Abstract
Inspired by the recent development in determining the property of the observed Higgs boson, we explore the CP-violating (CPV) \( -{c}_{\mathrm{CPV}}{hW}^{+\mu \nu}{\tilde{W}}_{\mu \nu}^{-}/\upsilon \) coupling in the Standard Model (SM) and beyond, where W±μν and \( {\tilde{W}}^{\pm \mu \nu} \) denote the W-boson field strength and its dual. To begin with, we show that the leading-order SM contribution to this CPV vertex appears at two-loop level. By summing over the quark flavor indices in the two loop integrals analytically, we can estimate the order of the corresponding Wilson coefficient to be \( {c}_{\mathrm{CPV}}^{\mathrm{SM}}\sim \mathcal{O}\left({10}^{-23}\right) \), which is obviously too small to be probed at the LHC and planned future colliders. Then we investigate this CPV hW+W− interaction in two Beyond the Standard Model benchmark models: the left-right model and the complex 2-Higgs doublet model (C2HDM). Unlike what happens for the SM, the dominant contributions in both models arise at the one-loop level, and the corresponding Wilson coefficient can be as large as of \( \mathcal{O} \)(10−9) in the former model and of \( \mathcal{O} \)(10−3) for the latter. In light of such a large CPV effect in the hW+W− coupling, we also give the formulae for the leading one-loop contribution to the related CPV hZZ effective operator in the complex 2-Higgs doublet model. The order of magnitude of the Wilson coefficients in the C2HDM may be within reach of the high-luminosity LHC or planned future colliders.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
CMS collaboration, Observation of a New Boson with Mass Near 125 GeV in pp Collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].
CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].
CMS collaboration, Combined search for anomalous pseudoscalar HVV couplings in VH(H → \( b\overline{b} \)) production and H → VV decay, Phys. Lett. B 759 (2016) 672 [arXiv:1602.04305] [INSPIRE].
CMS collaboration, Measurements of the Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state, Phys. Rev. D 99 (2019) 112003 [arXiv:1901.00174] [INSPIRE].
CMS collaboration, Constraints on anomalous HVV couplings from the production of Higgs bosons decaying to τ lepton pairs, Phys. Rev. D 100 (2019) 112002 [arXiv:1903.06973] [INSPIRE].
ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432] [INSPIRE].
ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [Erratum ibid. 76 (2016) 152] [arXiv:1506.05669] [INSPIRE].
ATLAS collaboration, Test of CP Invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector, Eur. Phys. J. C 76 (2016) 658 [arXiv:1602.04516] [INSPIRE].
Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze and N.V. Tran, Spin Determination of Single-Produced Resonances at Hadron Colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].
S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].
I. Anderson et al., Constraining Anomalous HVV Interactions at Proton and Lepton Colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE].
T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the Structure of Higgs Couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].
V. Hankele, G. Klamke, D. Zeppenfeld and T. Figy, Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC, Phys. Rev. D 74 (2006) 095001 [hep-ph/0609075] [INSPIRE].
K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].
A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs Look-Alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].
J. Ellis, D.S. Hwang, V. Sanz and T. You, A Fast Track towards the ‘Higgs’ Spin and Parity, JHEP 11 (2012) 134 [arXiv:1208.6002] [INSPIRE].
P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].
A. Greljo, G. Isidori, J.M. Lindert and D. Marzocca, Pseudo-observables in electroweak Higgs production, Eur. Phys. J. C 76 (2016) 158 [arXiv:1512.06135] [INSPIRE].
V. Cirigliano, A. Crivellin, W. Dekens, J. de Vries, M. Hoferichter and E. Mereghetti, CP Violation in Higgs-Gauge Interactions: From Tabletop Experiments to the LHC, Phys. Rev. Lett. 123 (2019) 051801 [arXiv:1903.03625] [INSPIRE].
J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. 11 (1975) 703] [INSPIRE].
R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].
G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].
H. Fritzsch and P. Minkowski, Parity Conserving Neutral Currents and Righthanded Neutrinos, Nucl. Phys. B 103 (1976) 61 [INSPIRE].
S. Weinberg, Gauge Theory of CP-violation, Phys. Rev. Lett. 37 (1976) 657 [INSPIRE].
C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].
C. Jarlskog, A Basis Independent Formulation of the Connection Between Quark Mass Matrices, CP-violation and Experiment, Z. Phys. C 29 (1985) 491 [INSPIRE].
D.-d. Wu, The Rephasing Invariants and CP, Phys. Rev. D 33 (1986) 860 [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
I. Dunietz, Rephase Invariance of K−m Matrices and CP Violation, Annals Phys. 184 (1988) 350 [INSPIRE].
I. Dunietz, O.W. Greenberg and D.-d. Wu, A Priori Definition of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 2935 [INSPIRE].
J. Carter and G. Heinrich, SecDec: A general program for sector decomposition, Comput. Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].
S. Borowka, J. Carter and G. Heinrich, Numerical Evaluation of Multi-Loop Integrals for Arbitrary Kinematics with SecDec 2.0, Comput. Phys. Commun. 184 (2013) 396 [arXiv:1204.4152] [INSPIRE].
S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].
S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].
S.L. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].
M.E. Pospelov and I.B. Khriplovich, Electric dipole moment of the W boson and the electron in the Kobayashi-Maskawa model, Sov. J. Nucl. Phys. 53 (1991) 638 [INSPIRE].
M.J. Booth, The Electric dipole moment of the W and electron in the Standard Model, hep-ph/9301293 [INSPIRE].
D. Chang, W.-Y. Keung and J. Liu, The electric dipole moment of W boson, Nucl. Phys. B 355 (1991) 295 [INSPIRE].
W. Dekens and D. Boer, Viability of minimal left-right models with discrete symmetries, Nucl. Phys. B 889 (2014) 727 [arXiv:1409.4052] [INSPIRE].
A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].
S. Weinberg, Larger Higgs Exchange Terms in the Neutron Electric Dipole Moment, Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE].
C.A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].
I.F. Ginzburg, M. Krawczyk and P. Osland, Two Higgs doublet models with CP-violation, in International Workshop on Linear Colliders (LCWS 2002), pp. 703–706 (2002) [hep-ph/0211371] [INSPIRE].
D. Fontes, M. Mühlleitner, J.C. Romão, R. Santos, J.P. Silva and J. Wittbrodt, The C2HDM revisited, JHEP 02 (2018) 073 [arXiv:1711.09419] [INSPIRE].
S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].
E.A. Paschos, Diagonal Neutral Currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].
CMS collaboration, Sensitivity projections for Higgs boson properties measurements at the HL-LHC, Tech. Rep. CMS-PAS-FTR-18-011 (2018).
T. Barklow et al., ILC Operating Scenarios, arXiv:1506.07830 [INSPIRE].
T. Ogawa, Sensitivity to anomalous VVH couplings induced by dimension-6 operators at the ILC, Ph.D. Thesis, The Graduate University for Advanced Studies, Japan (2018) [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2009.09228
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Huang, D., Morais, A.P. & Santos, R. CP violating hW+W− coupling in the Standard Model and beyond. J. High Energ. Phys. 2021, 168 (2021). https://doi.org/10.1007/JHEP01(2021)168
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2021)168