Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


We have cloned and sequenced the cDNAs encoding Patella vulgata cyclins A and B. The cDNA clones contain an open reading frame of 426 and 408 amino acids respectively, which present similarity with cyclins from other species. Cyclin A and B RNAs are present as polyadenylated and non-polyadenylated RNA in prophase oocytes and are completely polyadenylated in metaphase I. During the first cleavages after fertilization the level of cyclin A and B mRNAs is high and drops when the free swimming stage is reached. Using p13suc1-Sepharose bead precipitation we demonstrate that cyclin synthesis is triggered during maturation and that inhibition of protein synthesis makes the cyclins disappear rapidly from the metaphase I oocytes, which shift to interphase condition. By microinjecting antisense oligonucleotides into metaphase I oocytes, we demonstrate that in vivo ablation of cyclin A and B messengers together gives the same result, whereas microinjection of only one oligonucleotide does not show any effect.

Free full text 


Logo of embojLink to Publisher's site
EMBO J. 1991 Nov; 10(11): 3343–3349.
PMCID: PMC453061
PMID: 1655419

The role of cyclins in the maturation of Patella vulgata oocytes.

Abstract

We have cloned and sequenced the cDNAs encoding Patella vulgata cyclins A and B. The cDNA clones contain an open reading frame of 426 and 408 amino acids respectively, which present similarity with cyclins from other species. Cyclin A and B RNAs are present as polyadenylated and non-polyadenylated RNA in prophase oocytes and are completely polyadenylated in metaphase I. During the first cleavages after fertilization the level of cyclin A and B mRNAs is high and drops when the free swimming stage is reached. Using p13suc1-Sepharose bead precipitation we demonstrate that cyclin synthesis is triggered during maturation and that inhibition of protein synthesis makes the cyclins disappear rapidly from the metaphase I oocytes, which shift to interphase condition. By microinjecting antisense oligonucleotides into metaphase I oocytes, we demonstrate that in vivo ablation of cyclin A and B messengers together gives the same result, whereas microinjection of only one oligonucleotide does not show any effect.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Birnstiel ML, Busslinger M, Strub K. Transcription termination and 3' processing: the end is in site! Cell. 1985 Jun;41(2):349–359. [Abstract] [Google Scholar]
  • Cazenave C, Loreau N, Thuong NT, Toulmé JJ, Hélène C. Enzymatic amplification of translation inhibition of rabbit beta-globin mRNA mediated by anti-messenger oligodeoxynucleotides covalently linked to intercalating agents. Nucleic Acids Res. 1987 Jun 25;15(12):4717–4736. [Europe PMC free article] [Abstract] [Google Scholar]
  • Cazenave C, Stein CA, Loreau N, Thuong NT, Neckers LM, Subasinghe C, Hélène C, Cohen JS, Toulmé JJ. Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides. Nucleic Acids Res. 1989 Jun 12;17(11):4255–4273. [Europe PMC free article] [Abstract] [Google Scholar]
  • Draetta G, Luca F, Westendorf J, Brizuela L, Ruderman J, Beach D. Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell. 1989 Mar 10;56(5):829–838. [Abstract] [Google Scholar]
  • Dunphy WG, Brizuela L, Beach D, Newport J. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell. 1988 Jul 29;54(3):423–431. [Abstract] [Google Scholar]
  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell. 1983 Jun;33(2):389–396. [Abstract] [Google Scholar]
  • Gautier J, Norbury C, Lohka M, Nurse P, Maller J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell. 1988 Jul 29;54(3):433–439. [Abstract] [Google Scholar]
  • Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Maller JL. Cyclin is a component of maturation-promoting factor from Xenopus. Cell. 1990 Feb 9;60(3):487–494. [Abstract] [Google Scholar]
  • Guerrier P, Colas P, Neant I. Meiosis reinitiation as a model system for the study of cell division and cell differentiation. Int J Dev Biol. 1990 Mar;34(1):93–109. [Abstract] [Google Scholar]
  • Hiramoto Y. A method of microinjection. Exp Cell Res. 1974 Aug;87(2):403–406. [Abstract] [Google Scholar]
  • Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. [Europe PMC free article] [Abstract] [Google Scholar]
  • Jessus C, Cazenave C, Ozon R, Hélène C. Specific inhibition of endogenous beta-tubulin synthesis in Xenopus oocytes by anti-messenger oligodeoxynucleotides. Nucleic Acids Res. 1988 Mar 25;16(5):2225–2233. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kishimoto T. Microinjection and cytoplasmic transfer in starfish oocytes. Methods Cell Biol. 1986;27:379–394. [Abstract] [Google Scholar]
  • Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. [Abstract] [Google Scholar]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [Abstract] [Google Scholar]
  • Labbe JC, Picard A, Peaucellier G, Cavadore JC, Nurse P, Doree M. Purification of MPF from starfish: identification as the H1 histone kinase p34cdc2 and a possible mechanism for its periodic activation. Cell. 1989 Apr 21;57(2):253–263. [Abstract] [Google Scholar]
