dbo:abstract
|
- En matemàtiques, la descomposició de Jordan-Chevalley, que pren el nom de Camille Jordan i Claude Chevalley, expressa una aplicació lineal com suma commutativa de les seves parts semisimple i nilpotent. La descomposició multiplicativa expressa un operador invertible com el producte commutatiu de les seves parts semisimple i unipotent. Aquesta descomposició és important en l'estudi de grups algebraics. La descomposició es descriu de forma simple quan tenim la forma canònica de Jordan de l'operador, però existeix sota condicions més febles que les de l'existència de la forma canònica de Jordan. (ca)
- Die Jordan-Chevalley-Zerlegung (gelegentlich auch Dunford-Zerlegung) ist wichtig für das Studium von Lie-Algebren und algebraischen Gruppen. Benannt ist sie nach Marie Ennemond Camille Jordan und Claude Chevalley. Unter der (additiven) Jordan-Chevalley-Zerlegung eines Endomorphismus eines endlichdimensionalen Vektorraums über einem algebraisch abgeschlossenen Körper versteht man die Summe , worin ein halbeinfacher (also diagonalisierbarer) und ein nilpotenter Endomorphismus sind, die miteinander kommutieren, das heißt . Ist allgemeiner eine halbeinfache Lie-Algebra (mit Lie-Klammer ) über einem algebraisch abgeschlossenen Körper der Charakteristik 0 und , so bezeichnet man als (additive abstrakte) Jordan-Chevalley-Zerlegung, falls gilt: Der Endomorphismus ist halbeinfach, der Endomorphismus ist nilpotent, und es gilt . Darin wird für jedes die Abbildung folgendermaßen definiert: , welches ein Endomorphismus von ist. Die Jordan-Chevalley-Zerlegung existiert in den oben angegebenen Fällen und ist eindeutig. Zudem stimmen beide Definitionen im Fall , versehen mit der Lie-Klammer , überein. Die multiplikative Zerlegung stellt einen invertierbaren Operator als Produkt seiner kommutierenden halbeinfachen und unipotenten Anteile dar. Diese erhält man leicht aus der oben angegebenen additiven Zerlegung: . Man beachte, dass invertierbar ist, denn kann als invertierbarer Endomorphismus nicht den Eigenwert 0 haben, und dass wegen der Vertauschbarkeit der Faktoren ebenfalls nilpotent und damit unipotent ist. (de)
- In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator as the sum of its commuting semisimple part and its nilpotent part. The multiplicative decomposition expresses an invertible operator as the product of its commuting semisimple and unipotent parts. The decomposition is easy to describe when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than the existence of a Jordan normal form. Analogues of the Jordan-Chevalley decomposition exist for elements of linear algebraic groups, Lie algebras, and Lie groups, and the decomposition is an important tool in the study of these objects. (en)
- En mathématiques, plus précisément en algèbre linéaire, la décomposition de Dunford (ou décomposition de Jordan-Chevalley) s'inscrit dans le contexte de la réduction d'endomorphisme, et prouve que tout endomorphisme u est la somme d'un endomorphisme diagonalisable d et d'un endomorphisme nilpotent n, les deux endomorphismes d et n commutant et étant uniques. Cette décomposition a été démontrée une première fois en 1870 par Camille Jordan, puis dans les années 1950 par Claude Chevalley dans le contexte de la théorie des groupes algébriques. Dans le monde francophone, elle est parfois attribuée à tort à Nelson Dunford, dont les travaux sont postérieurs à ceux de Chevalley. Ce n'est pas une « réduction » dans le sens où elle n'est pas maximale : il est parfois possible de pousser la décomposition en sous-espaces vectoriels stables plus petits. Elle prend comme hypothèses que l'espace vectoriel est de dimension finie et que le polynôme minimal est scindé, c'est-à-dire qu'il s'exprime comme produit de polynômes du premier degré. Cette seconde hypothèse est toujours vérifiée si le corps est algébriquement clos, comme celui des nombres complexes. Dans le cas où la propriété n'est pas vérifiée, il est possible d'étendre le corps à sa clôture algébrique, et l'espace vectoriel à ce nouveau corps et dans ce contexte d'appliquer la décomposition de Dunford. Par exemple, le corps des nombres réels se voit généralement étendu pour permettre une application de cette décomposition. Cette décomposition est largement appliquée. Elle permet un calcul matriciel souvent rapide. C'est néanmoins souvent sous la forme de la réduction de Jordan qu'elle est utilisée. (fr)
