Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Full-thickness canine articular cartilage explants were subjected to compressive loads equivalent to a uniaxial stress of 0.025-1.2 MPa. A single cycle (18 h) of unconfined compression resulted in inhibition of total protein, proteoglycan, and fibronectin synthesis. The inhibition of fibronectin synthesis followed that of total protein synthesis. The magnitude of inhibition increased nonlinearly with increasing load levels. The signal that depressed synthesis remained effective for several hours after removal of load, but by 24 h proteoglycan synthesis had partially recovered and fibronectin and protein synthesis had fully recovered and sometimes exceeded the rate of synthesis in free-swelling controls. Forty-eight hours after five cycles of intermittent unconfined compression with similar loads, proteoglycan content and synthesis did not differ in loaded disks and in disks that were never loaded in vitro. Interestingly, the percentage of water in disks that had never been loaded in vitro increased significantly after 10 days in culture, relative to the percentage of water in free-swelling disks on the day of harvest. Intermittent compressive loading in the range of 0.5-1.2 MPa partially prevented this increase. Our results confirmed the previously reported inhibition of biosynthesis with static loading but also suggested that exposure to intermittent compressive loading may help to maintain the normal ratio of dry to wet weight in the explant.

References 


Articles referenced by this article (24)


Show 10 more references (10 of 24)

Funding 


Funders who supported this work.

NIAMS NIH HHS (1)