Abstract
In the present investigation we consider the possibility of having new massive, higher spin W-supergravity theories, which do not exist as four-dimensional perturbative models. These theories are based on a double copy construction of two supersymmetric field theories, where at least one factor is given by a \( \mathcal{N}=3 \) field theory, which is a non-perturbative S-fold of \( \mathcal{N}=4 \) super Yang-Mills theory. In this way, we can obtain as S-folds a new \( \mathcal{N}=7 \) (corresponding to 28 supercharges) W-supergravity and its \( \mathcal{N}=7 \) W-superstring counterpart, which both do not exist as four-dimensional perturbative models with an (effective) Langrangian description. The resulting field resp. string theory does not contain any massless states, but instead a massive higher spin-four supermultiplet of the \( \mathcal{N}=7 \) supersymmetry algebra. Furthermore we also construct a four-dimensional heterotic S-fold with \( \mathcal{N}=3 \) supersymmetry. It again does not exist as perturbative heterotic string model and can be considered as the heterotic counterpart of the \( \mathcal{N}=3 \) superconformal field theories, which were previously constructed in the context of type I orientfold models.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress toward a theory of supergravity, Phys. Rev. D 13 (1976) 3214 [INSPIRE].
S. Deser and B. Zumino, Consistent supergravity, Phys. Lett. B 62 (1976) 335 [INSPIRE].
A. Salam and E. Sezgin, Supergravities in diverse dimensions, North Holland/Word Scientific, The Netherlands (1989).
D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).
B. de Wit, A.K. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 392 (1993) 3 [hep-th/9208074] [INSPIRE].
I. Florakis, I. Garcia-Etxebarria, D. Lüst and D. Regalado, 2d orbifolds with exotic supersymmetry, JHEP 02 (2018) 146 [arXiv:1712.04318] [INSPIRE].
I. Garcia-Etxebarria and D. Regalado, \( \mathcal{N}=3 \) four dimensional field theories, JHEP 03 (2016) 083 [arXiv:1512.06434] [INSPIRE].
O. Aharony and M. Evtikhiev, On four dimensional N = 3 superconformal theories, JHEP 04 (2016) 040 [arXiv:1512.03524] [INSPIRE].
O. Aharony and Y. Tachikawa, S-folds and 4d N = 3 superconformal field theories, JHEP 06 (2016) 044 [arXiv:1602.08638] [INSPIRE].
S. Ferrara, M. Porrati and A. Zaffaroni, N = 6 supergravity on AdS 5 and the SU(2, 2/3) superconformal correspondence, Lett. Math. Phys. 47 (1999) 255 [hep-th/9810063] [INSPIRE].
Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].
Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
A. Anastasiou et al., Yang-Mills origin of gravitational symmetries, Phys. Rev. Lett. 113 (2014) 231606 [arXiv:1408.4434] [INSPIRE].
L. Borsten and M.J. Duff, Gravity as the square of Yang-Mills?, Phys. Scripta 90 (2015) 108012 [arXiv:1602.08267] [INSPIRE].
G.L. Cardoso, S. Nagy and S. Nampuri, A double copy for \( \mathcal{N}=2 \) supergravity: a linearised tale told on-shell, JHEP 10 (2016) 127 [arXiv:1609.05022] [INSPIRE].
A. Anastasiou et al., Are all supergravity theories Yang-Mills squared?, arXiv:1707.03234 [INSPIRE].
S. Ferrara, M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauging the graded conformal group with unitary internal symmetries, Nucl. Phys. B 129 (1977) 125 [INSPIRE].
E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].
J. van Muiden and A. Van Proeyen, The N = 3 Weyl multiplet in four dimensions, arXiv:1702.06442 [INSPIRE].
B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation rules of \( \mathcal{N}=2 \) supergravity multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].
S. Ferrara and B. Zumino, Transformation properties of the supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].
S. Ferrara and B. Zumino, Structure of conformal supergravity, Nucl. Phys. B 134 (1978) 301 [INSPIRE].
B. de Wit and S. Ferrara, On higher order invariants in extended supergravity, Phys. Lett. B 81 (1979) 317.
H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].
S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [INSPIRE].
S. Stieberger and T.R. Taylor, New relations for Einstein-Yang-Mills amplitudes, Nucl. Phys. B 913 (2016) 151 [arXiv:1606.09616] [INSPIRE].
D. Lüst and S. Theisen, Exceptional groups in string theory, Int. J. Mod. Phys. A 4 (1989) 4513 [INSPIRE].
S. Ferrara, D. Lüst and S. Theisen, World sheet versus spectrum symmetries in heterotic and Type II superstrings, Nucl. Phys. B 325 (1989) 501 [INSPIRE].
S. Ferrara and C. Kounnas, Extended supersymmetry in four-dimensional type II strings, Nucl. Phys. B 328 (1989) 406 [INSPIRE].
