Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The human autoantigen CENP-C has been demonstrated by immunoelectron microscopy to be a component of the inner kinetochore plate. Here we have used antibodies raised against various portions of CENP-C to probe its function in mitosis. We show that nuclear microinjection of anti-CENP-C antibodies during interphase causes a transient arrest at the following metaphase. Injection of the same antibodies after the initiation of prophase, however, does not disrupt mitosis. Correspondingly, indirect immunofluorescence using affinity-purified human anti-CENP-C antibodies reveals that levels of CENP-C staining are reduced at centromeres in cells that were injected during interphase, but appear unaffected in cells which were injected during mitosis. Thus, we suggest that the injected antibodies cause metaphase arrest by reducing the amount of CENP-C at centromeres. Examination of kinetochores in metaphase-arrested cells by electron microscopy reveals that the number of trilaminar structures is reduced. More surprisingly, the few remaining kinetochores in these cells retain a normal trilaminar morphology but are significantly reduced in diameter. In cells arrested for extended periods, these small kinetochores become disrupted and apparently no longer bind microtubules. These observations are consistent with an involvement of CENP-C in kinetochore assembly, and suggest that CENP-C plays a critical role in both establishing and/or maintaining proper kinetochore size and stabilizing microtubule attachments. These findings also support the idea that proper assembly of kinetochores may be monitored by the cell cycle checkpoint preceding the transition to anaphase.

Free full text 


Logo of jcellbiolLink to Publisher's site
J Cell Biol. 1994 May 1; 125(3): 531–545.
PMCID: PMC2119987
PMID: 8175879

CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase

Abstract

The human autoantigen CENP-C has been demonstrated by immunoelectron microscopy to be a component of the inner kinetochore plate. Here we have used antibodies raised against various portions of CENP-C to probe its function in mitosis. We show that nuclear microinjection of anti- CENP-C antibodies during interphase causes a transient arrest at the following metaphase. Injection of the same antibodies after the initiation of prophase, however, does not disrupt mitosis. Correspondingly, indirect immunofluorescence using affinity-purified human anti-CENP-C antibodies reveals that levels of CENP-C staining are reduced at centromeres in cells that were injected during interphase, but appear unaffected in cells which were injected during mitosis. Thus, we suggest that the injected antibodies cause metaphase arrest by reducing the amount of CENP-C at centromeres. Examination of kinetochores in metaphase-arrested cells by electron microscopy reveals that the number of trilaminar structures is reduced. More surprisingly, the few remaining kinetochores in these cells retain a normal trilaminar morphology but are significantly reduced in diameter. In cells arrested for extended periods, these small kinetochores become disrupted and apparently no longer bind microtubules. These observations are consistent with an involvement of CENP-C in kinetochore assembly, and suggest that CENP-C plays a critical role in both establishing and/or maintaining proper kinetochore size and stabilizing microtubule attachments. These findings also support the idea that proper assembly of kinetochores may be monitored by the cell cycle checkpoint preceding the transition to anaphase.

