanologist Debra Needham in Huntsville, Alabama, and planetary scientist David Kring at the Lunar and Planetary Institute in Houston, Texas, suggests that billions of years ago, the Moon actually had an atmosphere. The ancient lunar atmosphere was thicker than the atmosphere of Mars today and was likely capable of weathering rocks and producing windstorms. Perhaps most importantly, it could be a source for some, if not all, of the water detected on the Moon.

“It just completely changes the way we think of the Moon,” said Needham, a scientist in Marshall’s Science and Technology Office. “It becomes a much more dynamic planetary body to explore.”

A time sequence of lunar mare -- lava plain -- flows in 0.5 billion year time increments, with red areas in each time step denoting the most recently erupted lavas. The timing of the eruptions, along with how much lava was erupted, helped scientists determine that the Moon once had an atmosphere and that the lunar atmosphere was thickest about 3.5 billion years ago.

Discovering the existence, thickness and composition of the atmosphere began with understanding how much lava erupted on the Moon 3.9 to one billion years ago, forming the lava plains we see as the dark areas on the surface of the Moon today. Needham and Kring then used lab analyses of lunar basalts -- iron and magnesium-rich volcanic rocks -- returned to Earth by the Apollo crews to estimate the amounts and composition of gases -- also called volatiles -- released during those volcanic eruptions.

The short-lived atmosphere -- estimated to have lasted approximately 70 million years -- was comprised primarily of carbon monoxide, sulfur and water. As volcanic activity declined, the release of the gases also declined. What atmosphere existed was either lost to space or became part of the surface of the Moon.

The researchers discovered that so much water was released during the eruptions -- potentially three times the amount of water in the Chesapeake Bay -- that if 0.1 percent of the erupted water migrated to the permanently shadowed regions on the Moon, it could account for all of the water detected there.

“We’re suggesting that internally-sourced volatiles might be at least contributing factors to these potential in-situ resource utilization deposits,” Needham said.

Water is one of the keys to living off of the land in space, also called in-situ resource utilization (ISRU). Knowing where the water came from helps scientists and mission planners alike know if the resource is renewable. Ultimately, more research is needed to determine the exact sources.

The first indication of water on the Moon came in 1994 when NASA’s Clementine spacecraft detected potential signatures of water-ice in the lunar poles. In 1998, NASA’s Lunar Prospector mission detected enhanced hydrogen signatures but could not definitely associate them to water. Ten years later, NASA’s Lunar Reconnaissance Orbiter and its partner spacecraft, the Lunar CRater Observation and Sensing Satellite (LCROSS), definitively confirmed the presence of water on the Moon. That same year, in 2008, volcanic glass beads brought back from the Moon by the Apollo 15 and 17 crews were discovered to contain volatiles, including water, leading to the research that indicates the Moon once had a significant atmosphere and was once much different than what we see today.

Casting one’s eyes at the Moon or viewing it through a telescope, the surface of the Moon today gives but a glimpse into its dynamic and complex history. Recent findings that propose Earth’s neighbor once had an atmosphere comparable to Mars’ continue to unravel the lunar past, while prompting scientists and explorers to ask more questions about Earth’s mysterious companion in the Solar System.

Image Credit: NASA/MSFC/Debra Needham; Lunar and Planetary Science Institute/David Kring
Explanation from: https://www.nasa.gov/centers/marshall/news/news/an-atmosphere-around-the-moon-nasa-research-suggests-significant-atmosphere-in-lunar-past.html

When Neutron Stars Collide

When Neutron Stars Collide

This illustration shows the hot, dense, expanding cloud of debris stripped from two neutron stars just before they collided. Within this neutron-rich debris, large quantities of some of the universe's heaviest elements were forged, including hundreds of Earth masses of gold and platinum.

This represents the first time scientists detected light tied to a gravitational-wave event, thanks to two merging neutron stars in the galaxy NGC 4993, located about 130 million light-years from Earth in the constellation Hydra.