- Розкладом Жордана — Шевальє у лінійній алгебрі називається розклад лінійного ендоморфізму скінченновимірного простору (чи, еквівалентно, матриці цього перетворення для деякого вибраного базису простору) як суми чи, у випадку автоморфізмів, добутку простіших складових, а саме напівпростих, нільпотентних чи, у випадку автоморфізмів, уніпотентних операторів. Розклад Жордана — Шевальє особливо легко отримати для матриць записаних у жордановій нормальній формі. Більш загально означення даного розкладу можна поширити на випадок так званих локально скінченних ендоморфізмів векторних просторів. Цей факт, а також те, що компоненти розкладу є многочленами від ендоморфізму робить розклад Жордана — Шевальє важливим інструментом у теорії лінійних алгебричних груп. (uk)
|
rdfs:comment
|
- En matemàtiques, la descomposició de Jordan-Chevalley, que pren el nom de Camille Jordan i Claude Chevalley, expressa una aplicació lineal com suma commutativa de les seves parts semisimple i nilpotent. La descomposició multiplicativa expressa un operador invertible com el producte commutatiu de les seves parts semisimple i unipotent. Aquesta descomposició és important en l'estudi de grups algebraics. La descomposició es descriu de forma simple quan tenim la forma canònica de Jordan de l'operador, però existeix sota condicions més febles que les de l'existència de la forma canònica de Jordan. (ca)
- In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator as the sum of its commuting semisimple part and its nilpotent part. The multiplicative decomposition expresses an invertible operator as the product of its commuting semisimple and unipotent parts. The decomposition is easy to describe when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than the existence of a Jordan normal form. Analogues of the Jordan-Chevalley decomposition exist for elements of linear algebraic groups, Lie algebras, and Lie groups, and the decomposition is an important tool in the study of these objects. (en)
- Die Jordan-Chevalley-Zerlegung (gelegentlich auch Dunford-Zerlegung) ist wichtig für das Studium von Lie-Algebren und algebraischen Gruppen. Benannt ist sie nach Marie Ennemond Camille Jordan und Claude Chevalley. Unter der (additiven) Jordan-Chevalley-Zerlegung eines Endomorphismus eines endlichdimensionalen Vektorraums über einem algebraisch abgeschlossenen Körper versteht man die Summe , worin ein halbeinfacher (also diagonalisierbarer) und ein nilpotenter Endomorphismus sind, die miteinander kommutieren, das heißt . , welches ein Endomorphismus von ist. . (de)
- En mathématiques, plus précisément en algèbre linéaire, la décomposition de Dunford (ou décomposition de Jordan-Chevalley) s'inscrit dans le contexte de la réduction d'endomorphisme, et prouve que tout endomorphisme u est la somme d'un endomorphisme diagonalisable d et d'un endomorphisme nilpotent n, les deux endomorphismes d et n commutant et étant uniques. Ce n'est pas une « réduction » dans le sens où elle n'est pas maximale : il est parfois possible de pousser la décomposition en sous-espaces vectoriels stables plus petits. (fr)
- Розкладом Жордана — Шевальє у лінійній алгебрі називається розклад лінійного ендоморфізму скінченновимірного простору (чи, еквівалентно, матриці цього перетворення для деякого вибраного базису простору) як суми чи, у випадку автоморфізмів, добутку простіших складових, а саме напівпростих, нільпотентних чи, у випадку автоморфізмів, уніпотентних операторів. Розклад Жордана — Шевальє особливо легко отримати для матриць записаних у жордановій нормальній формі. (uk)
|