Full Text

The Full Text of this article is available as a PDF (4.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bernat RL, Borisy GG, Rothfield NF, Earnshaw WC. Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis. J Cell Biol. 1990 Oct;111(4):1519–1533. [Europe PMC free article] [Abstract] [Google Scholar]
  • Bernat RL, Delannoy MR, Rothfield NF, Earnshaw WC. Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell. 1991 Sep 20;66(6):1229–1238. [Abstract] [Google Scholar]
  • Bloom K. The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell. 1993 May 21;73(4):621–624. [Abstract] [Google Scholar]
  • Brinkley BR, Zinkowski RP, Mollon WL, Davis FM, Pisegna MA, Pershouse M, Rao PN. Movement and segregation of kinetochores experimentally detached from mammalian chromosomes. Nature. 1988 Nov 17;336(6196):251–254. [Abstract] [Google Scholar]
  • Chikashige Y, Kinoshita N, Nakaseko Y, Matsumoto T, Murakami S, Niwa O, Yanagida M. Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell. 1989 Jun 2;57(5):739–751. [Abstract] [Google Scholar]
  • Clarke L, Baum MP. Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol Cell Biol. 1990 May;10(5):1863–1872. [Europe PMC free article] [Abstract] [Google Scholar]
  • Comings DE, Okada TA. Fine structure of kinetochore in Indian muntjac. Exp Cell Res. 1971 Jul;67(1):97–110. [Abstract] [Google Scholar]
  • Compton DA, Yen TJ, Cleveland DW. Identification of novel centromere/kinetochore-associated proteins using monoclonal antibodies generated against human mitotic chromosome scaffolds. J Cell Biol. 1991 Mar;112(6):1083–1097. [Europe PMC free article] [Abstract] [Google Scholar]
  • Compton DA, Szilak I, Cleveland DW. Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J Cell Biol. 1992 Mar;116(6):1395–1408. [Europe PMC free article] [Abstract] [Google Scholar]
  • Cooke CA, Bernat RL, Earnshaw WC. CENP-B: a major human centromere protein located beneath the kinetochore. J Cell Biol. 1990 May;110(5):1475–1488. [Europe PMC free article] [Abstract] [Google Scholar]
  • Cooke CA, Bazett-Jones DP, Earnshaw WC, Rattner JB. Mapping DNA within the mammalian kinetochore. J Cell Biol. 1993 Mar;120(5):1083–1091. [Europe PMC free article] [Abstract] [Google Scholar]
  • Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, Hieter P. Identification of essential components of the S. cerevisiae kinetochore. Cell. 1993 May 21;73(4):761–774. [Europe PMC free article] [Abstract] [Google Scholar]
  • Earnshaw WC, Rothfield N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma. 1985;91(3-4):313–321. [Abstract] [Google Scholar]
  • Earnshaw WC, Ratrie H, 3rd, Stetten G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma. 1989 Jun;98(1):1–12. [Abstract] [Google Scholar]
  • Goh PY, Kilmartin JV. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J Cell Biol. 1993 May;121(3):503–512. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gorbsky GJ, Ricketts WA. Differential expression of a phosphoepitope at the kinetochores of moving chromosomes. J Cell Biol. 1993 Sep;122(6):1311–1321. [Europe PMC free article] [Abstract] [Google Scholar]
  • Guldner HH, Lakomek HJ, Bautz FA. Human anti-centromere sera recognise a 19.5 kD non-histone chromosomal protein from HeLa cells. Clin Exp Immunol. 1984 Oct;58(1):13–20. [Abstract] [Google Scholar]
  • Haaf T, Warburton PE, Willard HF. Integration of human alpha-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell. 1992 Aug 21;70(4):681–696. [Abstract] [Google Scholar]
  • Hildebrandt S, Weiner E, Senécal JL, Noell S, Daniels L, Earnshaw WC, Rothfield NF. The IgG, IgM, and IgA isotypes of anti-topoisomerase I and anticentromere autoantibodies. Arthritis Rheum. 1990 May;33(5):724–727. [Abstract] [Google Scholar]
  • Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 1991 Aug 9;66(3):507–517. [Abstract] [Google Scholar]
  • Hyman AA, Middleton K, Centola M, Mitchison TJ, Carbon J. Microtubule-motor activity of a yeast centromere-binding protein complex. Nature. 1992 Oct 8;359(6395):533–536. [Abstract] [Google Scholar]
  • Jiang W, Lechner J, Carbon J. Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J Cell Biol. 1993 May;121(3):513–519. [Europe PMC free article] [Abstract] [Google Scholar]
  • Jokelainen PT. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J Ultrastruct Res. 1967 Jul;19(1):19–44. [Abstract] [Google Scholar]
  • Kingsbury J, Koshland D. Centromere-dependent binding of yeast minichromosomes to microtubules in vitro. Cell. 1991 Aug 9;66(3):483–495. [Abstract] [Google Scholar]
  • Kingwell B, Rattner JB. Mammalian kinetochore/centromere composition: a 50 kDa antigen is present in the mammalian kinetochore/centromere. Chromosoma. 1987;95(6):403–407. [Abstract] [Google Scholar]
  • Lechner J, Carbon J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell. 1991 Feb 22;64(4):717–725. [Abstract] [Google Scholar]
