Abstract
In this paper we propose a new reconstruction method to explore the low mass region in the associated production of top-quark pairs (\( t\overline{t} \)) with a generic scalar boson (ϕ) at the LHC. The new method of mass reconstruction shows an improved resolution of at least a factor of two in the low mass region when compared to previous methods, without the loss of sensitivity of previous analyses. It turns out that it also leads to an improvement of the mass reconstruction of the 125 GeV Higgs for the same production process. We use an effective Lagrangian to describe a scalar with a generic Yukawa coupling to the top quarks. A full phenomenological analysis was performed, using Standard Model background and signal events generated with MadGraph5_aMC@NLO and reconstructed using a kinematic fit. The use of CP-sensitive variables allows then to maximize the distinction between CP-even and CP-odd components of the Yukawa couplings. Confidence Levels (CLs) for the exclusion of ϕ bosons with mixed CP (both CP-even and CP-odd components) were determined as a function of the top Yukawa couplings to the ϕ boson. The mass range analysed starts slightly above the ϒΥ mass up to 40 GeV, although the analysis can be used for an arbitrary mass. If no new light scalar is found, exclusion limits at 95% CL for the absolute value of the CP-even and CP-odd Yukawa are derived. Finally, we analyse how these limits constrain the parameter space of the complex two-Higgs doublet model (C2HDM).
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
D. Azevedo, R. Capucha, A. Onofre and R. Santos, Scalar mass dependence of angular variables in \( t\overline{t}\phi \) production, JHEP 06 (2020) 155 [arXiv:2003.09043] [INSPIRE].
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [Usp. Fiz. Nauk 161 (1991) 61].
T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].
I.F. Ginzburg, M. Krawczyk and P. Osland, Two Higgs doublet models with CP-violation, in International Workshop on Linear Colliders, (2002) [hep-ph/0211371] [INSPIRE].
W. Khater and P. Osland, CP violation in top quark production at the LHC and two Higgs doublet models, Nucl. Phys. B 661 (2003) 209 [hep-ph/0302004] [INSPIRE].
A.W. El Kaffas, P. Osland and O.M. Ogreid, CP violation, stability and unitarity of the two Higgs doublet model, Nonlin. Phenom. Complex Syst. 10 (2007) 347 [hep-ph/0702097] [INSPIRE].
B. Grzadkowski and P. Osland, Tempered Two-Higgs-Doublet Model, Phys. Rev. D 82 (2010) 125026 [arXiv:0910.4068] [INSPIRE].
A. Arhrib, E. Christova, H. Eberl and E. Ginina, CP violation in charged Higgs production and decays in the Complex Two Higgs Doublet Model, JHEP 04 (2011) 089 [arXiv:1011.6560] [INSPIRE].
A. Barroso, P.M. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].
S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].
K. Cheung, J.S. Lee, E. Senaha and P.-Y. Tseng, Confronting Higgcision with Electric Dipole Moments, JHEP 06 (2014) 149 [arXiv:1403.4775] [INSPIRE].
D. Fontes, J.C. Romão and J.P. Silva, h → Zγ in the complex two Higgs doublet model, JHEP 12 (2014) 043 [arXiv:1408.2534] [INSPIRE].
D. Fontes, J.C. Romão, R. Santos and J.P. Silva, Large pseudoscalar Yukawa couplings in the complex 2HDM, JHEP 06 (2015) 060 [arXiv:1502.01720] [INSPIRE].
C.-Y. Chen, S. Dawson and Y. Zhang, Complementarity of LHC and EDMs for Exploring Higgs CP-violation, JHEP 06 (2015) 056 [arXiv:1503.01114] [INSPIRE].
M. Mühlleitner, M.O.P. Sampaio, R. Santos and J. Wittbrodt, Phenomenological Comparison of Models with Extended Higgs Sectors, JHEP 08 (2017) 132 [arXiv:1703.07750] [INSPIRE].
D. Fontes, M. Mühlleitner, J.C. Romão, R. Santos, J.P. Silva and J. Wittbrodt, The C2HDM revisited, JHEP 02 (2018) 073 [arXiv:1711.09419] [INSPIRE].
K. Cheung, A. Jueid, Y.-N. Mao and S. Moretti, Two-Higgs-doublet model with soft CP violation confronting electric dipole moments and colliders, Phys. Rev. D 102 (2020) 075029 [arXiv:2003.04178] [INSPIRE].
J.F. Gunion and X.-G. He, Determining the CP nature of a neutral Higgs boson at the LHC, Phys. Rev. Lett. 76 (1996) 4468 [hep-ph/9602226] [INSPIRE].
F. Boudjema, R.M. Godbole, D. Guadagnoli and K.A. Mohan, Lab-frame observables for probing the top-Higgs interaction, Phys. Rev. D 92 (2015) 015019 [arXiv:1501.03157] [INSPIRE].
