Nothing Special   »   [go: up one dir, main page]

About: DFT matrix

An Entity of Type: organisation, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In applied mathematics, a DFT matrix is an expression of a discrete Fourier transform (DFT) as a transformation matrix, which can be applied to a signal through matrix multiplication.

Property Value
dbo:abstract
  • In applied mathematics, a DFT matrix is an expression of a discrete Fourier transform (DFT) as a transformation matrix, which can be applied to a signal through matrix multiplication. (en)
  • La matrice di Fourier è una matrice complessa simmetrica del tipo di Vandermonde che esprime in forma matriciale la trasformata discreta di Fourier (DFT). (it)
  • 離散傅立葉變換矩陣是將離散傅立葉變換以矩陣乘法來表達的一種表示式。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1090930 (xsd:integer)
dbo:wikiPageLength
  • 9709 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1116781498 (xsd:integer)
dbo:wikiPageWikiLink
dbp:caption
  • Imaginary part (en)
  • Real part (en)
dbp:footer
  • The Fourier operator (en)
dbp:image
  • Fourieropi.png (en)
  • Fourieropr.png (en)
dbp:width
  • 150 (xsd:integer)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • In applied mathematics, a DFT matrix is an expression of a discrete Fourier transform (DFT) as a transformation matrix, which can be applied to a signal through matrix multiplication. (en)
  • La matrice di Fourier è una matrice complessa simmetrica del tipo di Vandermonde che esprime in forma matriciale la trasformata discreta di Fourier (DFT). (it)
  • 離散傅立葉變換矩陣是將離散傅立葉變換以矩陣乘法來表達的一種表示式。 (zh)
rdfs:label
  • DFT matrix (en)
  • Matrice di Fourier (it)
  • 離散傅里葉變換矩陣 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License