Europe PMC 3.0.co;2-6">
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Many soft connective tissues are under endogenous tension, and their resident cells generate considerable contractile forces on the extracellular matrix. The present work was aimed to determine quantitatively how fibroblasts, grown within three-dimensional collagen lattices, respond mechanically to precisely defined tensional loads. Forces generated in response to changes in applied load were measured using a tensional culture force monitor. In a number of variant systems, resident cells consistently reacted to modify the endogenous matrix tension in the opposite direction to externally applied loads. That is, increased external loading was followed immediately by a reduction in cell-mediated contraction whilst decreased external loading elicited increased contraction. Responses were cell-mediated and not a result of material properties of the matrices. This is the first detailed characterisation of a tensional homeostatic response in cells. The maintained force, after 8 h in culture, was typically around 40-60 dynes/million cells). Maintenance of an active tensional homeostasis has widespread implications for cells in culture and for whole tissue function.

References 


Articles referenced by this article (39)


Show 10 more references (10 of 39)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/14504175
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/14504175

Article citations


Go to all (227) article citations