Nothing Special   »   [go: up one dir, main page]

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used. This article tries to give an overview of several coordinate systems in use for the two-dimensional hyperbolic plane. In the descriptions below the constant Gaussian curvature of the plane is −1. Sinh, cosh and tanh are hyperbolic functions.

Property Value
dbo:abstract
  • In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used. This article tries to give an overview of several coordinate systems in use for the two-dimensional hyperbolic plane. In the descriptions below the constant Gaussian curvature of the plane is −1. Sinh, cosh and tanh are hyperbolic functions. (en)
  • Dans le plan hyperbolique, comme dans le plan euclidien, chaque point peut être représenté par un couple de nombres réels, appelés ses coordonnées. Il existe plusieurs systèmes de coordonnées du plan hyperbolique, qualitativement distincts. (fr)
dbo:thumbnail
dbo:wikiPageID
  • 49331727 (xsd:integer)
dbo:wikiPageLength
  • 14698 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1123727226 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used. This article tries to give an overview of several coordinate systems in use for the two-dimensional hyperbolic plane. In the descriptions below the constant Gaussian curvature of the plane is −1. Sinh, cosh and tanh are hyperbolic functions. (en)
  • Dans le plan hyperbolique, comme dans le plan euclidien, chaque point peut être représenté par un couple de nombres réels, appelés ses coordonnées. Il existe plusieurs systèmes de coordonnées du plan hyperbolique, qualitativement distincts. (fr)
rdfs:label
  • Coordinate systems for the hyperbolic plane (en)
  • Système de coordonnées du plan hyperbolique (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License