Abstract
We consider an extension of the Standard Model that explains the neutrino masses and has a rich dark matter phenomenology. The model has two dark matter candidates, a vector WIMP and a fermion FIMP, and the sum of their relic densities matches the total dark matter abundance. We extensively study the dark matter production mechanisms and its connection with the neutrino sector, together with various bounds from present and future experiments. The extra scalar field in the model may induce a first-order phase transition in the early Universe. We study the production of stochastic gravitational waves associated with the first-order phase transition. We show that the phase transition can be strong, and thus the model may satisfy one of the necessary conditions for a successful electroweak baryogenesis. Detectability of the phase transition-associated gravitational waves is also discussed.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
M.C. Gonzalez-Garcia and Y. Nir, Neutrino Masses and Mixing: Evidence and Implications, Rev. Mod. Phys. 75 (2003) 345 [hep-ph/0202058] [INSPIRE].
I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].
Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].
P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
S.K. Kang and C.S. Kim, Extended double seesaw model for neutrino mass spectrum and low scale leptogenesis, Phys. Lett. B 646 (2007) 248 [hep-ph/0607072] [INSPIRE].
M. Mitra, G. Senjanovic and F. Vissani, Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos, Nucl. Phys. B 856 (2012) 26 [arXiv:1108.0004] [INSPIRE].
S.K. Majee, M.K. Parida and A. Raychaudhuri, Neutrino mass and low-scale leptogenesis in a testable SUSY SO(10) model, Phys. Lett. B 668 (2008) 299 [arXiv:0807.3959] [INSPIRE].
M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].
A. Hook, R. McGehee and H. Murayama, Cosmologically Viable Low-energy Supersymmetry Breaking, Phys. Rev. D 98 (2018) 115036 [arXiv:1801.10160] [INSPIRE].
J.P. Ostriker and P.J.E. Peebles, A Numerical Study of the Stability of Flattened Galaxies: or, can Cold Galaxies Survive?, Astrophys. J. 186 (1973) 467 [INSPIRE].
E. Corbelli and P. Salucci, The Extended Rotation Curve and the Dark Matter Halo of M33, Mon. Not. Roy. Astron. Soc. 311 (2000) 441 [astro-ph/9909252] [INSPIRE].
J.E. Gunn, B.W. Lee, I. Lerche, D.N. Schramm and G. Steigman, Some Astrophysical Consequences of the Existence of a Heavy Stable Neutral Lepton, Astrophys. J. 223 (1978) 1015 [INSPIRE].
P. Hut, Limits on Masses and Number of Neutral Weakly Interacting Particles, Phys. Lett. B 69 (1977) 85 [INSPIRE].
B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].
G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
CMS collaboration, Phenomenological MSSM interpretation of CMS searches in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 10 (2016) 129 [arXiv:1606.03577] [INSPIRE].
MAGIC and Fermi-LAT collaborations, Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].
G. Arcadi et al., The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].
PandaX-II collaboration, Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [INSPIRE].
K.-Y. Choi and L. Roszkowski, E-WIMPs, AIP Conf. Proc. 805 (2005) 30 [hep-ph/0511003] [INSPIRE].
A. Kusenko, Sterile neutrinos, dark matter, and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [INSPIRE].
L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].
C. Cheung, G. Elor and L. Hall, Gravitino Freeze-In, Phys. Rev. D 84 (2011) 115021 [arXiv:1103.4394] [INSPIRE].
F. Elahi, C. Kolda and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015) 048 [arXiv:1410.6157] [INSPIRE].
G. Arcadi, L. Covi and M. Nardecchia, Gravitino Dark Matter and low-scale Baryogenesis, Phys. Rev. D 92 (2015) 115006 [arXiv:1507.05584] [INSPIRE].
N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].
K. Benakli, Y. Chen, E. Dudas and Y. Mambrini, Minimal model of gravitino dark matter, Phys. Rev. D 95 (2017) 095002 [arXiv:1701.06574] [INSPIRE].