Image Credit: NASA Goddard Space Flight Center/CI Lab
Explanation from: https://www.nasa.gov/image-feature/when-neutron-stars-collide

Colliding Galaxies Arp 243

Colliding Galaxies Arp 243

This image, captured by the NASA/ESA Hubble Space Telescope, shows what happens when two galaxies become one. The twisted cosmic knot seen here is NGC 2623 — or Arp 243 — and is located about 250 million light-years away in the constellation of Cancer (The Crab).

NGC 2623 gained its unusual and distinctive shape as the result of a major collision and subsequent merger between two separate galaxies. This violent encounter caused clouds of gas within the two galaxies to become compressed and stirred up, in turn triggering a sharp spike of star formation. This active star formation is marked by speckled patches of bright blue; these can be seen clustered both in the centre and along the trails of dust and gas forming NGC 2623’s sweeping curves (known as tidal tails). These tails extend for roughly 50 000 light-years from end to end. Many young, hot, newborn stars form in bright stellar clusters — at least 170 such clusters are known to exist within NGC 2623.

NGC 2623 is in a late stage of merging. It is thought that the Milky Way will eventually resemble NGC 2623 when it collides with our neighbouring galaxy, the Andromeda Galaxy, in four billion years time.

In contrast to the image of NGC 2623 released in 2009, this new version contains data from recent narrow-band and infrared observations that make more features of the galaxy visible.

Image Credit: ESA/Hubble & NASA
Explanation from: https://www.spacetelescope.org/images/potw1742a/

October 18, 2017

Hubble observes source of gravitational waves for the first time

Hubble observes source of gravitational waves for the first time

The NASA/ESA Hubble Space Telescope has observed for the first time the source of a gravitational wave, created by the merger of two neutron stars. This merger created a kilonova — an object predicted by theory decades ago — that ejects heavy elements such as gold and platinum into space. This event also provides the strongest evidence yet that short duration gamma-ray bursts are caused by mergers of neutron stars. This discovery is the first glimpse of multi-messenger astronomy, bringing together both gravitational waves and electromagnetic radiation.

On 17 August 2017 the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo Interferometer both alerted astronomical observers all over the globe about the detection of a gravitational wave event named GW170817. About two seconds after the detection of the gravitational wave, ESA’s INTEGRAL telescope and NASA’s Fermi Gamma-ray Space Telescope observed a short gamma-ray burst in the same direction.

In the night following the initial discovery, a fleet of telescopes started their hunt to locate the source of the event. Astronomers found it in the lenticular galaxy NGC 4993, about 130 million light-years away. A point of light was shining where nothing was visible before and this set off one of the largest multi-telescope observing campaigns ever — among these telescopes was the NASA/ESA Hubble Space Telescope.

Several different teams of scientists used Hubble over the two weeks following the gravitational wave event alert to observe NGC 4993. Using Hubble’s high-resolution imaging capabilities they managed to get the first observational proof for a kilonova, the visible counterpart of the merging of two extremely dense objects — most likely two neutron stars. Such mergers were first suggested more than 30 years ago but this marks the first firm observation of such an event. The distance to the merger makes the source both the closest gravitational wave event detected so far and also one of the closest gamma-ray burst sources ever seen.

“Once I saw that there had been a trigger from LIGO and Virgo at the same time as a gamma-ray burst I was blown away,” recalls Andrew Levan of the University of Warwick, who led the Hubble team that obtained the first observations. “When I realised that it looked like neutron stars were involved, I was even more amazed. We’ve been waiting a long time for an opportunity like this!”

Hubble captured images of the galaxy in visible and infrared light, witnessing a new bright object within NGC 4993 that was brighter than a nova but fainter than a supernova. The images showed that the object faded noticeably over the six days of the Hubble observations. Using Hubble’s spectroscopic capabilities the teams also found indications of material being ejected by the kilonova as fast as one-fifth of the speed of light.

“It was surprising just how closely the behaviour of the kilonova matched the predictions,” said Nial Tanvir, professor at the University of Leicester and leader of another Hubble observing team. “It looked nothing like known supernovae, which this object could have been, and so confidence was soon very high that this was the real deal.”

Connecting kilonovae and short gamma-ray bursts to neutron star mergers has so far been difficult, but the multitude of detailed observations following the detection of the gravitational wave event GW170817 has now finally verified these connections.

