Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Bax, a pro-apoptotic member of the Bcl-2 family, translocates from the cytosol to the mitochondria during programmed cell death. We report here that both gain-of-function and loss-of-function mutations can be achieved by altering a single amino acid in the Bax hydrophobic C-terminus. The properly mutated C-terminus of Bax can target a non-relevant protein to the mitochondria, showing that specific conformations of this domain alone allow mitochondrial docking. These data along with N-terminus epitope exposure experiments suggest that the C- and the N-termini interact and that upon triggering of apoptosis, Bax changes conformation, exposing these two domains to insert into the mitochondria and regulate the cell death machinery.

Free full text 


Logo of embojLink to Publisher's site
EMBO J. 1999 May 4; 18(9): 2330–2341.
PMCID: PMC1171316
PMID: 10228148

Conformation of the Bax C-terminus regulates subcellular location and cell death.

Abstract

Bax, a pro-apoptotic member of the Bcl-2 family, translocates from the cytosol to the mitochondria during programmed cell death. We report here that both gain-of-function and loss-of-function mutations can be achieved by altering a single amino acid in the Bax hydrophobic C-terminus. The properly mutated C-terminus of Bax can target a non-relevant protein to the mitochondria, showing that specific conformations of this domain alone allow mitochondrial docking. These data along with N-terminus epitope exposure experiments suggest that the C- and the N-termini interact and that upon triggering of apoptosis, Bax changes conformation, exposing these two domains to insert into the mitochondria and regulate the cell death machinery.

Full Text

The Full Text of this article is available as a PDF (674K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998 Aug 28;281(5381):1322–1326. [Abstract] [Google Scholar]
  • Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, et al. Inhibition of Bax channel-forming activity by Bcl-2. Science. 1997 Jul 18;277(5324):370–372. [Abstract] [Google Scholar]
  • Chinnaiyan AM, Orth K, O'Rourke K, Duan H, Poirier GG, Dixit VM. Molecular ordering of the cell death pathway. Bcl-2 and Bcl-xL function upstream of the CED-3-like apoptotic proteases. J Biol Chem. 1996 Mar 1;271(9):4573–4576. [Abstract] [Google Scholar]
  • Goping IS, Gross A, Lavoie JN, Nguyen M, Jemmerson R, Roth K, Korsmeyer SJ, Shore GC. Regulated targeting of BAX to mitochondria. J Cell Biol. 1998 Oct 5;143(1):207–215. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gross A, Jockel J, Wei MC, Korsmeyer SJ. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 1998 Jul 15;17(14):3878–3885. [Europe PMC free article] [Abstract] [Google Scholar]
  • Haldar S, Jena N, Croce CM. Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4507–4511. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. [Abstract] [Google Scholar]
  • Hsu YT, Youle RJ. Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem. 1997 May 23;272(21):13829–13834. [Abstract] [Google Scholar]
  • Hsu YT, Youle RJ. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem. 1998 Apr 24;273(17):10777–10783. [Abstract] [Google Scholar]
  • Hsu YT, Wolter KG, Youle RJ. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3668–3672. [Europe PMC free article] [Abstract] [Google Scholar]
  • He H, Lam M, McCormick TS, Distelhorst CW. Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol. 1997 Sep 22;138(6):1219–1228. [Europe PMC free article] [Abstract] [Google Scholar]
  • Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997 Feb 7;88(3):347–354. [Abstract] [Google Scholar]
  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. [Europe PMC free article] [Abstract] [Google Scholar]
  • Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 1995 Oct 6;270(5233):96–99. [Abstract] [Google Scholar]
  • Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993 Oct 1;53(19):4701–4714. [Abstract] [Google Scholar]
  • Lam M, Dubyak G, Chen L, Nuñez G, Miesfeld RL, Distelhorst CW. Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6569–6573. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ling YH, Tornos C, Perez-Soler R. Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis. J Biol Chem. 1998 Jul 24;273(30):18984–18991. [Abstract] [Google Scholar]
  • Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Rémy R, Xie ZH, Reed JC, Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med. 1998 Apr 20;187(8):1261–1271. [Europe PMC free article] [Abstract] [Google Scholar]
  • May WS, Tyler PG, Ito T, Armstrong DK, Qatsha KA, Davidson NE. Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 alpha in association with suppression of apoptosis. J Biol Chem. 1994 Oct 28;269(43):26865–26870. [Abstract] [Google Scholar]
  • Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature. 1996 May 23;381(6580):335–341. [Abstract] [Google Scholar]
  • Nguyen M, Millar DG, Yong VW, Korsmeyer SJ, Shore GC. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J Biol Chem. 1993 Dec 5;268(34):25265–25268. [Abstract] [Google Scholar]
  • Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993 Aug 27;74(4):609–619. [Abstract] [Google Scholar]
  • Sayle RA, Milner-White EJ. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. [Abstract] [Google Scholar]
  • Vaux DL, Haecker G, Strasser A. An evolutionary perspective on apoptosis. Cell. 1994 Mar 11;76(5):777–779. [Abstract] [Google Scholar]
  • Wang K, Gross A, Waksman G, Korsmeyer SJ. Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing. Mol Cell Biol. 1998 Oct;18(10):6083–6089. [Europe PMC free article] [Abstract] [Google Scholar]
  • Weil M, Jacobson MD, Coles HS, Davies TJ, Gardner RL, Raff KD, Raff MC. Constitutive expression of the machinery for programmed cell death. J Cell Biol. 1996 Jun;133(5):1053–1059. [Europe PMC free article] [Abstract] [Google Scholar]
  • Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. 1997 Dec 1;139(5):1281–1292. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zamzami N, Susin SA, Marchetti P, Hirsch T, Gómez-Monterrey I, Castedo M, Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med. 1996 Apr 1;183(4):1533–1544. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zha H, Aimé-Sempé C, Sato T, Reed JC. Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem. 1996 Mar 29;271(13):7440–7444. [Abstract] [Google Scholar]
  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) Cell. 1996 Nov 15;87(4):619–628. [Abstract] [Google Scholar]
  • Zha J, Harada H, Osipov K, Jockel J, Waksman G, Korsmeyer SJ. BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J Biol Chem. 1997 Sep 26;272(39):24101–24104. [Abstract] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/3393489
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/3393489

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1093/emboj/18.9.2330

Supporting
Mentioning
Contrasting
52
646
3

Article citations


Go to all (472) article citations

Other citations

Data