Nothing Special   »   [go: up one dir, main page]

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In linear algebra and ring theory, the Howell normal form is a generalization of the row echelon form of a matrix over , the ring of integers modulo N. The row spans of two matrices agree if, and only if, their Howell normal forms agree. The Howell normal form generalizes the Hermite normal form, which is defined for matrices over .

Property Value
dbo:abstract
  • In linear algebra and ring theory, the Howell normal form is a generalization of the row echelon form of a matrix over , the ring of integers modulo N. The row spans of two matrices agree if, and only if, their Howell normal forms agree. The Howell normal form generalizes the Hermite normal form, which is defined for matrices over . (en)
  • Нормальная форма Хауэлла — аналог ступенчатого вида матрицы для матриц над кольцом остатков по модулю . (ru)
dbo:wikiPageID
  • 70036677 (xsd:integer)
dbo:wikiPageLength
  • 3939 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1071202119 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In linear algebra and ring theory, the Howell normal form is a generalization of the row echelon form of a matrix over , the ring of integers modulo N. The row spans of two matrices agree if, and only if, their Howell normal forms agree. The Howell normal form generalizes the Hermite normal form, which is defined for matrices over . (en)
  • Нормальная форма Хауэлла — аналог ступенчатого вида матрицы для матриц над кольцом остатков по модулю . (ru)
rdfs:label
  • Howell normal form (en)
  • Нормальная форма Хауэлла (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License