“The spectrum of the kilonova looked exactly like how theoretical physicists had predicted the outcome of the merger of two neutron stars would appear,” says Levan. “It ties this object to the gravitational wave source beyond all reasonable doubt.”

The infrared spectra taken with Hubble also showed several broad bumps and wiggles that signal the formation of some of the heaviest elements in nature. These observations may help solve another long-standing question in astronomy: the origin of heavy chemical elements, like gold and platinum. In the merger of two neutron stars, the conditions appear just right for their production.

The implications of these observations are immense. As Tanvir explains: “This discovery has opened up a new approach to astronomical research, where we combine information from both electromagnetic light and from gravitational waves. We call this multi-messenger astronomy — but until now it has just been a dream!”

Levan concludes: “Now, astronomers won’t just look at the light from an object, as we’ve done for hundreds of years, but also listen to it. Gravitational waves provide us with complementary information from objects which are very hard to study using only electromagnetic waves. So pairing gravitational waves with electromagnetic radiation will help astronomers understand some of the most extreme events in the Universe.”

Image Credit: NASA and ESA. Acknowledgment: A.J. Levan (U. Warwick), N.R. Tanvir (U. Leicester), and A. Fruchter and O. Fox (STScI)
Explanation from: https://www.spacetelescope.org/news/heic1717/

Puerto Rico seen from the International Space Station

Puerto Rico seen from the International Space Station

NASA astronaut Joe Acaba photographed Puerto Rico from the cupola of the International Space Station on October 12, 2017.

Acaba, whose parents were both born in Puerto Rico, joined NASA as a member of the 2004 class of astronauts and is on his third mission to the space station as a Flight Engineer on the Expedition 53/54 crew.

Image Credit: NASA

Protoplanetary Disk V1247 Orionis

Protoplanetary Disk V1247 Orionis

This image from the Atacama Large Millimeter/submillimeter Array (ALMA) shows V1247 Orionis, a young, hot star surrounded by a dynamic ring of gas and dust, known as a circumstellar disc. This disc can be seen here in two parts: a clearly defined central ring of matter and a more delicate crescent structure located further out.

The region between the ring and crescent, visible as a dark strip, is thought to be caused by a young planet carving its way through the disc. As the planet orbits around its parent star, its motion creates areas of high pressure on either side of its path, similar to how a ship creates bow waves as it cuts through water. These areas of high pressure could become protective barriers around sites of planet formation; dust particles are trapped within them for millions of years, allowing them the time and space to clump together and grow.

The exquisite resolution of ALMA allows astronomers to study the intricate structure of such a dust trapping vortex for the first time. The image reveals not only the crescent-shaped dust trap at the outer edge of the dark strip, but also regions of excess dust within the ring, possibly indicating a second dust trap that formed inside of the potential planet’s orbit. This confirms the predictions of earlier computer simulations.

Dust trapping is one potential solution to a major stumbling block in current theories of how planets form, which predicts that particles should drift into the central star and be destroyed before they have time to grow to planetesimal sizes (the radial drift problem).

Image Credit: ALMA (ESO/NAOJ/NRAO)/S. Kraus (University of Exeter, UK)
Explanation from: https://www.eso.org/public/images/potw1742a/

October 17, 2017

ESO Telescopes Observe First Light from Gravitational Wave Source - Merging neutron stars scatter gold and platinum into space

ESO Telescopes Observe First Light from Gravitational Wave Source - Merging neutron stars scatter gold and platinum into space
This artist’s impression shows two tiny but very dense neutron stars at the point at which they merge and explode as a kilonova. Such a very rare event is expected to produce both gravitational waves and a short gamma-ray burst, both of which were observed on 17 August 2017 by LIGO–Virgo and Fermi/INTEGRAL respectively. Subsequent detailed observations with many ESO telescopes confirmed that this object, seen in the galaxy NGC 4993 about 130 million light-years from the Earth, is indeed a kilonova. Such objects are the main source of very heavy chemical elements, such as gold and platinum, in the Universe.

