Nothing Special   »   [go: up one dir, main page]

Vol. 136
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-17
A Novel Fast Solver for Poisson's Equation with Neumann Boundary Condition
By
Progress In Electromagnetics Research, Vol. 136, 195-209, 2013
Abstract
In this paper, we present a novel fast method to solve Poisson's equation in an arbitrary two dimensional region with Neumann boundary condition, which are frequently encountered in solving electrostatic boundary problems. The basic idea is to solve the original Poisson's equation by a two-step procedure. In the first stage, we expand the electric field of interest by a set of tree basis functions and solve it with a fast tree solver in O(N) operations. The field such obtained, however, fails to expand the exact field because the tree basis is not curl-free. Despite of this, we can retrieve the correct electric field by purging the divergence-free field. Next, for the second stage, we find the potential distribution rapidly with a same fast solution of O(N) complexity. As a result, the proposed method dramatically reduces solution time compared with traditional FEM with iterative method. In addition, it is the first time that the loop-tree decomposition technique has been introduced to develop fast Poisson solvers. Numerical examples including electrostatic simulations are presented to demonstrate the efficiency of the proposed method.
Citation
Zu-Hui Ma, Weng Cho Chew, and Li Jun Jiang, "A Novel Fast Solver for Poisson's Equation with Neumann Boundary Condition," Progress In Electromagnetics Research, Vol. 136, 195-209, 2013.
doi:10.2528/PIER12112010
References

1. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, Aug. 1998.

2. Barkas, S. N., An introduction to fast poisson solvers, 2005, http://people.freebsd.org/ snb/school/fastpoisson.pdf.

3. Fogolari, F., A. Brigo, and H. Molinari, "The poissonboltzmann equation for biomolecular electrostatics: A tool for structural biology," Journal of Molecular Recognition, Vol. 15, No. 6, 377-392, 2002.
doi:10.1002/jmr.577

4. Adelmann, A., P. Arbenz, and Y. Ineichen, "A fast parallel poisson solver on irregular domains applied to beam dynamics simulations," Journal of Computational Physics, Vol. 229, No. 12, 4554-4566, 2010.
doi:10.1016/j.jcp.2010.02.022

5. Lai, M. and W. Wang, "Fast direct solvers for poisson equation on 2D polar and spherical geometries," Numerical Methods for Partial Differential Equations, Vol. 18, No. 1, 56-68, Jan. 2002.
doi:10.1002/num.1038

6. Huang, Y.-L., J.-G. Liu, and W.-C. Wang, "An FFT based ast poisson solver on spherical shells," Communications in Computational Physics, Vol. 9, No. 3, SI, 649-667, Mar. 2011.

7. Trottenberg, U., C. W. Oosterlee, and A. Schller, Multigrid, Academic Press, 2001.

8. Fulton, S. R., P. E. Ciesielski, and W. H. Schubert, "Multigrid methods for elliptic problems: A review," Monthly Weather Review, Vol. 14, 943-959, May 1986.
2.0.CO;2'>doi:10.1175/1520-0493(1986)114<0943:MMFEPA>2.0.CO;2

9. Briggs, L., V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, Philadelphia, 2000.

10. McAdams, A., E. Sifakis, and J. Teran, "A parallel multigrid Poisson solver for fluids simulation on large grids," ACM SIGGRAPH Symposium on Computer Animation, 2010.

11. McKenney, A., L. Greengard, and A. Mayo, "A fast poisson solver for complex geometries," Journal of Computational Physics, Vol. 118, No. 2, 348-355, 1995.
doi:10.1006/jcph.1995.1104

12. Ethridge, F. and L. Greengard, "A new fast-multipole accelerated poisson solver in two dimensions,", Vol. 23, No. 3, 741-760, 2001.

13. Langston, M. H., L. Greengard, and D. Zorin, "A free-space adaptive FMM-based PDE solver in three dimensions," Communications in Applied Mathematics and Computational Science, Vol. 6, No. 1, 79-122, 2011.
doi:10.2140/camcos.2011.6.79

14. Greengard, L. and J.-Y. Lee, "A direct adaptive Poisson solver of arbitrary order accuracy," Journal of Computational Physics, Vol. 125, No. 2, 415-424, 1996.
doi:10.1006/jcph.1996.0103

15. Wilton, D. R. and A. W. Glisson, "On improving the electric field integral equation at low frequencies," 1981 Spring URSI Radio Science Meeting Digest, 24 Los Angeles, CA, Jun. 1981.

16. Mautz, J. and R. Harrington, "An E-field solution for a conducting surface small or comparable to the wavelength," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 4, 330-339, Apr. 1984.
doi:10.1109/TAP.1984.1143316

17. Zhao, J.-S. and W. C. Chew, "Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies ," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 10, 1635-1645, Oct. 2000.
doi:10.1109/8.899680

18. Wu, W., A. W. Glisson, and D. Kajfez, "A comparison of two low-frequency formulations for the electric field integral equation," Tenth Ann. Rev. Prog. Appl. Comput. Electromag., Vol. 2, 484-491, 1994.

19. Burton, M. and S. Kashyap, "A study of a recent, moment-method algorithm that is accurate to very low frequencies," Appl. Comput. Electromagn. Soc. J., Vol. 10, No. 3, 58-68, Nov. 1995.

20. Bladel, J. G. V., Electromagnetic Fields, Wiley-IEEE Press, Jun. 2007.

21. Chew, W. C., M. S. Tong, and B. Hu, Integral Equations Methods for Electromagnetic and Elastic Waves, Morgan & Claypool, 2008.

22. Vipiana, F., P. Pirinoli, and G. Vecchi, "A multiresolution method of moments for triangular meshes," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2247-2258, Jul. 2005.
doi:10.1109/TAP.2005.850710

23. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems," SIAM J. on Scientific Computing, Vol. 13, 631-644, 1992.

24. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Ed., Society for Industrial and Applied Mathematics, 2003.

25. Saad, Y. and M. Schultz, "GMRES: A generalized minimal residue algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, 856-869, 1986.