dbo:abstract
|
- In circuit theory, flux linkage is a property of a two-terminal element. It is an extension rather than an equivalent of magnetic flux and is defined as a time integral where is the voltage across the device, or the potential difference between the two terminals. This definition can also be written in differential form as a rate Faraday showed that the magnitude of the electromotive force (EMF) generated in a conductor forming a closed loop is proportional to the rate of change of the total magnetic flux passing through the loop (Faraday's law of induction). Thus, for a typical inductance (a coil of conducting wire), the flux linkage is equivalent to magnetic flux, which is the total magnetic field passing through the surface (i.e., normal to that surface) formed by a closed conducting loop coil and is determined by the number of turns in the coil and the magnetic field, i.e., where is the flux density, or flux per unit area at a given point in space. The simplest example of such a system is a single circular coil of conductive wire immersed in a magnetic field, in which case the flux linkage is simply the flux passing through the loop. The flux through the surface delimited by a coil turn exists independently of the presence of the coil. Furthermore, in a thought experiment with a coil of turns, where each turn forms a loop with exactly the same boundary, each turn will "link" the "same" (identically, not merely the same quantity) flux , all for a total flux linkage of . The distinction relies heavily on intuition, and the term "flux linkage" is used mainly in engineering disciplines. Theoretically, the case of a multi-turn induction coil is explained and treated perfectly rigorously with Riemann surfaces: what is called "flux linkage" in engineering is simply the flux passing through the Riemann surface bounded by the coil's turns, hence no particularly useful distinction between flux and "linkage". Due to the equivalence of flux linkage and total magnetic flux in the case of inductance, it is popularly accepted that the flux linkage is simply an alternative term for total flux, used for convenience in engineering applications. Nevertheless, this is not true, especially for the case of memristor, which is also referred to as the fourth fundamental circuit element. For a memristor, the electric field in the element is not as negligible as for the case of inductance, so the flux linkage is no longer equivalent to magnetic flux. In addition, for a memristor, the energy related to the flux linkage is dissipated in the form of Joule heating, instead of being stored in magnetic field, as done in the case of an inductance. (en)
- 磁链,是一个电磁学的物理量,为通电线圈的匝数与磁通量的乘积。通常用 (lambda)或 (psi)标记,即Ψ=Nφ 或λ=Nφ。其国际单位制单位与磁通量同为韦伯。 由于法拉第对电磁学的解释,一个线圈的磁链也可以表示为通过线圈的电压对其时间的积分。即: 因此其单位也可以用伏特·秒表示。另外,磁链还等于电感乘以电流。 (zh)
- Потокосцепле́ние (полный магнитный поток) — физическая величина, представляющая собой суммарный магнитный поток, который пронизывает замкнутый проводящий контур (как бы «сцепляется» с ним). Обозначается буквой . В СИ измеряется в веберах. Термин используется, в основном, в электротехнике применительно к дискретным элементам цепи — катушкам индуктивности. (ru)
|
rdfs:comment
|
- 磁链,是一个电磁学的物理量,为通电线圈的匝数与磁通量的乘积。通常用 (lambda)或 (psi)标记,即Ψ=Nφ 或λ=Nφ。其国际单位制单位与磁通量同为韦伯。 由于法拉第对电磁学的解释,一个线圈的磁链也可以表示为通过线圈的电压对其时间的积分。即: 因此其单位也可以用伏特·秒表示。另外,磁链还等于电感乘以电流。 (zh)
- Потокосцепле́ние (полный магнитный поток) — физическая величина, представляющая собой суммарный магнитный поток, который пронизывает замкнутый проводящий контур (как бы «сцепляется» с ним). Обозначается буквой . В СИ измеряется в веберах. Термин используется, в основном, в электротехнике применительно к дискретным элементам цепи — катушкам индуктивности. (ru)
- In circuit theory, flux linkage is a property of a two-terminal element. It is an extension rather than an equivalent of magnetic flux and is defined as a time integral where is the voltage across the device, or the potential difference between the two terminals. This definition can also be written in differential form as a rate where is the flux density, or flux per unit area at a given point in space. The simplest example of such a system is a single circular coil of conductive wire immersed in a magnetic field, in which case the flux linkage is simply the flux passing through the loop. (en)
|