N. Bernal, M. Dutra, Y. Mambrini, K. Olive, M. Peloso and M. Pierre, Spin-2 Portal Dark Matter, Phys. Rev. D 97 (2018) 115020 [arXiv:1803.01866] [INSPIRE].
N. Bernal, F. Elahi, C. Maldonado and J. Unwin, Ultraviolet Freeze-in and Non-Standard Cosmologies, JCAP 11 (2019) 026 [arXiv:1909.07992] [INSPIRE].
B. Barman, S. Bhattacharya and M. Zakeri, Non-Abelian Vector Boson as FIMP Dark Matter, JCAP 02 (2020) 029 [arXiv:1905.07236] [INSPIRE].
L. Covi, A. Ghosh, T. Mondal and B. Mukhopadhyaya, Models of decaying FIMP Dark Matter: potential links with the Neutrino Sector, arXiv:2008.12550 [INSPIRE].
S. Khan, Explaining Xenon-1T signal with FIMP dark matter and neutrino mass in a U(1)X extension, Eur. Phys. J. C 81 (2021) 598 [arXiv:2007.13008] [INSPIRE].
M.A.G. Garcia, Y. Mambrini, K.A. Olive and S. Verner, Case for decaying spin-3/2 dark matter, Phys. Rev. D 102 (2020) 083533 [arXiv:2006.03325] [INSPIRE].
N. Bernal, J. Rubio and H. Veermäe, UV Freeze-in in Starobinsky Inflation, JCAP 10 (2020) 021 [arXiv:2006.02442] [INSPIRE].
B. Barman, D. Borah and R. Roshan, Effective Theory of Freeze-in Dark Matter, JCAP 11 (2020) 021 [arXiv:2007.08768] [INSPIRE].
B. Barman, S. Bhattacharya and B. Grzadkowski, Feebly coupled vector boson dark matter in effective theory, JHEP 12 (2020) 162 [arXiv:2009.07438] [INSPIRE].
B. Barman, P. Ghosh, A. Ghoshal and L. Mukherjee, Shedding flavor on dark via freeze-in: U(1)B−3Li gauged extensions, JCAP 08 (2022) 049 [arXiv:2112.12798] [INSPIRE].
B. Barman and A. Ghoshal, Scale invariant FIMP miracle, JCAP 03 (2022) 003 [arXiv:2109.03259] [INSPIRE].
G. Bélanger, S. Khan, R. Padhan, M. Mitra and S. Shil, Right handed neutrinos, TeV scale BSM neutral Higgs boson, and FIMP dark matter in an EFT framework, Phys. Rev. D 104 (2021) 055047 [arXiv:2104.04373] [INSPIRE].
B. Barman and A. Ghoshal, Probing pre-BBN era with scale invariant FIMP, JCAP 10 (2022) 082 [arXiv:2203.13269] [INSPIRE].
K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP 01 (2016) 149 [arXiv:1511.00132] [INSPIRE].
D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].
G.F. Giudice and M. McCullough, A Clockwork Theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].
J. Kim and J. McDonald, Clockwork Higgs portal model for freeze-in dark matter, Phys. Rev. D 98 (2018) 023533 [arXiv:1709.04105] [INSPIRE].
J. Kim and J. Mcdonald, Freeze-In Dark Matter from a sub-Higgs Mass Clockwork Sector via the Higgs Portal, Phys. Rev. D 98 (2018) 123503 [arXiv:1804.02661] [INSPIRE].
A. Goudelis, K.A. Mohan and D. Sengupta, Clockworking FIMPs, JHEP 10 (2018) 014 [arXiv:1807.06642] [INSPIRE].
K.M. Zurek, Multi-Component Dark Matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [INSPIRE].
S. Profumo, K. Sigurdson and L. Ubaldi, Can we discover multi-component WIMP dark matter?, JCAP 12 (2009) 016 [arXiv:0907.4374] [INSPIRE].
D. Feldman, Z. Liu, P. Nath and G. Peim, Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions, Phys. Rev. D 81 (2010) 095017 [arXiv:1004.0649] [INSPIRE].