ESO’s fleet of telescopes in Chile have detected the first visible counterpart to a gravitational wave source. These historic observations suggest that this unique object is the result of the merger of two neutron stars. The cataclysmic aftermaths of this kind of merger — long-predicted events called kilonovae — disperse heavy elements such as gold and platinum throughout the Universe. This discovery also provides the strongest evidence yet that short-duration gamma-ray bursts are caused by mergers of neutron stars.

For the first time ever, astronomers have observed both gravitational waves and light (electromagnetic radiation) from the same event, thanks to a global collaborative effort and the quick reactions of both ESO’s facilities and others around the world.

On 17 August 2017 the NSF's Laser Interferometer Gravitational-Wave Observatory (LIGO) in the United States, working with the Virgo Interferometer in Italy, detected gravitational waves passing the Earth. This event, the fifth ever detected, was named GW170817. About two seconds later, two space observatories, NASA’s Fermi Gamma-ray Space Telescope and ESA’s INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL), detected a short gamma-ray burst from the same area of the sky.

The LIGO–Virgo observatory network positioned the source within a large region of the southern sky, the size of several hundred full Moons and containing millions of stars. As night fell in Chile many telescopes peered at this patch of sky, searching for new sources. These included ESO’s Visible and Infrared Survey Telescope for Astronomy (VISTA) and VLT Survey Telescope (VST) at the Paranal Observatory, the Italian Rapid Eye Mount (REM) telescope at ESO’s La Silla Observatory, the LCO 0.4-meter telescope at Las Cumbres Observatory, and the American DECam at Cerro Tololo Inter-American Observatory. The Swope 1-metre telescope was the first to announce a new point of light. It appeared very close to NGC 4993, a lenticular galaxy in the constellation of Hydra, and VISTA observations pinpointed this source at infrared wavelengths almost at the same time. As night marched west across the globe, the Hawaiian island telescopes Pan-STARRS and Subaru also picked it up and watched it evolve rapidly.

“There are rare occasions when a scientist has the chance to witness a new era at its beginning,” said Elena Pian, astronomer with INAF, Italy. “This is one such time!”

ESO launched one of the biggest ever “target of opportunity” observing campaigns and many ESO and ESO-partnered telescopes observed the object over the weeks following the detection. ESO’s Very Large Telescope (VLT), New Technology Telescope (NTT), VST, the MPG/ESO 2.2-metre telescope, and the Atacama Large Millimeter/submillimeter Array (ALMA) all observed the event and its after-effects over a wide range of wavelengths. About 70 observatories around the world also observed the event, including the NASA/ESA Hubble Space Telescope.

Distance estimates from both the gravitational wave data and other observations agree that GW170817 was at the same distance as NGC 4993, about 130 million light-years from Earth. This makes the source both the closest gravitational wave event detected so far and also one of the closest gamma-ray burst sources ever seen.

The ripples in spacetime known as gravitational waves are created by moving masses, but only the most intense, created by rapid changes in the speed of very massive objects, can currently be detected. One such event is the merging of neutron stars, the extremely dense, collapsed cores of high-mass stars left behind after supernovae. These mergers have so far been the leading hypothesis to explain short gamma-ray bursts. An explosive event 1000 times brighter than a typical nova — known as a kilonova — is expected to follow this type of event.

The almost simultaneous detections of both gravitational waves and gamma rays from GW170817 raised hopes that this object was indeed a long-sought kilonova and observations with ESO facilities have revealed properties remarkably close to theoretical predictions. Kilonovae were suggested more than 30 years ago but this marks the first confirmed observation.

Following the merger of the two neutron stars, a burst of rapidly expanding radioactive heavy chemical elements left the kilonova, moving as fast as one-fifth of the speed of light. The colour of the kilonova shifted from very blue to very red over the next few days, a faster change than that seen in any other observed stellar explosion.

“When the spectrum appeared on our screens I realised that this was the most unusual transient event I’d ever seen,” remarked Stephen Smartt, who led observations with ESO’s NTT as part of the extended Public ESO Spectroscopic Survey of Transient Objects (ePESSTO) observing programme. “I had never seen anything like it. Our data, along with data from other groups, proved to everyone that this was not a supernova or a foreground variable star, but was something quite remarkable.”