C. Condeescu, I. Florakis and D. Lüst, Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory, JHEP 04 (2012) 121 [arXiv:1202.6366] [INSPIRE].
C. Condeescu, I. Florakis, C. Kounnas and D. Lüst, Gauged supergravities and non-geometric Q/R-fluxes from asymmetric orbifold CFT‘s, JHEP 10 (2013) 057 [arXiv:1307.0999] [INSPIRE].
A. Font, L.E. Ibáñez, D. Lüst and F. Quevedo, Strong-weak coupling duality and nonperturbative effects in string theory, Phys. Lett. B 249 (1990) 35 [INSPIRE].
J.H. Schwarz and A. Sen, Duality symmetries of 4D heterotic strings, Phys. Lett. B 312 (1993) 105 [hep-th/9305185] [INSPIRE].
A. Sen, Strong-weak coupling duality in four-dimensional string theory, Int. J. Mod. Phys. A 9 (1994) 3707 [hep-th/9402002] [INSPIRE].
S. Ferrara, J. Scherk and B. Zumino, Algebraic properties of extended supergravity theories, Nucl. Phys. B 121 (1977) 393 [INSPIRE].
D.Z. Freedman, SO(3) invariant extended supergravity, Phys. Rev. Lett. 38 (1977) 105 [INSPIRE].
S. Ferrara, C.A. Savoy and B. Zumino, General massive multiplets in extended supersymmetry, Phys. Lett. B 100 (1981) 393.
M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Superconformal unified field theory, Phys. Rev. Lett. 39 (1977) 1109 [INSPIRE].
M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].
H. Johansson and A. Ochirov, Pure gravities via color-kinematics duality for fundamental matter, JHEP 511 (2015) 046 [arXiv:1407.4772]. [INSPIRE].
H. Johansson, G. Kälin and G. Mogull, Two-loop supersymmetric QCD and half-maximal supergravity amplitudes, JHEP 09 (2017) 019 [arXiv:1706.09381] [INSPIRE].
N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].
R. Kallosh, Cancellation of conformal and chiral anomalies in \( \mathcal{N}\ge 5 \) supergravities, Phys. Rev. D 95 (2017) 041701 [arXiv:1612.08978] [INSPIRE].
D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].
L.E. Ibáñez and D. Lüst, Duality anomaly cancellation, minimal string unification and the effective low-energy Lagrangian of 4D strings, Nucl. Phys. B 382 (1992) 305 [hep-th/9202046] [INSPIRE].
L.E. Ibáñez and D. Lüst, A comment on duality transformations and (discrete) gauge symmetries in four-dimensional strings, Phys. Lett. B 302 (1993) 38 [hep-th/9212089] [INSPIRE].
J.A. Harvey, G.W. Moore and A. Strominger, Reducing S duality to T duality, Phys. Rev. D 52 (1995) 7161 [hep-th/9501022] [INSPIRE].
R.P. Geroch, A method for generating new solutions of Einstein’s equation. 2, J. Math. Phys. 13 (1972) 394 [INSPIRE].
I. Bakas, O(2, 2) transformations and the string Geroch group, Nucl. Phys. B 428 (1994) 374 [hep-th/9402016] [INSPIRE].
M.J. Duff, Strong/weak coupling duality from the dual string, Nucl. Phys. B 442 (1995) 47 [hep-th/9501030] [INSPIRE].
R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer, Germany (2012).
W.-Z. Feng et al., Direct production of lightest Regge resonances, Nucl. Phys. B 843 (2011) 570 [arXiv:1007.5254] [INSPIRE].
W.-Z. Feng, D. Lüst and O. Schlotterer, Massive supermultiplets in four-dimensional superstring theory, Nucl. Phys. B 861 (2012) 175 [arXiv:1202.4466] [INSPIRE].
X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].
L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].
M. Henneaux and S.-J. Rey, Nonlinear W ∞ as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].
A. Sagnotti, Notes on strings and higher spins, J. Phys. A 46 (2013) 214006 [arXiv:1112.4285] [INSPIRE].
K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].
K.S. Stelle, Classical gravity with higher derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE].
K.S. Stelle, Abdus Salam and quadratic curvature gravity: classical solutions, Int. J. Mod. Phys. A 32 (2017) 1741012 [INSPIRE].
L. Álvarez-Gaumé et al., Aspects of quadratic gravity, Fortsch. Phys. 64 (2016) 176 [arXiv:1505.07657] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1805.10022
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Ferrara, S., Lüst, D. Spin-four \( \mathcal{N}=7 \) W-supergravity: S-fold and double copy construction. J. High Energ. Phys. 2018, 114 (2018). https://doi.org/10.1007/JHEP07(2018)114
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2018)114