P. Ko and Y. Omura, Supersymmetric U(1)B × U(1) L model with leptophilic and leptophobic cold dark matters, Phys. Lett. B 701 (2011) 363 [arXiv:1012.4679] [INSPIRE].
A. Drozd, B. Grzadkowski and J. Wudka, Multi-Scalar-Singlet Extension of the Standard Model — the Case for Dark Matter and an Invisible Higgs Boson, JHEP 04 (2012) 006 [arXiv:1112.2582] [INSPIRE].
M. Aoki, M. Duerr, J. Kubo and H. Takano, Multi-Component Dark Matter Systems and Their Observation Prospects, Phys. Rev. D 86 (2012) 076015 [arXiv:1207.3318] [INSPIRE].
S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Two-Component Dark Matter, JHEP 10 (2013) 158 [arXiv:1309.2986] [INSPIRE].
S. Baek, P. Ko and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, JCAP 10 (2014) 067 [arXiv:1311.1035] [INSPIRE].
S. Esch, M. Klasen and C.E. Yaguna, A minimal model for two-component dark matter, JHEP 09 (2014) 108 [arXiv:1406.0617] [INSPIRE].
P. Ko and Y. Tang, νΛMDM: A model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP2, Phys. Lett. B 739 (2014) 62 [arXiv:1404.0236] [INSPIRE].
L. Bian, T. Li, J. Shu and X.-C. Wang, Two component dark matter with multi-Higgs portals, JHEP 03 (2015) 126 [arXiv:1412.5443] [INSPIRE].
A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant multi-Higgs portal, Phys. Rev. D 92 (2015) 075010 [arXiv:1508.03031] [INSPIRE].
G. Arcadi, C. Gross, O. Lebedev, Y. Mambrini, S. Pokorski and T. Toma, Multicomponent Dark Matter from Gauge Symmetry, JHEP 12 (2016) 081 [arXiv:1611.00365] [INSPIRE].
A. Dutta Banik, M. Pandey, D. Majumdar and A. Biswas, Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar, Eur. Phys. J. C 77 (2017) 657 [arXiv:1612.08621] [INSPIRE].
A. Karam and K. Tamvakis, Dark Matter from a Classically Scale-Invariant SU(3)X , Phys. Rev. D 94 (2016) 055004 [arXiv:1607.01001] [INSPIRE].
S. Bhattacharya, P. Poulose and P. Ghosh, Multipartite Interacting Scalar Dark Matter in the light of updated LUX data, JCAP 04 (2017) 043 [arXiv:1607.08461] [INSPIRE].
P. Ko and Y. Tang, Residual Non-Abelian Dark Matter and Dark Radiation, Phys. Lett. B 768 (2017) 12 [arXiv:1609.02307] [INSPIRE].
M. Aoki and T. Toma, Implications of Two-component Dark Matter Induced by Forbidden Channels and Thermal Freeze-out, JCAP 01 (2017) 042 [arXiv:1611.06746] [INSPIRE].
A. Ahmed, M. Duch, B. Grzadkowski and M. Iglicki, Multi-Component Dark Matter: the vector and fermion case, Eur. Phys. J. C 78 (2018) 905 [arXiv:1710.01853] [INSPIRE].
M. Aoki and T. Toma, Boosted Self-interacting Dark Matter in a Multi-component Dark Matter Model, JCAP 10 (2018) 020 [arXiv:1806.09154] [INSPIRE].
S. Chakraborti and P. Poulose, Interplay of Scalar and Fermionic Components in a Multi-component Dark Matter Scenario, Eur. Phys. J. C 79 (2019) 420 [arXiv:1808.01979] [INSPIRE].
A. Poulin and S. Godfrey, Multicomponent dark matter from a hidden gauged SU(3), Phys. Rev. D 99 (2019) 076008 [arXiv:1808.04901] [INSPIRE].
S. Yaser Ayazi and A. Mohamadnejad, Scale-Invariant Two Component Dark Matter, Eur. Phys. J. C 79 (2019) 140 [arXiv:1808.08706] [INSPIRE].