Spectra from ePESSTO and the VLT’s X-shooter instrument suggest the presence of caesium and tellurium ejected from the merging neutron stars. These and other heavy elements, produced during the neutron star merger, would be blown into space by the subsequent kilonova. These observations pin down the formation of elements heavier than iron through nuclear reactions within high-density stellar objects, known as r-process nucleosynthesis, something which was only theorised before.

“The data we have so far are an amazingly close match to theory. It is a triumph for the theorists, a confirmation that the LIGO–VIRGO events are absolutely real, and an achievement for ESO to have gathered such an astonishing data set on the kilonova,” adds Stefano Covino.

“ESO’s great strength is that it has a wide range of telescopes and instruments to tackle big and complex astronomical projects, and at short notice. We have entered a new era of multi-messenger astronomy!” concludes Andrew Levan.

Image Credit: ESO/L. Calçada/M. Kornmesser
Explanation from: https://www.eso.org/public/news/eso1733/ and https://www.eso.org/public/images/eso1733a/

VIMOS image of galaxy NGC 4993 showing the visible-light counterpart to a merging neutron star pair

VIMOS image of galaxy NGC 4993 showing the visible-light counterpart to a merging neutron star pair

This image from the VIMOS instrument on ESO’s Very Large Telescope at the Paranal Observatory in Chile shows the galaxy NGC 4993, about 130 million light-years from Earth. The galaxy is not itself unusual, but it contains something never before witnessed, the aftermath of the explosion of a pair of merging neutron stars, a rare event called a kilonova (seen just above and slightly to the left of the centre of the galaxy). This merger also produced gravitational waves and gamma rays, both of which were detected by LIGO-Virgo and Fermi/INTEGRAL respectively.

Image Credit: ESO/A.J. Levan, N.R. Tanvir
Explanation from: https://www.eso.org/public/images/eso1733b/

VLT/MUSE image of the galaxy NGC 4993 and associated kilonova

VLT/MUSE image of the galaxy NGC 4993 and associated kilonova

This image from the MUSE instrument on ESO’s Very Large Telescope at the Paranal Observatory in Chile shows the galaxy NGC 4993, about 130 million light-years from Earth. The galaxy is not itself unusual, but it contains something never before witnessed, the aftermath of the explosion of a pair of merging neutron stars, a rare event called a kilonova (seen just above and slightly to the left of the centre of the galaxy). This merger also produced gravitational waves and gamma rays, both of which were detected by LIGO-Virgo and Fermi/INTEGRAL respectively. By also creating a spectrum for each part of the object MUSE allows the emission from glowing gas to be seen, which appears in red here and reveals a surprising spiral structure.

Image Credit: ESO/J.D. Lyman, A.J. Levan, N.R. Tanvir
Explanation from: https://www.eso.org/public/images/eso1733d/

GROND image of kilonova in NGC 4993

GROND image of kilonova in NGC 4993

Image obtained by ESO's Gamma-ray Burst Optical/Near-infrared Detector (GROND) attached to the MPG/ESO 2.2-metre telescope at La Silla Observatory.

Image Credit: ESO/S. Smartt & T.-W. Chen

VST image of kilonova in NGC 4993

VST image of kilonova in NGC 4993

This image from the VST telescope at ESO's Paranal Observatory in Chile shows the galaxy NGC 4993, about 130 million light-years from Earth. The galaxy is not itself unusual, but it contains something never before witnessed, the aftermath of the explosion of a pair of merging neutron stars, a rare event called a kilonova (seen just above and slightly to the left of the centre of the galaxy). This merger also produced gravitational waves and gamma rays, both of which were detected by LIGO-Virgo and Fermi/INTEGRAL respectively.

Image Credit: ESO/A. Grado
Explanation from: https://www.eso.org/public/images/eso1733m/

The sky around the galaxy NGC 4993

The sky around the galaxy NGC 4993

This wide-field image generated from the Digitized Sky Survey 2 shows the sky around the galaxy NGC 4993. This galaxy was the host to a merger between two neutron stars, which led to a gravitational wave detection, a short gamma-ray burst and an optical identification of a kilonova event.

Image Credit: ESO and Digitized Sky Survey 2
Explanation from: https://www.eso.org/public/images/eso1733i/