Nothing Special   »   [go: up one dir, main page]

An Entity of Type: Difference104748836, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Remez inequality, discovered by the Soviet mathematician Evgeny Yakovlevich Remez, gives a bound on the sup norms of certain polynomials, the bound being attained by the Chebyshev polynomials.

Property Value
dbo:abstract
  • In mathematics, the Remez inequality, discovered by the Soviet mathematician Evgeny Yakovlevich Remez, gives a bound on the sup norms of certain polynomials, the bound being attained by the Chebyshev polynomials. (en)
  • En mathématiques, l'inégalité de Remez, découverte par le mathématicien soviétique Evgeny Yakovlevich Remez, donne une majoration sur les de certains polynômes, la majoration étant atteinte par les polynômes de Tchebychev. (fr)
dbo:wikiPageID
  • 12182350 (xsd:integer)
dbo:wikiPageLength
  • 6624 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1041339655 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • In mathematics, the Remez inequality, discovered by the Soviet mathematician Evgeny Yakovlevich Remez, gives a bound on the sup norms of certain polynomials, the bound being attained by the Chebyshev polynomials. (en)
  • En mathématiques, l'inégalité de Remez, découverte par le mathématicien soviétique Evgeny Yakovlevich Remez, donne une majoration sur les de certains polynômes, la majoration étant atteinte par les polynômes de Tchebychev. (fr)
rdfs:label
  • Inégalité de Remez (fr)
  • Remez inequality (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License