S. Chakraborti, A. Dutta Banik and R. Islam, Probing Multicomponent Extension of Inert Doublet Model with a Vector Dark Matter, Eur. Phys. J. C 79 (2019) 662 [arXiv:1810.05595] [INSPIRE].
S. Bhattacharya, P. Ghosh, A.K. Saha and A. Sil, Two component dark matter with inert Higgs doublet: neutrino mass, high scale validity and collider searches, JHEP 03 (2020) 090 [arXiv:1905.12583] [INSPIRE].
C.-R. Chen, Y.-X. Lin, C.S. Nugroho, R. Ramos, Y.-L.S. Tsai and T.-C. Yuan, Complex scalar dark matter in the gauged two-Higgs-doublet model, Phys. Rev. D 101 (2020) 035037 [arXiv:1910.13138] [INSPIRE].
C.E. Yaguna and O. Zapata, Multi-component scalar dark matter from a ZN symmetry: a systematic analysis, JHEP 03 (2020) 109 [arXiv:1911.05515] [INSPIRE].
S. Bhattacharya, N. Chakrabarty, R. Roshan and A. Sil, Multicomponent dark matter in extended U(1)B−L: neutrino mass and high scale validity, JCAP 04 (2020) 013 [arXiv:1910.00612] [INSPIRE].
A. Betancur, G. Palacio and A. Rivera, Inert doublet as multicomponent dark matter, Nucl. Phys. B 962 (2021) 115276 [arXiv:2002.02036] [INSPIRE].
G. Bélanger, A. Pukhov, C.E. Yaguna and O. Zapata, The Z5 model of two-component dark matter, JHEP 09 (2020) 030 [arXiv:2006.14922] [INSPIRE].
G. Bélanger, A. Mjallal and A. Pukhov, Two dark matter candidates: The case of inert doublet and singlet scalars, Phys. Rev. D 105 (2022) 035018 [arXiv:2108.08061] [INSPIRE].
S. Bhattacharya, S. Chakraborti and D. Pradhan, Electroweak symmetry breaking and WIMP-FIMP dark matter, JHEP 07 (2022) 091 [arXiv:2110.06985] [INSPIRE].
P. Das, M.K. Das and N. Khan, The FIMP-WIMP dark matter in the extended singlet scalar model, Nucl. Phys. B 975 (2022) 115677 [arXiv:2104.03271] [INSPIRE].
A. Betancur, A. Castillo, G. Palacio and J. Suarez, Multicomponent scalar dark matter at high-intensity proton beam experiments, J. Phys. G 49 (2022) 075003 [arXiv:2109.11586] [INSPIRE].
N. Chakrabarty, R. Roshan and A. Sil, Two-component doublet-triplet scalar dark matter stabilizing the electroweak vacuum, Phys. Rev. D 105 (2022) 115010 [arXiv:2102.06032] [INSPIRE].
A. Mohamadnejad, Electroweak phase transition and gravitational waves in a two-component dark matter model, JHEP 03 (2022) 188 [arXiv:2111.04342] [INSPIRE].
B. Díaz Sáez, K. Möhling and D. Stöckinger, Two real scalar WIMP model in the assisted freeze-out scenario, JCAP 10 (2021) 027 [arXiv:2103.17064] [INSPIRE].
S.-M. Choi, J. Kim, P. Ko and J. Li, A multi-component SIMP model with U(1)X → Z2 × Z3, JHEP 09 (2021) 028 [arXiv:2103.05956] [INSPIRE].
G. Bélanger, A. Mjallal and A. Pukhov, WIMP and FIMP dark matter in the inert doublet plus singlet model, Phys. Rev. D 106 (2022) 095019 [arXiv:2205.04101] [INSPIRE].
A. Das, S. Gola, S. Mandal and N. Sinha, Two-component scalar and fermionic dark matter candidates in a generic U(1)X model, Phys. Lett. B 829 (2022) 137117 [arXiv:2202.01443] [INSPIRE].