  • Li R, Murray AW. Feedback control of mitosis in budding yeast. Cell. 1991 Aug 9;66(3):519–531. [Abstract] [Google Scholar]
  • Lydersen BK, Pettijohn DE. Human-specific nuclear protein that associates with the polar region of the mitotic apparatus: distribution in a human/hamster hybrid cell. Cell. 1980 Nov;22(2 Pt 2):489–499. [Abstract] [Google Scholar]
  • Madara PJ, Banghart LR, Jack LJ, Neira LM, Mather IH. Affinity purification of polyclonal antibodies from antigen immobilized in situ in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1990 Jun;187(2):246–250. [Abstract] [Google Scholar]
  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol. 1989 Nov;109(5):1963–1973. [Europe PMC free article] [Abstract] [Google Scholar]
  • McClintock B. The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. Genetics. 1938 Jul;23(4):315–376. [Europe PMC free article] [Abstract] [Google Scholar]
  • McEwen BF, Arena JT, Frank J, Rieder CL. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography. J Cell Biol. 1993 Jan;120(2):301–312. [Europe PMC free article] [Abstract] [Google Scholar]
  • Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM. Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1627–1631. [Europe PMC free article] [Abstract] [Google Scholar]
  • Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 1986 May;5(5):1011–1021. [Europe PMC free article] [Abstract] [Google Scholar]
  • Palmer DK, O'Day K, Wener MH, Andrews BS, Margolis RL. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol. 1987 Apr;104(4):805–815. [Europe PMC free article] [Abstract] [Google Scholar]
  • Palmer DK, O'Day K, Trong HL, Charbonneau H, Margolis RL. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3734–3738. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rattner JB. The organization of the mammalian kinetochore: a scanning electron microscope study. Chromosoma. 1987;95(3):175–181. [Abstract] [Google Scholar]
  • Rieder CL, Alexander SP. The attachment of chromosomes to the mitotic spindle and the production of aneuploidy in newt lung cells. Prog Clin Biol Res. 1989;318:185–194. [Abstract] [Google Scholar]
  • Ris H, Witt PL. Structure of the mammalian kinetochore. Chromosoma. 1981;82(2):153–170. [Abstract] [Google Scholar]
  • Saitoh H, Tomkiel J, Cooke CA, Ratrie H, 3rd, Maurer M, Rothfield NF, Earnshaw WC. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell. 1992 Jul 10;70(1):115–125. [Abstract] [Google Scholar]
  • SEARS ER. Misdivision of univalents in common wheat. Chromosoma. 1952;4(6):535–550. [Abstract] [Google Scholar]
  • Simerly C, Balczon R, Brinkley BR, Schatten G. Microinjected centromere [corrected] kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse oocytes. J Cell Biol. 1990 Oct;111(4):1491–1504. [Europe PMC free article] [Abstract] [Google Scholar]
  • Spencer F, Hieter P. Centromere DNA mutations induce a mitotic delay in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8908–8912. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tousson A, Zeng C, Brinkley BR, Valdivia MM. Centrophilin: a novel mitotic spindle protein involved in microtubule nucleation. J Cell Biol. 1991 Feb;112(3):427–440. [Europe PMC free article] [Abstract] [Google Scholar]
  • Witt PL, Ris H, Borisy GG. Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma. 1980;81(3):483–505. [Abstract] [Google Scholar]
  • Yang CH, Snyder M. The nuclear-mitotic apparatus protein is important in the establishment and maintenance of the bipolar mitotic spindle apparatus. Mol Biol Cell. 1992 Nov;3(11):1259–1267. [Europe PMC free article] [Abstract] [Google Scholar]
  • Yang CH, Lambie EJ, Snyder M. NuMA: an unusually long coiled-coil related protein in the mammalian nucleus. J Cell Biol. 1992 Mar;116(6):1303–1317. [Europe PMC free article] [Abstract] [Google Scholar]
  • Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DW. CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J. 1991 May;10(5):1245–1254. [Europe PMC free article] [Abstract] [Google Scholar]
  • Yen TJ, Li G, Schaar BT, Szilak I, Cleveland DW. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature. 1992 Oct 8;359(6395):536–539. [Abstract] [Google Scholar]
  • Zinkowski RP, Meyne J, Brinkley BR. The centromere-kinetochore complex: a repeat subunit model. J Cell Biol. 1991 Jun;113(5):1091–1110. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zirkle RE. Ultraviolet-microbeam irradiation of newt-cell cytoplasm: spindle destruction, false anaphase, and delay of true anaphase. Radiat Res. 1970 Mar;41(3):516–537. [Abstract] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1083/jcb.125.3.531

Supporting
Mentioning
Contrasting
8
84
1

Article citations


Go to all (117) article citations

Funding 


Funders who supported this work.

NIGMS NIH HHS (1)