S.P. Amor dos Santos et al., Angular distributions in \( t\overline{t}H \) (H → \( b\overline{b} \)) reconstructed events at the LHC, Phys. Rev. D 92 (2015) 034021 [arXiv:1503.07787] [INSPIRE].
D. Goncalves and D. Lopez-Val, Pseudoscalar searches with dileptonic tops and jet substructure, Phys. Rev. D 94 (2016) 095005 [arXiv:1607.08614] [INSPIRE].
S. Amor Dos Santos et al., Probing the CP nature of the Higgs coupling in \( t\overline{t}h \) events at the LHC, Phys. Rev. D 96 (2017) 013004 [arXiv:1704.03565] [INSPIRE].
D. Gonçalves, K. Kong and J.H. Kim, Probing the top-Higgs Yukawa CP structure in dileptonic \( t\overline{t}h \) with M2-assisted reconstruction, JHEP 06 (2018) 079 [arXiv:1804.05874] [INSPIRE].
D.A. Faroughy, J.F. Kamenik, N. Košnik and A. Smolkovič, Probing the CP nature of the top quark Yukawa at hadron colliders, JHEP 02 (2020) 085 [arXiv:1909.00007] [INSPIRE].
S. Berge, W. Bernreuther and J. Ziethe, Determining the CP parity of Higgs bosons at the LHC in their τ decay channels, Phys. Rev. Lett. 100 (2008) 171605 [arXiv:0801.2297] [INSPIRE].
S. Berge and W. Bernreuther, Determining the CP parity of Higgs bosons at the LHC in the τ to 1-prong decay channels, Phys. Lett. B 671 (2009) 470 [arXiv:0812.1910] [INSPIRE].
S. Berge, W. Bernreuther, B. Niepelt and H. Spiesberger, How to pin down the CP quantum numbers of a Higgs boson in its τ decays at the LHC, Phys. Rev. D 84 (2011) 116003 [arXiv:1108.0670] [INSPIRE].
S. Berge, W. Bernreuther and S. Kirchner, Determination of the Higgs CP-mixing angle in the τ decay channels at the LHC including the Drell-Yan background, Eur. Phys. J. C 74 (2014) 3164 [arXiv:1408.0798] [INSPIRE].
S. Berge, W. Bernreuther and S. Kirchner, Prospects of constraining the Higgs boson’s CP nature in the τ decay channel at the LHC, Phys. Rev. D 92 (2015) 096012 [arXiv:1510.03850] [INSPIRE].
S. Antusch, O. Fischer, A. Hammad and C. Scherb, Testing CP Properties of Extra Higgs States at the HL-LHC, arXiv:2011.10388 [INSPIRE].
T. Ghosh, R. Godbole and X. Tata, Determining the spacetime structure of bottom-quark couplings to spin-zero particles, Phys. Rev. D 100 (2019) 015026 [arXiv:1904.09895] [INSPIRE].
C. Grojean, A. Paul and Z. Qian, Resurrecting \( b\overline{b}h \) with kinematic shapes, arXiv:2011.13945 [INSPIRE].
D. Huang, A.P. Morais and R. Santos, CP violating hW+W− coupling in the Standard Model and beyond, JHEP 01 (2021) 168 [arXiv:2009.09228] [INSPIRE].
CMS collaboration, Measurements of \( \mathrm{t}\overline{\mathrm{t}}H \) Production and the CP Structure of the Yukawa Interaction between the Higgs Boson and Top Quark in the Diphoton Decay Channel, Phys. Rev. Lett. 125 (2020) 061801 [arXiv:2003.10866] [INSPIRE].
ATLAS collaboration, CP Properties of Higgs Boson Interactions with Top Quarks in the \( t\overline{t}H \) and tH Processes Using H → γγ with the ATLAS Detector, Phys. Rev. Lett. 125 (2020) 061802 [arXiv:2004.04545] [INSPIRE].
CMS collaboration, Analysis of the CP structure of the Yukawa coupling between the Higgs boson and τ leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-20-006, CERN, Geneva (2020).
A. Ferroglia, M.C.N. Fiolhais, E. Gouveia and A. Onofre, Role of the \( t\overline{t}h \) rest frame in direct top-quark Yukawa coupling measurements, Phys. Rev. D 100 (2019) 075034 [arXiv:1909.00490] [INSPIRE].
P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].
J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].
A. Hocker et al., TMVA — Toolkit for Multivariate Data Analysis, physics/0703039 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2012.10730
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Azevedo, D., Capucha, R., Gouveia, E. et al. Light Higgs searches in \( t\overline{t}\phi \) production at the LHC. J. High Energ. Phys. 2021, 77 (2021). https://doi.org/10.1007/JHEP04(2021)077
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2021)077