S.-Y. Ho, P. Ko and C.-T. Lu, Scalar and fermion two-component SIMP dark matter with an accidental Z4 symmetry, JHEP 03 (2022) 005 [arXiv:2201.06856] [INSPIRE].
F. Costa, S. Khan and J. Kim, A two-component dark matter model and its associated gravitational waves, JHEP 06 (2022) 026 [arXiv:2202.13126] [INSPIRE].
M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].
J. Baker et al., The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky, arXiv:1907.06482 [INSPIRE].
N. Seto, S. Kawamura and T. Nakamura, Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett. 87 (2001) 221103 [astro-ph/0108011] [INSPIRE].
S. Kawamura et al., The Japanese space gravitational wave antenna DECIGO, Class. Quant. Grav. 23 (2006) S125 [INSPIRE].
S. Sato et al., The status of DECIGO, J. Phys. Conf. Ser. 840 (2017) 012010 [INSPIRE].
S. Isoyama, H. Nakano and T. Nakamura, Multiband Gravitational-Wave Astronomy: Observing binary inspirals with a decihertz detector, B-DECIGO, PTEP 2018 (2018) 073E01 [arXiv:1802.06977] [INSPIRE].
S. Kawamura et al., Current status of space gravitational wave antenna DECIGO and B-DECIGO, PTEP 2021 (2021) 05A105 [arXiv:2006.13545] [INSPIRE].
V. Corbin and N.J. Cornish, Detecting the cosmic gravitational wave background with the big bang observer, Class. Quant. Grav. 23 (2006) 2435 [gr-qc/0512039] [INSPIRE].
J. Crowder and N.J. Cornish, Beyond LISA: Exploring future gravitational wave missions, Phys. Rev. D 72 (2005) 083005 [gr-qc/0506015] [INSPIRE].
G.M. Harry, P. Fritschel, D.A. Shaddock, W. Folkner and E.S. Phinney, Laser interferometry for the big bang observer, Class. Quant. Grav. 23 (2006) 4887 [INSPIRE].
C. Grojean and G. Servant, Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond, Phys. Rev. D 75 (2007) 043507 [hep-ph/0607107] [INSPIRE].
S.J. Huber and T. Konstandin, Gravitational Wave Production by Collisions: More Bubbles, JCAP 09 (2008) 022 [arXiv:0806.1828] [INSPIRE].
J.R. Espinosa, T. Konstandin, J.M. No and M. Quiros, Some Cosmological Implications of Hidden Sectors, Phys. Rev. D 78 (2008) 123528 [arXiv:0809.3215] [INSPIRE].
C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
M. Artymowski, M. Lewicki and J.D. Wells, Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology, JHEP 03 (2017) 066 [arXiv:1609.07143] [INSPIRE].
I. Baldes, Gravitational waves from the asymmetric-dark-matter generating phase transition, JCAP 05 (2017) 028 [arXiv:1702.02117] [INSPIRE].
A. Beniwal, M. Lewicki, M. White and A.G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model, JHEP 02 (2019) 183 [arXiv:1810.02380] [INSPIRE].
K. Hashino, M. Kakizaki, S. Kanemura, P. Ko and T. Matsui, Gravitational waves from first order electroweak phase transition in models with the U(1)X gauge symmetry, JHEP 06 (2018) 088 [arXiv:1802.02947] [INSPIRE].
C. Caprini and D.G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav. 35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].
L. Bian and Y.-L. Tang, Thermally modified sterile neutrino portal dark matter and gravitational waves from phase transition: The Freeze-in case, JHEP 12 (2018) 006 [arXiv:1810.03172] [INSPIRE].
L. Bian and X. Liu, Two-step strongly first-order electroweak phase transition modified FIMP dark matter, gravitational wave signals, and the neutrino mass, Phys. Rev. D 99 (2019) 055003 [arXiv:1811.03279] [INSPIRE].
L. Bian, W. Cheng, H.-K. Guo and Y. Zhang, Cosmological implications of a B – L charged hidden scalar: leptogenesis and gravitational waves, Chin. Phys. C 45 (2021) 113104 [arXiv:1907.13589] [INSPIRE].
