Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Contact of Salmonella typhimurium with cultured epithelial cells results in the assembly of surface appendages termed invasomes which are presumably required for the internalization of these organisms into host cells. The assembly of these structures requires the function of a dedicated protein secretion system encoded in the inv locus. We show in this report that contact of wild-type S. typhimurium with cultured Henle-407 cells stimulated the secretion of InvJ, a recently identified target of the inv-encoded type III protein secretion system. Stimulation of InvJ secretion also occurred upon bacterial contact with bovine calf serum-coated culture dishes but did not occur upon S. typhimurium contact with glutaraldehyde-fixed Henle-407 cells. The stimulation of InvJ secretion did not require de novo protein synthesis. Invasion-defective invC and invG mutants of S. typhimurium failed to secrete InvJ upon contact with live Henle-407 cells. In contrast, contact-dependent secretion of InvJ in S. typhimurium invE mutants occurred at levels equivalent to those of the wild type. These results indicate that the presence of Henle-407 cells and/or serum is capable of activating the type III secretion system encoded in the inv locus, further supporting the notion that Salmonella entry into cultured cells is the result of a biochemical cross-talk between the bacteria and the host cells.

Free full text 


Logo of iaiLink to Publisher's site
Infect Immun. 1995 Oct; 63(10): 4024–4028.
PMCID: PMC173565
PMID: 7558314

Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ.

Abstract

Contact of Salmonella typhimurium with cultured epithelial cells results in the assembly of surface appendages termed invasomes which are presumably required for the internalization of these organisms into host cells. The assembly of these structures requires the function of a dedicated protein secretion system encoded in the inv locus. We show in this report that contact of wild-type S. typhimurium with cultured Henle-407 cells stimulated the secretion of InvJ, a recently identified target of the inv-encoded type III protein secretion system. Stimulation of InvJ secretion also occurred upon bacterial contact with bovine calf serum-coated culture dishes but did not occur upon S. typhimurium contact with glutaraldehyde-fixed Henle-407 cells. The stimulation of InvJ secretion did not require de novo protein synthesis. Invasion-defective invC and invG mutants of S. typhimurium failed to secrete InvJ upon contact with live Henle-407 cells. In contrast, contact-dependent secretion of InvJ in S. typhimurium invE mutants occurred at levels equivalent to those of the wild type. These results indicate that the presence of Henle-407 cells and/or serum is capable of activating the type III secretion system encoded in the inv locus, further supporting the notion that Salmonella entry into cultured cells is the result of a biochemical cross-talk between the bacteria and the host cells.

Full Text
The Full Text of this article is available as a PDF (382K).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
  • Allaoui A, Sansonetti PJ, Parsot C. MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri lpa invasins. Mol Microbiol. 1993 Jan;7(1):59–68. [Abstract] [Google Scholar]
  • Bergman T, Erickson K, Galyov E, Persson C, Wolf-Watz H. The lcrB (yscN/U) gene cluster of Yersinia pseudotuberculosis is involved in Yop secretion and shows high homology to the spa gene clusters of Shigella flexneri and Salmonella typhimurium. J Bacteriol. 1994 May;176(9):2619–2626. [Europe PMC free article] [Abstract] [Google Scholar]
  • Collazo CM, Zierler MK, Galán JE. Functional analysis of the Salmonella typhimurium invasion genes invl and invJ and identification of a target of the protein secretion apparatus encoded in the inv locus. Mol Microbiol. 1995 Jan;15(1):25–38. [Abstract] [Google Scholar]
  • Eichelberg K, Ginocchio CC, Galán JE. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J Bacteriol. 1994 Aug;176(15):4501–4510. [Europe PMC free article] [Abstract] [Google Scholar]
  • Forsberg A, Rosqvist R, Wolf-Watz H. Regulation and polarized transfer of the Yersinia outer proteins (Yops) involved in antiphagocytosis. Trends Microbiol. 1994 Jan;2(1):14–19. [Abstract] [Google Scholar]
  • Galán JE, Ginocchio C. The molecular genetic bases of Salmonella entry into mammalian cells. Biochem Soc Trans. 1994 May;22(2):301–306. [Abstract] [Google Scholar]
  • Ginocchio CC, Galán JE. Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect Immun. 1995 Feb;63(2):729–732. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ginocchio CC, Olmsted SB, Wells CL, Galán JE. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell. 1994 Feb 25;76(4):717–724. [Abstract] [Google Scholar]
  • Ginocchio C, Pace J, Galán JE. Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of salmonellae into cultured epithelial cells. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5976–5980. [Europe PMC free article] [Abstract] [Google Scholar]
  • Groisman EA, Ochman H. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 1993 Oct;12(10):3779–3787. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hoiseth SK, Stocker BA. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981 May 21;291(5812):238–239. [Abstract] [Google Scholar]
  • Kaniga K, Bossio JC, Galán JE. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol Microbiol. 1994 Aug;13(4):555–568. [Abstract] [Google Scholar]
  • LENNOX ES. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. [Abstract] [Google Scholar]
  • MacBeth KJ, Lee CA. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion. Infect Immun. 1993 Apr;61(4):1544–1546. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ménard R, Sansonetti P, Parsot C. The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J. 1994 Nov 15;13(22):5293–5302. [Europe PMC free article] [Abstract] [Google Scholar]
  • Michiels T, Vanooteghem JC, Lambert de Rouvroit C, China B, Gustin A, Boudry P, Cornelis GR. Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica. J Bacteriol. 1991 Aug;173(16):4994–5009. [Europe PMC free article] [Abstract] [Google Scholar]
  • Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. [Europe PMC free article] [Abstract] [Google Scholar]
  • Salmond GP, Reeves PJ. Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sci. 1993 Jan;18(1):7–12. [Abstract] [Google Scholar]
  • Sansonetti PJ. Molecular and cellular biology of Shigella flexneri invasiveness: from cell assay systems to shigellosis. Curr Top Microbiol Immunol. 1992;180:1–19. [Abstract] [Google Scholar]
  • Straley SC, Skrzypek E, Plano GV, Bliska JB. Yops of Yersinia spp. pathogenic for humans. Infect Immun. 1993 Aug;61(8):3105–3110. [Europe PMC free article] [Abstract] [Google Scholar]
  • Takeuchi A. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol. 1967 Jan;50(1):109–136. [Europe PMC free article] [Abstract] [Google Scholar]
  • Takeuchi A, Sprinz H. Electron-Microscope Studies of Experimental Salmonella Infection in the Preconditioned Guinea Pig: II. Response of the Intestinal Mucosa to the Invasion by Salmonella typhimurium. Am J Pathol. 1967 Jul;51(1):137–161. [Europe PMC free article] [Abstract] [Google Scholar]
  • Van Gijsegem F, Genin S, Boucher C. Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol. 1993 Aug;1(5):175–180. [Abstract] [Google Scholar]
  • Venkatesan MM, Buysse JM, Oaks EV. Surface presentation of Shigella flexneri invasion plasmid antigens requires the products of the spa locus. J Bacteriol. 1992 Mar;174(6):1990–2001. [Europe PMC free article] [Abstract] [Google Scholar]
  • Woestyn S, Allaoui A, Wattiau P, Cornelis GR. YscN, the putative energizer of the Yersinia Yop secretion machinery. J Bacteriol. 1994 Mar;176(6):1561–1569. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/79957456
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/79957456

Article citations


Go to all (79) article citations

Funding 


Funders who supported this work.

NCI NIH HHS (1)

NIAID NIH HHS (1)