Nothing Special   »   [go: up one dir, main page]

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The CARD-CC protein family is defined by an evolutionary conserved CARD and a coiled-coil (CC) domain. Coiled-coils (CC) act as oligomerization domains for many proteins such as structural and motor proteins, and transcription factors. This means that monomers are converted to macromolecular complexes by polymerization. The protein family is ancient and can be found as far back as Cnidaria, but has almost exclusively been studied in humans and mice. Notably, the protein family is absent in insects and nematodes, which makes it impossible to study its function in the most popular invertebrate model organisms (Drosophila and C. elegans). In humans and other jawed vertebrates, the family consists of CARD9 and the three "CARD-containing MAGUK protein" (CARMA) proteins CARD11 (CARMA1), CARD14 (

Property Value
dbo:abstract
  • The CARD-CC protein family is defined by an evolutionary conserved CARD and a coiled-coil (CC) domain. Coiled-coils (CC) act as oligomerization domains for many proteins such as structural and motor proteins, and transcription factors. This means that monomers are converted to macromolecular complexes by polymerization. The protein family is ancient and can be found as far back as Cnidaria, but has almost exclusively been studied in humans and mice. Notably, the protein family is absent in insects and nematodes, which makes it impossible to study its function in the most popular invertebrate model organisms (Drosophila and C. elegans). In humans and other jawed vertebrates, the family consists of CARD9 and the three "CARD-containing MAGUK protein" (CARMA) proteins CARD11 (CARMA1), CARD14 (CARMA2) and CARD10 (CARMA3). Invertebrates only have a CARD9-like ancestral CARD-CC member, and the earliest occurrence of a CARD-CC member with the CARMA domain composition is in the jawless vertebrate hagfish. Already in sharks are all four CARD-CC family members present, indicating that the 3 distinct CARMA CARD-CC family members were formed by two duplication events just before or very early in the jawed vertebrate evolution. The four CARD-CC members in mice and humans differ in expression domains, where CARD9 is mostly expressed in myelocytes, CARD11 in lymphocytes, while CARD10 and CARD14 are mostly expressed in non-hemapoetic cells. Interestingly is this gene expression differentiation between the four CARD-CC family members conserved at least as far back as frogs (Xenopus tropicalis) and fish (Danio rerio), indicating that the four CARD-CC family members have had distinct functions since early jawed vertebrate evolution. (en)
dbo:wikiPageID
  • 60664865 (xsd:integer)
dbo:wikiPageLength
  • 10869 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1092815531 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • The CARD-CC protein family is defined by an evolutionary conserved CARD and a coiled-coil (CC) domain. Coiled-coils (CC) act as oligomerization domains for many proteins such as structural and motor proteins, and transcription factors. This means that monomers are converted to macromolecular complexes by polymerization. The protein family is ancient and can be found as far back as Cnidaria, but has almost exclusively been studied in humans and mice. Notably, the protein family is absent in insects and nematodes, which makes it impossible to study its function in the most popular invertebrate model organisms (Drosophila and C. elegans). In humans and other jawed vertebrates, the family consists of CARD9 and the three "CARD-containing MAGUK protein" (CARMA) proteins CARD11 (CARMA1), CARD14 ( (en)
rdfs:label
  • CARD-CC family (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License