L. Bian, Y. Wu and K.-P. Xie, Electroweak phase transition with composite Higgs models: calculability, gravitational waves and collider searches, JHEP 12 (2019) 028 [arXiv:1909.02014] [INSPIRE].
C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].
Y. Di, J. Wang, R. Zhou, L. Bian, R.-G. Cai and J. Liu, Magnetic Field and Gravitational Waves from the First-Order Phase Transition, Phys. Rev. Lett. 126 (2021) 251102 [arXiv:2012.15625] [INSPIRE].
R. Zhou, L. Bian and J. Shu, Probing new physics for (g – 2)μ and gravitational waves, arXiv:2104.03519 [INSPIRE].
L. Bian, Y.-L. Tang and R. Zhou, FIMP dark matter mediated by a massive gauge boson around the phase transition period and the gravitational waves production, Phys. Rev. D 106 (2022) 035028 [arXiv:2111.10608] [INSPIRE].
W. Altmannshofer, S. Gori, J. Martín-Albo, A. Sousa and M. Wallbank, Neutrino Tridents at DUNE, Phys. Rev. D 100 (2019) 115029 [arXiv:1902.06765] [INSPIRE].
A. Biswas and S. Khan, (g – 2)e,μ and strongly interacting dark matter with collider implications, JHEP 07 (2022) 037 [arXiv:2112.08393] [INSPIRE].
M. Bauer, P. Foldenauer and J. Jaeckel, Hunting All the Hidden Photons, JHEP 07 (2018) 094 [arXiv:1803.05466] [INSPIRE].
Fermi-LAT collaboration, Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].
B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Zh. Eksp. Teor. Fiz. 34 (1957) 247 [INSPIRE].
Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].
MEG collaboration, Search for the lepton flavour violating decay μ+ → e+γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
SINDRUM collaboration, Search for the Decay μ+ → e+e+e−, Nucl. Phys. B 299 (1988) 1 [INSPIRE].
P. Wintz, Results of the SINDRUM-II experiment, Conf. Proc. C 980420 (1998) 534 [INSPIRE].
A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398] [INSPIRE].
M. Lindner, M. Platscher and F.S. Queiroz, A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].
CHARM collaboration, A Search for Decays of Heavy Neutrinos in the Mass Range 0.5-GeV to 2.8-GeV, Phys. Lett. B 166 (1986) 473 [INSPIRE].
CHARM II collaboration, Search for heavy isosinglet neutrinos, Phys. Lett. B 343 (1995) 453 [INSPIRE].
Belle collaboration, Search for heavy neutrinos at Belle, Phys. Rev. D 87 (2013) 071102 [arXiv:1301.1105] [INSPIRE].
DELPHI collaboration, Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [INSPIRE].
I. Krasnov, DUNE prospects in the search for sterile neutrinos, Phys. Rev. D 100 (2019) 075023 [arXiv:1902.06099] [INSPIRE].
P. Ballett, T. Boschi and S. Pascoli, Heavy Neutral Leptons from low-scale seesaws at the DUNE Near Detector, JHEP 03 (2020) 111 [arXiv:1905.00284] [INSPIRE].
SHiP collaboration, Sensitivity of the SHiP experiment to Heavy Neutral Leptons, JHEP 04 (2019) 077 [arXiv:1811.00930] [INSPIRE].
J.P. Chou, D. Curtin and H.J. Lubatti, New Detectors to Explore the Lifetime Frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].
E.J. Chun, A. Das, S. Mandal, M. Mitra and N. Sinha, Sensitivity of Lepton Number Violating Meson Decays in Different Experiments, Phys. Rev. D 100 (2019) 095022 [arXiv:1908.09562] [INSPIRE].
FCC-ee study Team collaboration, Search for Heavy Right Handed Neutrinos at the FCC-ee, Nucl. Part. Phys. Proc. 273-275 (2016) 1883 [arXiv:1411.5230] [INSPIRE].
A. Blondel et al., Searches for long-lived particles at the future FCC-ee, Front. in Phys. 10 (2022) 967881 [arXiv:2203.05502] [INSPIRE].