  • Labbé JC, Capony JP, Caput D, Cavadore JC, Derancourt J, Kaghad M, Lelias JM, Picard A, Dorée M. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J. 1989 Oct;8(10):3053–3058. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lehner CF, O'Farrell PH. Expression and function of Drosophila cyclin A during embryonic cell cycle progression. Cell. 1989 Mar 24;56(6):957–968. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lehner CF, O'Farrell PH. The roles of Drosophila cyclins A and B in mitotic control. Cell. 1990 May 4;61(3):535–547. [Europe PMC free article] [Abstract] [Google Scholar]
  • Masui Y, Markert CL. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool. 1971 Jun;177(2):129–145. [Abstract] [Google Scholar]
  • Meijer L, Arion D, Golsteyn R, Pines J, Brizuela L, Hunt T, Beach D. Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase. EMBO J. 1989 Aug;8(8):2275–2282. [Europe PMC free article] [Abstract] [Google Scholar]
  • McGrew LL, Dworkin-Rastl E, Dworkin MB, Richter JD. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 1989 Jun;3(6):803–815. [Abstract] [Google Scholar]
  • Minshull J, Blow JJ, Hunt T. Translation of cyclin mRNA is necessary for extracts of activated xenopus eggs to enter mitosis. Cell. 1989 Mar 24;56(6):947–956. [Abstract] [Google Scholar]
  • Minshull J, Golsteyn R, Hill CS, Hunt T. The A- and B-type cyclin associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J. 1990 Sep;9(9):2865–2875. [Europe PMC free article] [Abstract] [Google Scholar]
  • Murray AW, Kirschner MW. Cyclin synthesis drives the early embryonic cell cycle. Nature. 1989 May 25;339(6222):275–280. [Abstract] [Google Scholar]
  • Murray AW, Solomon MJ, Kirschner MW. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature. 1989 May 25;339(6222):280–286. [Abstract] [Google Scholar]
  • Parker JM, Guo D, Hodges RS. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry. 1986 Sep 23;25(19):5425–5432. [Abstract] [Google Scholar]
  • Pines J, Hunt T. Molecular cloning and characterization of the mRNA for cyclin from sea urchin eggs. EMBO J. 1987 Oct;6(10):2987–2995. [Europe PMC free article] [Abstract] [Google Scholar]
  • Pines J, Hunter T. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell. 1989 Sep 8;58(5):833–846. [Abstract] [Google Scholar]
  • Pines J, Hunter T. Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature. 1990 Aug 23;346(6286):760–763. [Abstract] [Google Scholar]
  • Pondaven P, Meijer L, Beach D. Activation of M-phase-specific histone H1 kinase by modification of the phosphorylation of its p34cdc2 and cyclin components. Genes Dev. 1990 Jan;4(1):9–17. [Abstract] [Google Scholar]
  • Roy LM, Swenson KI, Walker DH, Gabrielli BG, Li RS, Piwnica-Worms H, Maller JL. Activation of p34cdc2 kinase by cyclin A. J Cell Biol. 1991 May;113(3):507–514. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rosenthal ET, Wilt FH. Patterns of maternal messenger RNA accumulation and adenylation during oogenesis in Urechis caupo. Dev Biol. 1986 Sep;117(1):55–63. [Abstract] [Google Scholar]
  • Sagata N, Watanabe N, Vande Woude GF, Ikawa Y. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature. 1989 Nov 30;342(6249):512–518. [Abstract] [Google Scholar]
  • Sanger F, Coulson AR, Barrell BG, Smith AJ, Roe BA. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. [Abstract] [Google Scholar]
  • Shaw G, Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. [Abstract] [Google Scholar]
  • Shuttleworth J, Matthews G, Dale L, Baker C, Colman A. Antisense oligodeoxyribonucleotide-directed cleavage of maternal mRNA in Xenopus oocytes and embryos. Gene. 1988 Dec 10;72(1-2):267–275. [Abstract] [Google Scholar]
  • Smith LD, Ecker RE. The interaction of steroids with Rana pipiens Oocytes in the induction of maturation. Dev Biol. 1971 Jun;25(2):232–247. [Abstract] [Google Scholar]
  • Standart N, Minshull J, Pines J, Hunt T. Cyclin synthesis, modification and destruction during meiotic maturation of the starfish oocyte. Dev Biol. 1987 Nov;124(1):248–258. [Abstract] [Google Scholar]
  • Swenson KI, Farrell KM, Ruderman JV. The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes. Cell. 1986 Dec 26;47(6):861–870. [Abstract] [Google Scholar]
  • Tachibana K, Ishiura M, Uchida T, Kishimoto T. The starfish egg mRNA responsible for meiosis reinitiation encodes cyclin. Dev Biol. 1990 Aug;140(2):241–252. [Abstract] [Google Scholar]
  • van den Biggelaar JA. Development of dorsoventral polarity and mesentoblast determination in Patella vulgata. J Morphol. 1977 Oct;154(1):157–186. [Abstract] [Google Scholar]
  • Wang J, Chenivesse X, Henglein B, Bréchot C. Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature. 1990 Feb 8;343(6258):555–557. [Abstract] [Google Scholar]
  • Westendorf JM, Swenson KI, Ruderman JV. The role of cyclin B in meiosis I. J Cell Biol. 1989 Apr;108(4):1431–1444. [Europe PMC free article] [Abstract] [Google Scholar]
  • Whitfield WG, Gonzalez C, Maldonado-Codina G, Glover DM. The A- and B-type cyclins of Drosophila are accumulated and destroyed in temporally distinct events that define separable phases of the G2-M transition. EMBO J. 1990 Aug;9(8):2563–2572. [Europe PMC free article] [Abstract] [Google Scholar]
  • Wu RS, Panusz HT, Hatch CL, Bonner WM. Histones and their modifications. CRC Crit Rev Biochem. 1986;20(2):201–263. [Abstract] [Google Scholar]
  • Zampetti-Bosseler F, Huez G, Brachet J. Effects of several inhibitors of macromolecule synthesis upon maturation of marine invertebrate oocytes. Exp Cell Res. 1973 Apr;78(2):383–393. [Abstract] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

Citations & impact 


Data