M. Drewes and J. Hajer, Heavy Neutrinos in displaced vertex searches at the LHC and HL-LHC, JHEP 02 (2020) 070 [arXiv:1903.06100] [INSPIRE].
S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches via displaced vertices at LHCb, Phys. Lett. B 774 (2017) 114 [arXiv:1706.05990] [INSPIRE].
NuTeV and E815 collaborations, Search for neutral heavy leptons in a high-energy neutrino beam, Phys. Rev. Lett. 83 (1999) 4943 [hep-ex/9908011] [INSPIRE].
FMMF collaboration, Search for neutral weakly interacting massive particles in the Fermilab Tevatron wide band neutrino beam, Phys. Rev. D 52 (1995) 6 [INSPIRE].
J.L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev. D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].
D. Dercks, H.K. Dreiner, M. Hirsch and Z.S. Wang, Long-Lived Fermions at AL3X, Phys. Rev. D 99 (2019) 055020 [arXiv:1811.01995] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].
M. Carena, Z. Liu and Y. Wang, Electroweak phase transition with spontaneous Z2-breaking, JHEP 08 (2020) 107 [arXiv:1911.10206] [INSPIRE].
CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].
ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
A. Berlin, D. Hooper and S.D. McDermott, Simplified Dark Matter Models for the Galactic Center Gamma-Ray Excess, Phys. Rev. D 89 (2014) 115022 [arXiv:1404.0022] [INSPIRE].
P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].
LZ collaboration, First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, arXiv:2207.03764 [INSPIRE].
PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
PandaX collaboration, The first results of PandaX-4T, Int. J. Mod. Phys. D 31 (2022) 2230007 [INSPIRE].
DarkSide collaboration, DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon, Phys. Rev. D 98 (2018) 102006 [arXiv:1802.07198] [INSPIRE].
DarkSide collaboration, Low-Mass Dark Matter Search with the DarkSide-50 Experiment, Phys. Rev. Lett. 121 (2018) 081307 [arXiv:1802.06994] [INSPIRE].
M. Ibe, W. Nakano, Y. Shoji and K. Suzuki, Migdal Effect in Dark Matter Direct Detection Experiments, JHEP 03 (2018) 194 [arXiv:1707.07258] [INSPIRE].
SuperCDMS collaboration, Search for Low-Mass Dark Matter with CDMSlite Using a Profile Likelihood Fit, Phys. Rev. D 99 (2019) 062001 [arXiv:1808.09098] [INSPIRE].
CRESST collaboration, Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground, Eur. Phys. J. C 77 (2017) 637 [arXiv:1707.06749] [INSPIRE].
CRESST collaboration, First results from the CRESST-III low-mass dark matter program, Phys. Rev. D 100 (2019) 102002 [arXiv:1904.00498] [INSPIRE].
Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
R.K. Leane, T.R. Slatyer, J.F. Beacom and K.C.Y. Ng, GeV-scale thermal WIMPs: Not even slightly ruled out, Phys. Rev. D 98 (2018) 023016 [arXiv:1805.10305] [INSPIRE].
L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper and C. Weniger, New Limits on Dark Matter Annihilation from AMS Cosmic Ray Positron Data, Phys. Rev. Lett. 111 (2013) 171101 [arXiv:1306.3983] [INSPIRE].
ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801 [arXiv:1904.05105] [INSPIRE].
L. Covi, J.E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys. Rev. Lett. 82 (1999) 4180 [hep-ph/9905212] [INSPIRE].
C.-W. Chiang, Y.-T. Li and E. Senaha, Revisiting electroweak phase transition in the standard model with a real singlet scalar, Phys. Lett. B 789 (2019) 154 [arXiv:1808.01098] [INSPIRE].
D. Croon, O. Gould, P. Schicho, T.V.I. Tenkanen and G. White, Theoretical uncertainties for cosmological first-order phase transitions, JHEP 04 (2021) 055 [arXiv:2009.10080] [INSPIRE].
N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].
R. Fukuda and T. Kugo, Gauge Invariance in the Effective Action and Potential, Phys. Rev. D 13 (1976) 3469 [INSPIRE].
H.H. Patel and M.J. Ramsey-Musolf, Baryon Washout, Electroweak Phase Transition, and Perturbation Theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].
C.-W. Chiang and E. Senaha, On gauge dependence of gravitational waves from a first-order phase transition in classical scale-invariant U(1)′ models, Phys. Lett. B 774 (2017) 489 [arXiv:1707.06765] [INSPIRE].
P. Schicho, T.V.I. Tenkanen and G. White, Combining thermal resummation and gauge invariance for electroweak phase transition, JHEP 11 (2022) 047 [arXiv:2203.04284] [INSPIRE].
L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].
R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [hep-ph/9204216] [INSPIRE].
M.E. Carrington, The effective potential at finite temperature in the Standard Model, Phys. Rev. D 45 (1992) 2933 [INSPIRE].
W. Chao, First order electroweak phase transition triggered by the Higgs portal vector dark matter, Phys. Rev. D 92 (2015) 015025 [arXiv:1412.3823] [INSPIRE].
M. Breitbach, J. Kopp, E. Madge, T. Opferkuch and P. Schwaller, Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves, JCAP 07 (2019) 007 [arXiv:1811.11175] [INSPIRE].
D. Borah, A. Dasgupta and S.K. Kang, Gravitational waves from a dark U(1)D phase transition in light of NANOGrav 12.5 yr data, Phys. Rev. D 104 (2021) 063501 [arXiv:2105.01007] [INSPIRE].
J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].
V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].
G. Kurup and M. Perelstein, Dynamics of Electroweak Phase Transition In Singlet-Scalar Extension of the Standard Model, Phys. Rev. D 96 (2017) 015036 [arXiv:1704.03381] [INSPIRE].
J. Ellis, M. Lewicki and J.M. No, On the Maximal Strength of a First-Order Electroweak Phase Transition and its Gravitational Wave Signal, JCAP 04 (2019) 003 [arXiv:1809.08242] [INSPIRE].
S. Biondini, P. Schicho and T.V.I. Tenkanen, Strong electroweak phase transition in t-channel simplified dark matter models, JCAP 10 (2022) 044 [arXiv:2207.12207] [INSPIRE].
A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].
C.L. Wainwright, CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].
J. Ellis, M. Lewicki, J.M. No and V. Vaskonen, Gravitational wave energy budget in strongly supercooled phase transitions, JCAP 06 (2019) 024 [arXiv:1903.09642] [INSPIRE].
J. Ellis, M. Lewicki and J.M. No, Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source, JCAP 07 (2020) 050 [arXiv:2003.07360] [INSPIRE].
H.-K. Guo, K. Sinha, D. Vagie and G. White, Phase Transitions in an Expanding Universe: Stochastic Gravitational Waves in Standard and Non-Standard Histories, JCAP 01 (2021) 001 [arXiv:2007.08537] [INSPIRE].
K. Schmitz, New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions, JHEP 01 (2021) 097 [arXiv:2002.04615] [INSPIRE].
A. Ringwald, K. Saikawa and C. Tamarit, Primordial gravitational waves in a minimal model of particle physics and cosmology, JCAP 02 (2021) 046 [arXiv:2009.02050] [INSPIRE].
S. Banerjee, P.S.B. Dev, A. Ibarra, T. Mandal and M. Mitra, Prospects of Heavy Neutrino Searches at Future Lepton Colliders, Phys. Rev. D 92 (2015) 075002 [arXiv:1503.05491] [INSPIRE].
P.J. Steinhardt, Relativistic Detonation Waves and Bubble Growth in False Vacuum Decay, Phys. Rev. D 25 (1982) 2074 [INSPIRE].
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2209.13653
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Costa, F., Khan, S. & Kim, J. A two-component vector WIMP — fermion FIMP dark matter model with an extended seesaw mechanism. J. High Energ. Phys. 2022, 165 (2022). https://doi.org/10.1007/JHEP12(2022)165
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2022)165